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Foreword

This handbook is a collection of three short articles written for the Auth0 Blog1. The first of these
articles2 focuses on the concept of blockchain, a decentralized, verifiable, and ordered database of
operations. To get a better sense of how blockchains operate, the first article explores Bitcoin, the
first popular and successful implementation of a blockchain.

The second article3 explores Ethereum, a different blockchain implementation focused on decentral-
ized applications. At the end of the article an example of a decentralized application is presented.
This example attempts to explore how a decentralized authentication solution for Ethereum users
could be implemented. It also details many of its shortcomings and mentions that a better alterna-
tive will be presented in the next article.

Finally, the third article4 presents the work of GFT’s Innovation Team on creating a practical
authentication solution for Ethereum users with high-value accounts. The article shows how
blockchain technologies can be integrated into classical projects, and explores some of the intri-
cacies of blockchains applied to decentralized applications. The solution presented in this article
solves many of the problems presented in the second article.

This handbook is targeted at people wanting to learn more about blockchain technologies, making
a strong emphasis on practical applications of Ethereum. It is intended for technical and non-
technical minds alike. Some of the articles included in this handbook originally used videos to show
certain things. These videos are available online and it is recommended that you watch them as
you find them while reading.

1https://auth0.com/blog/
2https://auth0.com/blog/an-introduction-to-ethereum-and-smart-contracts/
3https://auth0.com/blog/an-introduction-to-ethereum-and-smart-contracts-part-2/
4https://auth0.com/blog/an-introduction-to-ethereum-and-smart-contracts-part-3/
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Chapter 1

Bitcoin and The Blockchain

1.1 Bitcoin and the Double-Spending Problem

In 2009, someone, under the alias of Satoshi Nakamoto, released this iconic Bitcoin whitepaper1.
Bitcoin was poised to solve a very specific problem: how can the double-spending problem2 be
solved without a central authority acting as arbiter to each transaction?

To be fair, this problem had been in the minds of researchers3 for some time4 before Bitcoin was
released. But where previous solutions were of research quality, Bitcoin succeeded in bringing a
working, production ready design to the masses.

The earliest references to some of the concepts directly applied to Bitcoin are from the
1990s. In 2005, Nick Szabo, a computer scientist, introduced the concept of Bitgold5, a
precursor to Bitcoin, sharing many of its concepts. The similarities between Bitgold and
Bitcoin are sufficient that some people have speculated he might be Satoshi Nakamoto6.

The double-spending problem is a specific case of transaction processing7. Transactions, by defini-
tion, must either happen or not. Additionally, some (but not all) transactions must provide the
guarantee of happening before or after other transactions (in other words, they must be atomic).
Atomicity gives rise to the notion of ordering: transactions either happen or not before or after
other transactions. A lack of atomicity is precisely the problem of the double-spending problem:
“spending”, or sending money from spender A to receiver B, must happen at a specific point in
time, and before and after any other transactions. If this were not the case, it would be possible to
spend money more than once in separate but simultaneous transactions.

1https://bitcoin.org/bitcoin.pdf
2https://en.wikipedia.org/wiki/Double-spending
3http://eprint.iacr.org/2015/464.pdf
4http://ieeexplore.ieee.org/document/4268195/?reload=true
5http://unenumerated.blogspot.com/2005/12/bit-gold.html
6https://dave.liberty.me/who-is-satoshi-nakamoto/
7https://en.wikipedia.org/wiki/Transaction_processing
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Figure 1.1: Double-spending

When it comes to everyday monetary operations, transactions are usually arbitrated by banks.
When a user logs in to his or her home banking system and performs a wire transfer, it is the bank
that makes sure any past and future operations are consistent. Although the process might seem
simple to outsiders, it is actually quite an involved process with clearing procedures8 and settlement
requirements9. In fact, some of these procedures consider the chance of a double-spending situation
and what to do in those cases. It should not come as a surprise that these are quite involved
processes, resulting in considerable but seemingly impossible to surmount delays, were the target
of computer science researchers.

8https://en.wikipedia.org/wiki/Clearing_%28finance%29
9https://en.wikipedia.org/wiki/Settlement_%28finance%29
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Figure 1.2: Double-spending using a central authority

1.2 The Blockchain

So, the main problem any transactional system applied to finance must address is “how to order
transactions when there is no central authority”. Furthermore, there can be no doubts as to whether
the sequence of past transactions is valid. For a monetary system to succeed, there can be no way any
parties can modify previous transactions. In other words, a “vetting process” for past transactions
must also be in place. This is precisely what the blockchain system in Bitcoin was designed to
address.

If you are interested in reading about systems that must reach consensus and the prob-
lems they face, the paper for The Byzantine Generals Problem10 is a good start.

Although at this point the concept of what a blockchain is is still murky, before getting into details
about it, let’s go over the problems the blockchain attempts to address.

10http://lamport.azurewebsites.net/pubs/byz.pdf
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1.2.1 Validating Transactions

Public-key cryptography11 is a great tool to deal with one of the problems: validating transactions.
Public-key cryptography relies on the asymmetrical mathematical complexity of a very specific set
of problems. The asymmetry in public-key cryptography is embodied in the existence of two keys:
a public and a private key. These keys are used in tandem for specific purposes. In particular:

• Data encrypted with the public-key can only be decrypted by using the private-key.
• Data signed with the private-key can be verified using the public-key.

The private-key cannot be derived from the public-key, but the public-key can be derived from
the private-key. The public-key is meant to be safely shared and can usually be freely exposed to
anyone.

Of interest for creating a verifiable set of transactions is the operation of signing data. Let’s see
how a very simple transaction can be verified through the use of public-key cryptography.

Let’s say there is an account holder A who owns 50 coins. These coins were sent to him as part
of a previous transaction. Account holder A now wants to send these coins to account holder B.
B, and anybody else who wants to scrutinize this transaction, must be able to verify that it was
actually A who sent the coins to B. Furthermore, they must be able to see B redeemed them, and
no one else. Obviously, they should also be able to find the exact point in time, relative to other
transactions, in which this transaction took place. However, at this point we cannot do this. We
can, fortunately, do everything else.

For our simple example, let’s say the data in the transaction is just an identifier for the previous
transaction (the one that gave A 50 coins in first place), the public-key of the current owner and
the signature from the previous owner (confirming he or she sent those coins to A in first place):

{
"previous-transaction-id": "FEDCBA987654321...",
"owner-pubkey": "123456789ABCDEF...",
"prev-owner-signature": "AABBCCDDEEFF112233..."

}

The number of coins of the current transaction is superfluous: it is simply the same amount as the
previous transaction linked in it.

Proof that A is the owner of these coins is already there: his or her public-key is embedded in the
transaction. Now whatever action is taken by A must be verified in some way. One way to do this
would be to add information to the transaction and then produce a new signature. Since A wants
to send money to B, the added information could simply be B’s public-key. After creating this new
transaction it could be signed using A’s private-key. This proves A, and only A, was involved in
the creating of this transaction. In other words, in JavaScript based pseudo-code:

function aToB(privateKeyA, previousTransaction, publicKeyB) {
const transaction = {

"previous-transaction-id": hash(previousTransaction),
"owner-pubkey": publicKeyB

11https://en.wikipedia.org/wiki/Public-key_cryptography
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};

transaction["prev-owner-signature"] = sign(privateKeyA, transaction);

return transaction;
}

An interesting thing to note is that we have defined transactions IDs as simply the hash of their
binary representation. In other words, a transaction ID is simply its hash (using an, at this point,
unspecified hashing algorithm). This is convenient for several reasons we will explain later on. For
now, it is just one possible way of doing things.

Let’s take the code apart and write it down step-by-step:

1. A new transaction is constructed pointing to the previous transaction (the one that holds
A’s 50 coins) and including B’s public signature (new transaction = old transaction ID plus
receiver’s public key).

2. A signature is produced using the new transaction and the previous transaction owner’s
private key (A’s private key).

That’s it. The signature in the new transaction creates a verifiable link between the new transaction
and the old one. The new transaction points to the old one explicitly and the new transaction’s
signature can only be generated by the holder of the private-key of the old transaction (the old
transaction explicitly tells us who this is through the owner-pubkey field). So the old transaction
holds the public-key of the one who can spend it, and the new transaction holds the public-key of
the one who received it, along with the signature created with the spender’s private-key.
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Figure 1.3: Verified transactions

If this seems hard to grasp at this point, think of it this way: it is all derived from this simple
expression: data signed with the private-key can be verified using the public-key. There is nothing
more to it. The spender simply signs data that says “I am the owner of transaction ID XXX, I
hereby send every coin in it to B”. B, and anybody else, can check that it was A, and only A, who
wrote that. To do so, they need only access to A’s public-key, which is available in the transaction
itself. It is mathematically guaranteed that no key other than A’s private-key can be used in tandem
with A’s public-key. So by simply having access to A’s public-key anyone can see it was A who
sent money to B. This makes B the rightful owner of that money. Of course, this is a simplification.
There are two things we have not considered: who said those 50 coins where of A’s property (or,
in other words, did A just take ownership of some random transaction, is he or she the rightful
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owner?) and when exactly did A send the coins to B (was it before or after other transactions?).

If you are interested in learning more about the math behind public-key cryptography, a
simple introduction with code samples is available in chapter 7 of The JWT Handbook12.

Before getting into the matter of ordering, let’s first tackle the problem of coin genesis. We assumed
A was the rightful owner of the 50 coins in our example because the transaction that gave A his or
her coins was simply modeled like any other transaction: it had A’s public-key in the owner field,
and it did point to a previous transaction. So, who gave those coins to A? What’s more, who gave
the coins to that other person? We need only follow the transaction links. Each transaction points
to the previous one in the chain, so where did those 50 coins come from? At some point that chain
must end.

To understand how this works, it is best to consider an actual case, so let’s see how Bitcoin handles it.
Coins in Bitcoin were and are created in two different ways. First there is the unique genesis block.
The genesis block is a special, hardcoded transaction that points to no other previous transaction.
It is the first transaction in the system, has a specific amount of Bitcoins, and points to a public-key
that belongs to Bitcoin creator Satoshi Nakamoto. Some of the coins in this transaction were sent to
some addresses, but they never were really used that much. Most of the coins in Bitcoin come from
another place: they are an incentive. As we will see in the next section about ordering transactions,
the scheme employed to do this requires nodes in the network to contribute work in the form of
computations. To create an incentive for more nodes to contribute computations, a certain amount
of coins are awarded to contributing nodes when they successfully complete a task. This incentive
essentially results in special transactions that give birth to new coins. These transactions are also
ends to links of transactions, as well as the genesis block. Each coin in Bitcoin can be traced to
either one of these incentives or the genesis block. Many cryptocurrency systems adopt this model
of coin genesis, each with its own nuances and requirements for coin creation. In Bitcoin, per design,
as more coins get created, less coins are awarded as incentive. Eventually, coin creation will cease.

1.2.2 Ordering Transactions

The biggest contribution Bitcoin brought to existing cryptocurrency schemes was a decentralized
way to make transactions atomic. Before Bitcoin, researchers proposed different schemes to achieve
this. One of those schemes was a simple voting system. To better understand the magic of Bitcoin’s
approach, it is better to explore these attempts.

In a voting system, each transaction gets broadcast by the node performing it. So, to continue with
the example of A sending 50 coins to B, A prepares a new transaction pointing to the one that gave
him or her those 50 coins, then puts B’s public-key in it and uses his or her own private-key (A’s)
to sign it. This transaction is then sent to each node known by A in the network. Let’s say that in
addition to A and B, there are three other nodes: C, D, E.

12https://auth0.com/e-books/jwt-handbook
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Figure 1.4: A broadcasts the transaction

Now let’s imagine A is in fact a malicious node. Although it appears A wants to send B 50 coins,
at the same time A broadcasts this transaction, it also broadcasts a different one: A sends those
same 50 coins to C.

const aToB = {
"previous-transaction-id": "FEDCBA987654321...",
"owner-pubkey": "123456789ABCDEF...", // B
"prev-owner-signature": "..."

};

const aToC = {
"previous-transaction-id": "FEDCBA987654321...",
"owner-pubkey": "00112233445566...", // C
"prev-owner-signature": "..."
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};

Note how previous-transaction-id points to the same transaction. A sends simultaneously this
transaction to different nodes in the network. Who gets the 50 coins? Worse, if those 50 coins were
sent in exchange for something, A might get goods from B and C although one of them won’t get
the coins.

Since this is a distributed network, each node should have some weight in the decision. Let’s
consider the voting system mentioned before. Each node should now cast a vote on whether to pick
which transaction goes first.

Node Vote
A A to B
B A to B
C A to C
D A to C
E A to B

Each node casts a vote and A to B gets picked as the transaction that should go first. Obviously,
this invalidates the A to C transaction that points to the same coins as A to B. It would appear
this solution works, but only superficially so. Let’s see why.

First, let’s consider the case A has colluded with some other node. Did E cast a random vote or
was it in some way motivated by A to pick one transaction over the other? There is no real way to
determine this.

Secondly, our model does not consider the speed of propagation of transactions. In a sufficiently
large network of nodes, some nodes may see some transactions before others. This causes votes to
be unbalanced. It is not possible to determine whether a future transaction might invalidate the
ones that have arrived. Even more, it is not possible to determine whether the transaction that just
arrived was made before or after some other transaction waiting for a vote. Unless transactions are
seen by all nodes, votes can be unfair. Worse, some node could actively delay the propagation of a
transaction.

Lastly, a malicious node could inject invalid transactions to cause a targeted denial of service. This
could be used to favor certain transactions over others.

Votes do not fix these problems because they are inherent to the design of the system. Whatever is
used to favor one transaction over the other cannot be left to choice. As long as a single node, or
group of nodes, can, in some way, favor some transactions over others, the system cannot work. It
is precisely this element that made the design of cryptocurrencies such a hard endeavor. A strike
of genius was needed to overcome such a profound design issue.

The problem of malicious nodes casting a vote in distributed systems is best known
as The Byzantine Generals Problem13. Although there is mathematical proof that this
problem can be overcome as long as there is a certain ratio of non-malicious nodes, this

13http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
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does not solve the problem for cryptocurrencies: nodes are cheap to add. Therefore, a
different solution is necessary.

1.2.2.1 Physics to the Rescue

Whatever system is used to ensure some transactions are preferred over others, no node should be
able to choose which of these are with 100% certainty. And there is only one way one can be sure
this is the case: if it is a physical impossibility for the node to be able to do this. Nodes are cheap
to add, so no matter how many nodes a malicious user controls, it should still be hard for him or
her to use this to his or her advantage.

The answer is CPU power. What if ordering transactions required a certain amount of work,
verifiable work, in such a way that it would be hard to perform initially, but cheap to verify. In a
sense, cryptography works under the same principles: certain related operations are computationally
infeasible to perform while others are cheap. Encrypting data is cheap next to brute-forcing the
encryption key. Deriving the public-key from the private-key is cheap, while it is infeasible to
do it the other way around. Hashing data is cheap, while finding a hash with a specific set of
requirements (by modifying the input data) is not. And that is the main operation Bitcoin and
other cryptocurrencies rely on to make sure no node can get ahead of others, on average. Let’s see
how this works.

First, let’s define what a block is. A block is simply a group of transactions. Inside the block,
these transactions are set in a specific order and fulfill the basic requirements of any transaction.
In particular, an invalid transaction (such as one taking funds from an account with no funds)
cannot be part of a block. In addition to the transactions, a block carries something called proof-
of-work. The proof-of-work is data the allows any node to verify that the one who created this
block performed a considerable amount of computational work. In other words, no node can create
a valid block without performing an indefinite but considerable amount of work. We will see how
this works later, but for now know that creating any block requires a certain amount of computing
power and that any other node can check that that power has been spent by whomever created the
block.

Now let’s go back to our previous example of a malicious node, A, double-spending 50 coins by
trying to create to two separate transactions at the same time, one sending money to B and the
other to C. After A broadcasts both transactions to the network, every node working on creating
blocks (which may include A) pick a number of transactions and order them in whichever way
they prefer. These nodes will note that two incompatible transactions are part of the same block
and will discard one. They are free to pick which one to discard. After placing these transactions
in the order they chose, each node starts solving the puzzle of finding a hash for the block that
fits the conditions set by the protocol. One simple condition could be “find a hash for this block
with three leading zeroes”. To iterate over possible solutions for this problem, the block contains
a special variable field known as the “nonce”. Each node must iterate as many times as necessary
until they find the nonce that creates a block with a hash that fits the conditions set by the protocol
(three leading zeroes). Since each change in the nonce basically results in a random output for a
cryptographically secure hash function, finding the nonce is a game of chance and can only be sped
up by increasing computation power. Even then, a less powerful node might find the right nonce
before a more powerful node, due to the randomness of the problem.
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Figure 1.5: A sample block

This creates an interesting scenario because even if A is a malicious node and controls another node
(for instance, E) any other node on the network still has a chance of finding a different valid block.
In other words, this scheme makes it hard for malicious nodes to take control of the network.
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Figure 1.6: Proof-of-work

Still, the case of a big number of malicious nodes colluding and sharing CPU power must be
considered. In fact, an entity controlling a majority of the nodes (in terms of CPU power, not
number) could exercise a double-spending attack by creating blocks faster than other nodes. Big
enough networks rely on the difficulty of amassing CPU power. While in a voting system an attacker
need only add nodes to the network (which is easy, as free access to the network is a design target),
in a CPU power based scheme an attacker faces a physical limitation: getting access to more and
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more powerful hardware.

1.2.3 Definition

At last we can attempt a full definition of what a blockchain is and how it works. A blockchain
is a verifiable transaction database carrying an ordered list of all transactions that ever occurred.
Transactions are stored in blocks. Block creation is a purposely computationally intensive task.
The difficulty of creation of a valid block forces anyone to spend a certain amount of work. This
ensures malicious users in a big enough network cannot easily outpass honest users. Each block in
the network points to the previous block, effectively creating a chain. The longer a block has been
in the blockchain (the farther it is from the last block), the lesser the probability it can ever be
removed from it. In other words, the older the block, the more secure it is.

Figure 1.7: The blockchain

One important detail we left in previous paragraphs is what happens when two different nodes
find different but still valid blocks at the same time. In a sense, this looks like the same problem
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transactions had: which one to pick. In contrast with transactions, the proof-of-work system
required for each block lets us find a convenient solution: since each block requires a certain
amount of work, it is only natural that the only valid blockchain is the one with most blocks in it.
Think about it: if the proof-of-work system works because each block demands a certain amount
of work (and time), the longest set of valid blocks is the hardest to break. If a malicious node
or group of nodes were to attempt to create a different set of valid blocks, by always picking the
longest blockchain, they would always have to redo a bigger number of blocks (because each node
points to the previous one, changing one block forces a change in all blocks after it). This is also
the reason malicious groups of nodes need to control over 50% of the computational power of the
network to actually carry any attack. Less than that, and the rest of the network will create a
longer blockchain faster.

Valid blocks that are valid but find their way into shorter forks of the blockchain are discarded if
a longer version of the blockchain is computed by other nodes. The transactions in the discarded
blocks are sent again to the pool of transactions awaiting inclusion into future blocks. This causes
new transactions to remain in an uncofirmed state until they find their way into the longest possible
blockchain. Nodes periodically receive newer versions of the blockchain from other nodes.
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Figure 1.8: Blockchain forks

It is entirely possible for the network to be forked if a sufficiently large number of nodes gets
disconnected at the same time from another part of the network. If this happens, each fork will
continue creating blocks in isolation from the other. If the networks merge again in the future, the
nodes will compare the different versions of the blockchains and pick the longer one. The fork with
the greater computational power will always win. If the fork were to be sustained for a long enough
period of time, a big number of transactions would be undone when the merge took place. It is for
this reason that forks are problematic.

Forks can also be caused by a change in the protocol or the software running the nodes. These
changes can result in nodes invalidating blocks that are considered valid by other nodes. The effect
is identical to a network-related fork.
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1.3 Example: a Perpetual Message System Using Webtasks
and Bitcoin

Although we have not delved into the specifics of how Bitcoin or Ethereum handle transactions,
there is a certain programmability built into them. Bitcoin allows for certain conditions to be
specified in each transaction. If these conditions are met, the transaction can be spent. Ethereum,
on the other hand, goes much further: a Turing-complete programming language is built into the
system. We will focus on Ethereum in the next chapter, but for now we will take a look at creative
ways in which the concepts of the blockchain can be exploited for more than just sending money.
For this, we will develop a simple perpetual message system on top of Bitcoin. How will it work?

We have seen the blockchain stores transactions that can be verified. Each transaction is signed
by the one who can perform it and then broadcast to the network. It is then stored inside a block
after performing a proof-of-work. This means that any information embedded in the transaction is
stored forever inside the blockchain. The timestamp of the block serves as proof of the message’s
date, and the proof-of-work process serves as proof of its immutable nature.

Bitcoin uses a scripting system that describes steps a user must perform to spend money. The most
common script is simply “prove you are the owner of a certain private-key by signing this message
with it”. This is known as the “pay to pubkey hash” script. In decompiled form it looks like:

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

Where <sig> and <pubKey> are provided by the spender and the rest is specified by the original
sender of the money. This is simply a sequence of mixed data and operations. The interpreter
for this script is a stack-based virtual machine. The details of execution are out of scope for this
handbook, but you can find a nice summary at the Bitcoin Wiki14. The important take from this
is that transactions can have data embedded in them in the scripts.

In fact, there exists a valid opcode for embedding data inside a transaction: the OP_RETURN opcode.
Whatever data follows the OP_RETURN opcode is stored in the transaction. Of course, there is a limit
for the amount of data allowed: 40-bytes. This is very little, but still certain interesting applications
can be performed with such a tiny amount of storage. One of them is our perpetual message system.
Another interesting use case is the “proof of existence” concept. By storing a hash of an asset in
the blockchain, it serves as proof of its existence at the point it was added to a block. In fact, there
already exists such a project15. There is nothing preventing you from using our perpetual message
system for a similar use. Yet other uses allow the system to prepare transactions that can only be
spent after conditions are met, or when the spender provides proof of having a certain digital asset,
of when a certain minimum number of users agree to spend it. Programmability opens up many
possibilities and makes for yet another great benefit of cryptocurrencies in contrast with traditional
monetary systems.

14https://en.bitcoin.it/wiki/Script#Standard_Transaction_to_Bitcoin_address_.28pay-to-pubkey-hash.29
15https://proofofexistence.com
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1.3.1 The Implementation

Our system will work as an HTTP service. Data will we passed in JSON format as the body of
POST requests. The service will have three endpoints plus one for debugging.

1.3.1.1 The /new endpoint

It creates a new user using the username and password passed in. Sample body:

{
"id": "username:password", // password is not hashed for simplicity,

// TLS is required!
"testnet": true // True to use Bitcoin's test network

}

The response is of the form:

{
"address": "..." // A Bitcoin address for the user just created

}

1.3.1.2 The /address endpoint

Returns the address for an existing user. Sample body:

{
"id": "username:password", // password is not hashed for simplicity,

// TLS is required!
}

The response is identical to the /new endpoint.

1.3.1.3 The /message endpoint

Broadcasts a transaction to the Bitcoin network with the message stored in it. A fee is usually
required for the network to accept the transaction (though some nodes may accept transactions
with no fees). Messages can be at most 33 bytes long. Sample body:

{
"id": "username:password",
"fee": 667,
"message": "test"

}

The response is either a transaction id or an error message. Sample of a successful response:
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{
"status": "Message sent!",
"transactionId": "3818b4f03fbbf091d5b52edd0a58ee1f1834967693f5029e5112d36f5fdbf2f3"

}

Using the transaction id one can see the message stored in it. One can use any publicly available
blockchain explorer to do this.

1.3.1.4 The /debugNew endpoint

Similar to the /new endpoint but allows one to create an user with an existing Bitcoin private key
(and address). Sample body:

{
"id": "username:password", // password is not hashed for simplicity,

// TLS is required!
"testnet": true, // True to use Bitcoin's test network
"privateKeyWIF": "..." // A private key in WIF format.

// Note testnet keys are different from livenet keys,
// so the private key must agree with the
// value of the "testnet" key in this object

}

The response is identical to the /new endpoint.

1.3.2 The Code

The most interesting endpoint is the one that builds and broadcasts the transaction (/message).
We use the bitcore-lib and bitcore-explorers libraries to do this:

getUnspentUtxos(from).then(utxos => {
let inputTotal = 0;
utxos.some(utxo => {

inputTotal += parseInt(utxo.satoshis);
return inputTotal >= req.body.fee;

});
if(inputTotal < req.body.fee) {

res.status(402).send('Not enough balance in account for fee');
return;

}

const dummyPrivateKey = new bitcore.PrivateKey();
const dummyAddress = dummyPrivateKey.toAddress();

const transaction =
bitcore.Transaction()

.from(utxos)

22



.to(dummyAddress, 0)

.fee(req.body.fee)

.change(from)

.addData(`${messagePrefix}${req.body.message}`)

.sign(req.account.privateKeyWIF);

broadcast(transaction.uncheckedSerialize()).then(body => {
if(req.webtaskContext.secrets.debug) {

res.json({
status: 'Message sent!',
transactionId: body,
transaction: transaction.toString(),
dummyPrivateKeyWIF: dummyPrivateKey.toWIF()

});
} else {

res.json({
status: 'Message sent!',
transactionId: body

});
}

}, error => {
res.status(500).send(error.toString());

});
}, error => {

res.status(500).send(error.toString());
});

The code is fairly simple:

1. Gets the unspent transactions for an address (i.e. the coins available, the balance).
2. Build a new transaction using the unspent transactions as input.
3. Point the transaction to a new, empty address. Assign 0 coins to that address (do not send

money unnecessarily).
4. Set the fee.
5. Set the address where the unspent money will get sent back (the change address).
6. Add our message.
7. Broadcast the transaction.

Bitcoin requires transactions to be constructed using the money from previous transactions. That
is, when coins are sent, it is not the origin address that is specified, rather it is the transactions
pointing to that address that are included in a new transaction that points to a different destination
address. From these transactions is subtracted the money that is then sent to the destination. In
our case, we use these transactions to pay for the fee. Everything else gets sent back to our address.
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1.3.3 Deploying the Example

Thanks to the power of Webtasks16, deploying and using this code is a piece of cake. First clone
the repository:

git clone git@github.com:auth0-blog/ethereum-series-bitcoin-perpetual-message-example.git

Now make sure you have the Webtask command-line tools installed:

npm install -g wt-cli

If you haven’t done so, initialize your Webtask credentials (this is a one time process):

wt init

Now deploy the project:

cd ethereum-series-bitcoin-perpetual-message-example
wt create --name bitcoin-perpetual-message \
--meta 'wt-node-dependencies={"bcryptjs":"2.4.3","bitcore-lib":"0.13.19",\
"bitcore-explorers-bitcore-lib-0.13.19":"1.0.1-3"}' app.js

Your project is now ready to test! Use CURL to try it out:

curl -X POST \
https://wt-sebastian_peyrott-auth0_com-0.run.webtask.io/bitcoin-perpetual-message/new \
-d '{ "id":"test:test", "testnet":true }' -H "Content-Type: application/json"

{"address":"mopYghMw5i7rYiq5pfdrqFt4GvBus8G3no"} # This is your Bitcoin address

You now have to add some funds to your new Bitcoin address. If you are on Bitcoin’s testnet, you
can simply use a faucet17.

Faucets are Bitcoin websites that give free coins to addresses. These are easy to get for
the testnet. For the “livenet” you need to buy Bitcoins using a Bitcoin exchange18.

Now send a message!

curl -X POST \
https://wt-sebastian_peyrott-auth0_com-0.run.webtask.io/bitcoin-perpetual-message/message \
-d '{ "id":"test:test", "fee":667, "message":"test" }' -H "Content-Type: application/json"

{"status":"Message sent!",\
"transactionId":"3818b4f03fbbf091d5b52edd0a58ee1f1834967693f5029e5112d36f5fdbf2f3"}

Now you can look at the transaction19 using a blockchain explorer and the transaction id. If you
go down to the bottom of the page in the link before you will see our message with a prefix WTMSG:
test. This will get stored in the blockchain forever.

16https://webtask.io
17https://testnet.manu.backend.hamburg/faucet
18https://en.wikipedia.org/wiki/Digital_currency_exchange
19https://www.blocktrail.com/tBTC/tx/3818b4f03fbbf091d5b52edd0a58ee1f1834967693f5029e5112d36f5fdbf2f3
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Try it yourself! The webtask at https://wt-sebastian_peyrott-auth0_com-0.run.webtask.io/bitcoin-perpetual-message/
is live. You will need to create your own account and fund it, though.

You can also get the full code20 for this example and run it!

1.4 Summary

Blockchains enable distributed, verified transactions. At the same time they provide a creative
solution to the double-spending problem. This has enabled the rise of cryptocurrencies, of which
Bitcoin is the most popular example. Millions of dollars in Bitcoins are traded each day, and
the trend is not giving any signs of slowing down. Bitcoin provides a limited set of operations to
customize transactions. Still, many creative applications have appeared through the combination of
blockchains and computations. Ethereum is the greatest example of these: marrying decentralized
transactions with a Turing-complete execution environment. In the next chapter we will take a
closer look at how Ethereum differs from Bitcoin and how the concept of decentralized applications
was brought to life by it.

20https://github.com/auth0-blog/ethereum-series-bitcoin-perpetual-message-example
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Chapter 2

Ethereum: a Programmable
Blockchain

2.1 Introduction

In the previous chapter, we took a closer look at what blockchains are and how they help in making
distributed, verifiable transactions a possibility. Our main example was Bitcoin: the world’s most
popular cryptocurrency. Millions of dollars, in the form of bitcoins, are traded each day, making
Bitcoin one of the most prominent examples of the viability of the blockchain concept.

Have you ever found yourself asking this question: “what would happen if the provider of this
service or application disappeared?” If you have, then learning about Ethereum can make a big
difference for you. Ethereum is a platform to run decentralized applications: applications that do
not rely on any central server. In this chapter we will explore how Ethereum works and build a
simple PoC application related to authentication.

2.1.1 Blockchain Recap

A blockchain is a distributed, verifiable datastore. It works by marrying public-key cryptography
with the nobel concept of the proof-of-work.

Each transaction in the blockchain is signed by the rightful owner of the resource being traded in
the transaction. When new coins (resources) are created they are assigned to an owner. This owner,
in turn, can prepare new transactions that send those coins to others by simply embedding the new
owner’s public key in the transaction and then signing the transaction with his or her private-key.
In this way, a verifiable link of transactions is created; each new transaction, with a new owner,
pointing to the previous transaction, with the previous owner.

To order these transactions and prevent the double-spending problem1, blockchains use the proof-
1https://en.wikipedia.org/wiki/Double-spending
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of-work. The proof-of-work is a procedure that establishes a cost for grouping transactions in a
certain order and adding them to the blockchain. These groups of transactions are called blocks.
Each block points to a previous block in the chain, thus the name blockchain. By making blocks
costly to make and making sure each new block points to the previous block, any potential attacker
wanting to modify the history of transactions as represented by the blockchain must pay the cost
of each block modified. Since blocks point to previous blocks, modifying an old block requires
paying the cost for all blocks after it, making changes to old blocks very costly. A blockchain
compounds the difficulty of modifying the blockchain by making the cost of creating blocks be of
computational nature. In other words, to create new blocks, a certain amount of CPU power must
be spent. Since CPU power is dependent on the advancement of technology, it is very hard for
any single malicious entity to amass enough CPU power to outspend the rest of the network. A
practical attack against a blockchain-based network usually requires a single entity controlling more
than 50% of the combined CPU power of the network. The bigger the network, the harder it is to
perform.

But, as we saw in chapter 1, blockchains are more than just that. Transactions, by their very nature,
can do more than just send resources from owner A to owner B. In fact, the very act of doing so
can be described as a very simple program: the sender produces a computation (transaction) that
can only be performed if the receiver produces, at some point in the future, the right inputs. In
the case of a standard monetary transaction, the right input would be the proof of ownership from
the receiver. In other words, the receiver can only spend the coins he received if he proves he is the
rightful owner of those coins. It may seem a bit contrived but it really isn’t. When you perform
a wire transfer, you prove you are the owner of an account through some sort of authentication
procedure. For a home-banking system that could simply be a username and a password. At a
bank, it would be your ID or debit-card. These procedures are usually hardwired into the system,
but with blockchains it needn’t be so.

In chapter 1 we also took a cursory look at this. We first showed how Bitcoin transactions are in
fact small programs that are intepreted by each node using a simple stack-based virtual-machine.

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

This virtual-machine, in the case of Bitcoin, is limited by design. It is not Turing-complete and can
only perform a limited number of operations. Still, its flexibility opened up the possibility for many
interesting uses. The small script above, a.k.a. smart contract, is the standard “pay to pubkey
hash” Bitcoin script2. It describes a small program that allows a sender to send coins to a receiver
by verifying his identity with a public-key: the standard A to B monetary transaction, with ID
cards substituted with public and private-keys. However, there’s nothing preventing other uses, as
long as you stick to the available operations supported by the virtual-machine. We took a look at
a possible use in the previous chapter, where we created a perpetual-message system: immutable
messages timestamped and forever embedded in the blockchain. The older they get, the harder it
is for them to ever be changed. Nifty.

Now, we’ll take a look at how Ethereum amplifies these concepts.
2https://en.bitcoin.it/wiki/Transaction#Pay-to-PubkeyHash
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2.2 Ethereum: a Programmable Blockchain

Although the concept of the blockchain was born out of the research into cryptocurrencies, they are
much more powerful than just that. A blockchain essentially encodes one thing: state transitions.
Whenever someone sends a coin in Bitcoin to someone else, the global state of the blockchain is
changed. Moments before account A held 50 coins, now account A is empty and account B holds
50 coins. Furthermore, the blockchain provides a cryptographically secure way of performing these
state transitions. In other words, not only the state of the blockchain can be verified by any outside
party, but any state transitions initiated by blockchain users can only be performed in a secure,
verifiable manner.

An interesting way to think of a blockchain is as a never-halting computation: new
instructions and data are fetched from a pool, the pool of unconfirmed transactions.
Each result is recorded in the blockchain, which forms the state of the computation.
Any single snapshot of the blockchain is the state of the computation at that point.
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Figure 2.1: Transactions as computations

All software systems deal in some way or another with state transitions. So what if we could
generalize the state transitions inside a blockchain into any software we could think of. Are there
any inherent limitations in the blockchain concept that would prevent state transitions from being
something different than sending coins? The answer is no. Blockchains deal with reaching consensus
for decentralized computations, it does not matter what those computations are. And this is exactly
what the Ethereum network brings to the table: a blockchain that can perform any computation
as part of a transaction.
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Figure 2.2: Transactions as general computations

It is easy to get lost in the world of cryptocurrencies and simple exchanges of value between two
users, but there are many other applications where distributed, secure computations make sense.
It is this system that allows for things like:

• Secure deposits that get returned to the payer if conditions are met (or not)
• Money that cannot be spent unless a certain number of users agree to spending it3

• Money that can only be spent after producing external data that satisfies rules set in the
script

Given a Turing-complete system for computations associated to a blockchain, many more applica-
tions are possible. This is Ethereum.

3https://en.bitcoin.it/wiki/Multisignature
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Take a look4 at the things the community is working on to get a sense of the many useful ideas
that can be run as decentralized applications.

2.2.1 Ether

Although Ethereum brings general computations to the blockchain, it still makes use of a “coin”. Its
coin is called “ether”, and, as any coin, it is a number that can be stored into account addresses and
can be spent or received as part of transactions or block generation. To run certain transactions,
users must spend Ether. But why is this the case?

A Turing-complete language5 is a language that, by definition, can perform any computation. In
other words, if there is an algorithm for something, it can express it. Ethereum scripts, called
smart contracts, can thus run any computation. Computations are run as part of a transaction.
This means each node in the network must run computations. Any machine capable of running
a Turing-complete language (i.e. a Turing machine) has one problem: the halting problem6. The
halting problem essentially states that no Turing machine can determine beforehand whether a
program run in it will either terminate (halt) or run forever. In other words, the only way of
finding out if a piece of code loops forever or not is by running that code. This poses a big problem
for Ethereum: no single node can get caught up in an infinite loop running a program. Doing so
would essentially stop the evolution of the blockchain and halt all transactions. But there is a way
around that.

Since computation is costly, and it is in fact rewarded by giving nodes that produce blocks ether (like
Bitcoin), what better way to limit computations than by requiring ether for running them. Thus
Ethereum solves the problem of denial of service attacks through malicious (or bugged) scripts that
run forever. Every time a script is run, the user requesting the script to run must set a limit of ether
to spend in it. Ether is consumed by the script as it runs. This is ensured by the virtual machine
that runs the scripts. If the script cannot complete before running out of ether, it is halted at that
point. In Ethereum the ether assigned to an script as a limit is known as gas (as in gasoline).

As ether represents value, it can be converted to other coins. Exchanges exist to trade ether for
other coins. This gives ether a real money valuation7, much like coins from Bitcoin.

2.2.2 Smart Contracts

Smart contracts are the key element of Ethereum. In them any algorithm can be encoded. Smart
contracts can carry arbitrary state and can perform any arbitrary computations. They are even able
to call other smart contracts. This gives the scripting facilities of Ethereum tremendous flexibility.

Smart contracts are run by each node as part of the block creation process. Just like Bitcoin, block
creation is the moment where transactions actually take place, in the sense that once a transaction
takes place inside a block, global blockchain state is changed. Ordering affects state changes, and

4http://dapps.ethercasts.com
5https://en.wikipedia.org/wiki/Turing_completeness
6https://en.wikipedia.org/wiki/Halting_problem
7https://coinmarketcap.com/currencies/ethereum/
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just like in Bitcoin, each node is free to choose the order of transactions inside a block. After
doing so (and executing the transactions), a certain amount of work must be performed to create a
valid block. In contrast to Bitcoin, Ethereum follows a different pattern for selecting which blocks
get added to the valid blockchain. While in Bitcoin the longest chain of valid blocks is always
the rightful blockchain, Ethereum follows a protocol called GHOST8 (in fact a variation thereof).
The GHOST protocol allows for stale blocks, blocks that were computed by other nodes but that
would otherwise be discarded since others have computed newer blocks, to be integrated into the
blockchain, reducing wasted computing power and increasing incentives for slower nodes. It also
allows for faster confirmation of transactions: whereas in Bitcoin blocks are usually created every 10
minutes, in Ethereum blocks are created within seconds. Much discussion9 has gone into whether
this protocol is an improvement over the much simpler “fastest longest chain” protocol in Bitcoin,
however this discussion is out of scope for this handbook. For now this protocol appears to run
with success in Ethereum.

An important aspect of how smart contracts work in Ethereum is that they have their own address
in the blockchain. In other words, contract code is not carried inside each transaction that makes
use of it. This would quickly become unwieldy. Instead, a node can create a special transaction
that assigns an address to a contract. This transaction can also run code at the moment of creation.
After this initial transaction, the contract becomes forever a part of the blockchain and its address
never changes. Whenever a node wants to call any of the methods defined by the contract, it can
send a message to the address for the contract, specifying data as input and the method that must
be called. The contract will run as part of the creation of newer blocks up to the gas limit or
completion. Contract methods can return a value or store data. This data is part of the state of
the blockchain.

2.2.2.1 State

An interesting aspect of contracts being able to store data is how that can be handled in an
efficient way. If state is mutated by contracts, and the nature of the blockchain ensures that state
is always consistent across all nodes, then all nodes must have access to the whole state stored in
the blockchain. Since the size of this storage in unlimited in principle, this raises questions with
regards to how to handle this effectively as the network scales. In particular, how can smaller and
less powerful nodes make use of the Ethereum network if they can’t store the whole state? How
can they perform computations? To solve this, Ethereum makes use of something called Merkle
Patricia Trees10.

A Merkle Patricia Tree is a special kind of data structure that can store cryptographically authen-
ticated data in the form of keys and values. A Merkle Patricia Tree with a certain group of keys
and values can only be constructed in a single way. In other words, given the same set of keys
and values, two Merkle Patricia Trees constructed independently will result in the same structure
bit-by-bit. A special property of Merkle Patricia Trees is that the hash of the root node (the first
node in the tree) depends on the hashes of all sub-nodes. This means that any change to the tree
results in a completely different root hash value. Changes to a leaf node cause all hashes leading

8https://www.cryptocompare.com/coins/guides/what-is-the-ghost-protocol-for-ethereum/
9https://news.ycombinator.com/item?id=7553418

10https://easythereentropy.wordpress.com/2014/06/04/understanding-the-ethereum-trie/
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to the root hash through that and sister branches to be recomputed. What we have described is
in fact the “Merkle” part of the tree, the “Patricia” part comes from the way keys are located in
the tree. Patricia trees are tries11 where any node that is an only child is merged with its parent.
They are also known as “radix trees” or “compact prefix trees”. A trie is a tree structure that uses
prefixes of the keys to decide where to put each node.

The Merkle Patricia Trees implemented in Ethereum have other optimizations that overcome inef-
ficiencies inherent to the simple description presented here.

Figure 2.3: Simplified Merkle Patricia Tree

For our purposes, the Merkle aspect of the trees is what matters in Ethereum. Rather than keeping
the whole tree inside a block, the hash of its root node is embedded in the block. If some malicious
node were to tamper with the state of the blockchain, it would become evident as soon as other
nodes computed the hash of the root node using the tampered data. The resulting hash would
simply not match with the one recorded in the block. At this point we should find ourselves asking
a big question: why not simply take the hash of the data? Merkle Patricia Trees are used in

11https://en.wikipedia.org/wiki/Trie
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Ethereum for a different, but very important reason: most of the time, nodes do not need a full
copy of the whole state of the system. Rather, they want to have a partial view of the state,
complete enough to perform any necessary computations for newer blocks or to read the state from
some specific address. Since no computations usually require access to the whole state stored in the
blockchain, downloading all state would be superfluous. In fact, if nodes had to do this, scalability
would be a serious concern as the network expanded. To verify a partial piece of the state at a
given point, a node need only download the data necessary for a branch of the tree and the hashes
of its siblings. Any change in the data stored at a leaf would require a malicious node to be able
to carry a preimage attack12 against the hashing algorithm of the tree (to find the values for the
siblings that combined with the modified data produce the same root hash as the one stored in the
block).

Figure 2.4: A Partial Simplified Merkle Tree

All of this allows efficient operations on the state of the blockchain, while at the same time keeping
its actual (potentially huge) data separate from the block, still the center piece of the security

12https://en.wikipedia.org/wiki/Preimage_attack
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scheme of the blockchain.

2.2.2.2 History

Much like Bitcoin, the blockchain can be used to find the state of the system at any point in time.
This can be done by replaying each transaction from the very first block up to the point in question.
However, in contrast to Bitcoin, most nodes do not keep a full copy of the data for every point
in time. Ethereum allows for old data to be pruned from the blockchain. The blockchain remains
consistent as long as the blocks are valid, and data is stored outside of the blocks, so technically it
is not required to verify the proof-of-work chain. In contrast to Bitcoin, where to find the balance
of an account a node must replay all transactions leading up to that point, Ethereum stores state
by keeping the root hash of the Merkle Patricia Tree in each block. As long as the data for the
last block (or any past blocks) is available, future operations can be performed in the Ethereum
network. In other words, it is not necessary for the network to replay old transactions, since their
result is already available. This would be akin to storing the balance of each account in each block
in the Bitcoin network.

Figure 2.5: Partial historical state in the blockchain
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There are, however, nodes that store the whole copy of the historical state of the blockchain. This
serves for historical and development purposes.

2.2.2.3 Solidity and a Sample Smart Contract

Smart contracts run on the Ethereum Virtual Machine, which in turn runs on each node. Though
powerful, the Ethereum Virtual Machine works at a level too low to be convenient to directly
program (like most VMs). For this reason, several languages for writing contracts have been
developed. Of these, the most popular one is Solidity13.

Solidity is a JavaScript-like language developed specifically for writing Ethereum Smart Contracts.
The Solidity compiler turns this code into Ethereum Virtual Machine bytecode, which can then be
sent to the Ethereum network as a transaction to be given its own address.

To better understand Solidity, let’s take a look at one example:

pragma solidity ^0.4.2;

contract OwnerClaims {

string constant public defaultKey = "default";

mapping(address => mapping(string => string)) private owners;

function setClaim(string key, string value) {
owners[msg.sender][key] = value;

}

function getClaim(address owner, string key) constant returns (string) {
return owners[owner][key];

}

function setDefaultClaim(string value) {
setClaim(defaultKey, value);

}

function getDefaultClaim(address owner) constant returns (string) {
return getClaim(owner, defaultKey);

}

}

This is a simple owner claims contract. An owner claims contract is a contract that lets any address
owner to record arbitrary key-value data. The nature of the blockchain certifies that the owner of
certain address is the only one who can set claims in connection to that address. In other words, the
owner claims contract allows anyone who wants to perform transactions with one of your addresses

13https://solidity.readthedocs.io/en/develop/
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to know your claims. For instance, you can set a claim called “email”, so that anyone that wants
to perform a transaction with you can get your email address. This is useful, since an Ethereum
address is not bound to an identity (or email address), only to its private-key.

The contract is as simple as possible. First there is the contract keyword that signals the beginning
of a contract. Then comes OwnerClaims, the contract name. Inside the contract there are two types
of elements: variables and functions.

Among variables there are two types as well: constants and writable variables. Constants are just
that: they can never be changed. Writable variables, however, save state in the blockchain. It is
these variables that encode the state saved in the blockchain, nothing more.

Functions are pieces of code that can either read or modify state. Read-only functions are also
marked as constant in the code and do not require gas to run. On the other hand, functions that
mutate state require gas, since state transitions must be encoded in new blocks of the blockchain
(and these cost work to produce).

Values returned from functions are returned to the caller.

The owners variable in our contract is a map14, also known as associative array or dictionary.
It matches a key to a value. In our case, the key is an address. Addresses in Ethereum are the
identifiers of either normal accounts (usually managed by users) or other contracts. When an owner
of an address decides to set a claim, it is this mapping from address to a claim that we are interested
in. In fact, we are not simply mapping an address to a claim, but to a group of key-values that
constitute a group of claims (in the form of another map). This is convenient because an address
owner might want to make several details about himself known to others. In other words, address
owners might want to make their email address and their cellphone number available. To do so,
they might create two claims: one under the “email” key, and the other under the “phone” key.

The contract leaves to each owner to decide what entries to create, so the names of the keys are not
known in advance. For this reason, a special “default” key is available, so any reader might know
at least one claim if he doesn’t know what keys are available. In truth, this key is also in place for
a different reason: Solidity does not make it practical to return bulk data from functions. In other
words, it is not easy to return all claims connected to an address in a single function call. In fact,
the mapping type does not even have an iteration operation (although one can be coded if needed),
so it is not possible to know what keys are inside a mapping. It is left as an exercise for the reader
to find ways to improve this if needed.

2.2.3 Current and Potential Uses

What we just saw with our simple example gave us a taste of what is possible with Ethereum.
Do note it has nothing to do with exchanging money! Although ether is necessary to perform
mutations on the network, our contract is strictly concerned with securely establishing a series of
claims connected to an Ethereum address. Nothing more. Not only the result is mathematically
verifiable (no other person other than the owner of the address can set claims), but is also very
hard to erase: it is recorded in a globally distributed database with no central node!

14https://en.wikipedia.org/wiki/Associative_array
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Having access to a distributed, Turing-complete computing engine with verifiable semantics opens
a world of possibilities. Let’s take a look at interesting ideas already implemented or under imple-
mentation in Ethereum.

2.2.3.1 The Decentralized Autonomous Organization (DAO)

The DAO is, literally, an organization. It has members, it has a central authority (the owner),
members can cast votes and the organization itself can perform any operations any other account
could do. Members can create proposals, in the form of transactions, and voting members from the
organization can cast votes to either approve the proposal or dismiss it. Proposals have a limit of
time after which votes are counted and a decision is taken. The decision to perform or dismiss the
proposal is carried by the contract of the DAO. In other words, no central authority can decide the
fate of a proposal, and this is certified by the contract and the nature of the blockchain. The owner
can be changed by a proposal. The only privilege the owner has is the ability to add or remove
voting members.

In fact, the DAO we have just described is only one of the possible implementations. There are
many improvements or modifications that can be performed to create whatever type of hierarchy.
A Congress, a shareholder association, a democracy, these are all possibilities.

To learn more about DAOs, the main Ethereum website has a whole area15 dedicated to them.

2.2.3.2 A Central Bank or Your Own Coin

Although ether has real value and can be traded for other coins, other coin systems can be imple-
mented on top of Ethereum. For instance, you could design your own coin with a central authority
that can create money, authorize transactions or arbitrate disputes. Take a look at a possible
implementation by following this tutorial16.

2.2.3.3 A Crowdfunding System

Crowdfunding lets donors send money for a project that has not been completed or even started.
In this way, funding for projects of different sizes is possible. The amount of money donated for
the project is what usually decides the fate of the project. The usual problem with crowdfunding
is the need for a central figure to hold founders responsible in case a project is not satisfactorily
completed after funding, or to make sure all the money donated actually arrives at the hands of
the founders. In other words, crowdfunding requires a considerable amount of trust to be placed in
both the founder of a project and the central authority. But with Ethereum this needn’t be so.

With Ethereum, it is possible to design a contract that takes a certain amount of money from
donors and stores it in an account. The funds in this account can be kept away from the hands of
the founders until they provide proof of their progress. When a certain milestone is achieved, the
funds can be released. On the other hand, if the founders fail to provide proof of their progress

15https://www.ethereum.org/dao
16https://www.ethereum.org/token
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in a reasonable timeframe, donated funds can be automatically returned to the donors. All of this
logic of handling funds can be performed without trust in a central authority. Donors can be sure
their money won’t be spent until proof-of-work is provided, and they can be sure they will always
get their money back otherwise. They can also be 100% certain each donor’s money will go into
the right hands.

An example implementation of a crowdsale17 is available in the Ethereum page.

2.2.3.4 Prove That You Said Something in the Past

An interesting aspect of the blockchain is that its mere existence is proof that every transaction in
it happened at some point in time. Although a certain variance in the timestamp of a transaction is
expected (as it will get set by the node that creates the block that contains it), anything recorded in
the blockchain happened at some point in the past. In fact, it is possible to assert it happened before
or after other events also recorded or linked in some way to the blockchain. Since the blockchain
allows for arbitrary state to be stored in it, it is possible to link an arbitrary message to an address.
Anyone can confirm by looking at the blockchain that that message was produced at some point
in the past by the owner of an address. All the owner needs to do is prove he is the owner of the
address that produced the same message in the past. This can simply be done by performing a
transaction using the same address as before.

Suppose you wrote a book. Before sending copies to your friends and editors, you decide to prove it
was you who wrote it by storing its proof of existence in the blockchain. If your book gets plagiarized
before getting published (by one of the editors, for instance), you can prove it was you who wrote
it by showing you linked its hash to an Ethereum address. When anyone wants to confirm you
own the address, you can show it to them through any transaction of their choice. The blockchain
ensures any person in doubt can see the association between the hash of the book and your address,
proving you had access to the full copy of the book at some point in the past.

2.2.3.5 Proof of Existence for Digital Assets

The concept of the previous example can be extended to a proof of the existence of anything that
can be hashed. In other words, anything with a single digital representation can be hashed and
stored in the blockchain, just like the arbitrary message from above. Later, any user can query
whether the element was hashed and added to the blockchain.

Here18 is one working example of this concept.

There are many more examples of things that can be implemented with Ethereum, check them
out19!

17https://www.ethereum.org/crowdsale
18https://chainy.info
19http://dapps.ethercasts.com
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2.3 Example: A Simple Login System using Ethereum

One of the cool things about Ethereum is that addresses are, by definition, systems to prove
ownership. Whomever can perform operations with an Ethereum address is the rightful owner of
that address. This is, of course, the consequence of the underlying public-key infrastructure used
to verify transactions. We can exploit this to create a login system based on Ethereum addresses.
Let’s see how.

Any login system is mainly concerned with creating a unique identity that can be managed by
whomever can pass a certain “login challenge”. The login challenge is the method to prove that
the same entity that created the account in the first place is the same entity doing operations now.
Most systems rely on the classic username + password login challenge: a new user registers by
choosing a unique username and a password, then, anytime the system requires proof that the user
is in fact who he says he is, it can request the password for that username. This system works. But
with Ethereum we already have a system for proving identities: public and private keys!

We’ll design a simple contract that can be used by any user to validate his ownership of an address.
The login process will be as follows:

1. A user accesses a website that requires him or her to login. When the user is not logged in,
the website requests the user to enter his or her Ethereum address.

2. The backend for the website receives the address for the user and creates a challenge string
and a JWT. Both of these are sent back to the user.

3. The user sends the challenge string to the Login contract and stores the JWT for later use
locally.

4. The backend listens for login attempts using the challenge string at the Ethereum network.
When an attempt with the challenge string for the right user is seen, it can assume the user
has proved his or her identity. The only person that can send a message with an Ethereum
address is the holder of the private key, and the only user that knows the challenge string is
the user that received the challenge through the login website.

5. The user gets notified or polls the website backend for confirmation of his or her successful
login. The user then proceeds to use the JWT issued in step 2 for accessing the website.
Alternatively, a new JWT can be issued after a successful login.

To that end, this is the Ethereum contract we will use:

pragma solidity ^0.4.2;

contract Login {

event LoginAttempt(address sender, string challenge);

function login(string challenge) {
LoginAttempt(msg.sender, challenge);

}

}

The contract is extremely simple. Events are special elements in Solidity that are mapped to a
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system in Ethereum that allows special data to be logged. Events are generally watched by clients
monitoring the evolution of the blockchain. This allows actions to be taken by clients when events
are created. In our case, whenever a user attempts to login, an event created with the challenge
is broadcast. We only care about receiving a call from the rightful owner of the Ethereum address
that was passed to the third party website. And, thanks to the way Ethereum works, we can be
sure the sender was the one who performed the call.

In addition to the sender’s address, the challenge is also broadcast. This means anyone watching
the blockchain now knows the challenge. However, this cannot be used on its own to impersonate a
user: a user can only interact with the backend through the session JWT. This means an attacker
must know three pieces of information to impersonate a user: the Ethereum address, the challenge
AND the JWT issued with the challenge. Since JWTs are signed, an attacker cannot create a valid
JWT to impersonate an user, even with access to the challenge.

What follows is our backend code. First, let’s see how to watch for Ethereum events:

const LoginContract = require('./login_contract.js');

const loginContract = LoginContract.at(process.env.LOGIN_CONTRACT_ADDRESS ||
'0xf7b06365e9012592c8c136b71c7a2475c7a94d71');

// LoginAttempt is the name of the event that signals logins in the
// Login contract. This is specified in the login.sol file.
const loginAttempt = loginContract.LoginAttempt();

const challenges = {};
const successfulLogins = {};

loginAttempt.watch((error, event) => {
if(error) {

console.log(error);
return;

}

console.log(event);

const sender = event.args.sender.toLowerCase();

// If the challenge sent through Ethereum matches the one we generated,
// mark the login attempt as valid, otherwise ignore it.
if(challenges[sender] === event.args.challenge) {

successfulLogins[sender] = true;
}

});

The login_contract.js file contains what is needed to inter-operate with our contract. Let’s take
a look:

// web3 is an Ethereum client library
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const Web3 = require('web3');
const web3 = new Web3();

web3.setProvider(new web3.providers.HttpProvider('http://localhost:8545'));

// This file is generated by the Solidity compiler to easily interact with
// the contract using the web3 library.
const loginAbi = require('../solidity/build/contracts/Login.json').abi;
const LoginContract = web3.eth.contract(loginAbi);

module.exports = LoginContract;

Web320 is the official client library to interact with Ethereum nodes. An Ethereum node is what
actually connects to the rest of the Ethereum network. It performs “mining” (block generation),
transaction operations (create and send) and block verification.

The Login.json file is generated by the Solidity contract compiler, part of the standard Ethereum
development tools. The Solidity compiler takes Solidity source code and turns it into Ethereum
Virtual Machine bytecode and an interface description file that can be used by Web3 to interact
with the contract once it is uploaded to the network.

And here are our HTTP endpoints:

app.post('/login', (req, res) => {
// All Ethereum addresses are 42 characters long
if(!req.body.address || req.body.address.length !== 42) {

res.sendStatus(400);
return;

}

req.body.address = req.body.address.toLowerCase();

const challenge = cuid();
challenges[req.body.address] = challenge;

const token = jwt.sign({
address: req.body.address,
access: 'finishLogin'

}, secret);

res.json({
challenge: challenge,
jwt: token

});
});

app.post('/finishLogin', validateJwt, (req, res) => {
20https://github.com/ethereum/web3.js/
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if(!req.jwt || !req.jwt.address || req.jwt.access !== 'finishLogin') {
res.sendStatus(400);
return;

}

if(successfulLogins[req.jwt.address]) {
delete successfulLogins[req.jwt.address];
delete challenges[req.jwt.address];

const token = jwt.sign({
address: req.jwt.address,
access: 'full'

}, secret);

res.json({
jwt: token,
address: req.jwt.address

});
} else {

// HTTP Accepted (not completed)
res.sendStatus(202);

}
});

app.post('/apiTest', validateJwt, (req, res) => {
if(req.jwt.access !== 'full') {

res.sendStatus(401); //Unauthorized
return;

}

res.json({
message: 'It works!'

});
});

The /login endpoint receives a login request carrying an Ethereum address for the user that wants
to login. The user must be the owner of such Ethereum address. It generates a JWT and a challenge.
The JWT can only be used to access the /finishLogin endpoint.

Before the user can call the /finishLogin endpoint he or she must prove his or her identity by
making a call to the login method of the Login contract. The login method receives a single
parameter: the challenge returned by the /login endpoint. He must perform this call using the
same account address that was passed to the /login endpoint. He or she can use any Ethereum
wallet or client to do this.

After making the call to the login method of the Login contract, the user can complete the login by
using the /finishLogin endpoint. He or she must pass the JWT returned by the /login endpoint
to it. If the login is successful, a new JWT with full access is returned. Otherwise, if the login is
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still pending, an accepted HTTP status (202) is returned signalling proper verification of the login
request is still pending. If the JWT passed to /finishLogin is invalid, an unauthorized HTTP
status code is returned (401).

After the /finishLogin endpoint is called and the login process is completed, the returned JWT
can be used to access other parts of the API. In this case, the /apiTest endpoint is available. It
simply returns “It works!” wrapped in a JSON object if the user is logged-in.

Grab the full example.21

2.3.1 Running the Example

Building and deploying the example is not as straightforward as it may seem due to the nature of
Ethereum and current development tools. Here are the steps we used to test the example above.

2.3.1.1 1. Get an Ethereum node client

There are several Ethereum node clients. A popular one is go-ethereum22, a client written in Go.
Download and install it.

Ethereum, as other cryptocurrencies do, has different versions of the blockchain with different
parameters. There are essentially two blockchains: the main official blockchain and a test blockchain.
The main blockchain never undoes operations once they are confirmed. Since some operations
require money, the main blockchain is not ideal for testing. The test blockchain, on the other hand,
is much less strict about forks and changes. It is also simpler to mine “Ether”, Ethereum’s currency.

We could use the test network for our example here. However, running a client node for any of
the public networks is problematic for one reason: to be able to start doing transactions, the client
must first verify all previous transactions in the blockchain. That means that bootstrapping a
new client node takes quite a bit of time. Fortunately there is an alternative: we can create a
new, pristine private Ethereum blockchain to run our tests. To do so, run go-ethereum using the
following command line:

./geth --rpc --nat none --dev

2.3.1.2 2. Create a new Ethereum account to mine some Ether

The geth command can also be used to interact with a running client. Launch an interactive console
connected to the running client:

/geth attach ipc:/var/folders/ts/7xznj_p13xb7_5th3w6yjmjm0000gn/T/ethereum_dev_mode/geth.ipc

The IPC file mentioned in the command can be found in the output from running the node in our
first step. Look for the line that reads:

IPC endpoint opened: /var/folders/ts/7xznj_p13xb7_5th3w6yjmjm0000gn/T/ethereum_dev_mode/geth.ipc
21https://github.com/auth0-blog/ethereum-login-sample
22https://github.com/ethereum/go-ethereum
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Now in the Geth console type:

personal.newAccount()

After hitting ENTER a prompt will appear requesting a passphrase. This is the passphrase that will
be used to perform any operations using this account. You can think of this as the passphrase
required to decrypt the private-key used to sign Ethereum transactions. Do not leave the prompt
empty, choose a simple passphrase for testing instead. A new Ethereum address will be returned
by the function. If at any point you forget this address, you can list accounts by inspecting
personal.listAccounts (it’s a variable, not a function, so don’t add () at the end).

The geth console is a JavaScript interpreter.

2.3.1.3 3. Start mining some Ether

Now it’s time to add some Ether to our new account. Ether is required to perform operations in
the Ethereum blockchain, so it is necessary to perform this step. Ether can be gathered in two
ways: by receiving it from another account or by mining it. Since this is a private network, we will
need to mine it. Don’t worry, the private network is by default configured to be able to mine Ether
easily. Let’s do it:

miner.setEtherbase(personal.listAccounts[0]) // Hit ENTER
miner.start() // Hit ENTER

Now wait a few seconds (or minutes depending on your hardware) and then confirm you have some
Ether in your account:

eth.getBalance(personal.listAccounts[0]) // Hit ENTER

2.3.1.4 4. Compile and deploy our Login contract

To simplify the process of compiling and deploying contracts, we will use truffle. Truffle is a
development framework for Ethereum, simplifying many common tasks. Install it:

npm install -g truffle

Before using truffle to deploy contracts, it is necessary to “unlock” our account in our Ethereum
node client. Unlocking is the process of decrypting the private-key and holding it in memory using
the passphrase used to create it. This allows any client libraries (such as Truffle) connecting to the
node to make operations on behalf of the unlocked account. Go to the geth console and type:

personal.unlockAccount(personal.listAccounts[0]) // Hit ENTER

Now switch to the solidity directory of our sample application. Edit the truffle.js file and set
your newly created address as the from key. Then run:

truffle migrate

The migrate command compiles and deploys the contracts to the Ethereum network on behalf of
the account set in truffle.js. As a result you will get the address of the newly deployed contract.
Take note of it.
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2.3.1.5 5. Install an Ethereum wallet

Ethereum wallets are convenient interfaces for users to interact with the Ethereum network. Sending
and receiving Ether, deploying contracts or making calls to them are all operations usually supported
by wallets. Mist is the official Ethereum wallet. Download it and install it.

Once installed, we will need to tell Mist to connect to our private network rather than the public
main or test networks. To do this, run Mist from the command line like so:

./Ethereum\ Wallet --rpc \
/var/folders/ts/7xznj_p13xb7_5th3w6yjmjm0000gn/T/ethereum_dev_mode/geth.ipc

The IPC file is the same file used by the geth console and can be gathered from the geth output
logs.

2.3.1.6 6. Tell the Ethereum wallet of the contract

Many contracts live in the Ethereum network. Wallets need to know a contract’s address and
interface before being able to interact with them. Let’s tell Mist about our Login contract. Go to
Contracts -> Watch Contract (top right, then bottom left).
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Figure 2.6: Watch contract

Complete the fields as follows:

• Name: Login
• Contract Address:
• JSON Interface: the ABI from Login.json. For convenience it is pasted below. Copy and

paste it in Mist.

[{
"constant": false,
"inputs": [{

"name": "challenge",
"type": "string"

}],
"name": "login",
"outputs": [],
"payable": false,
"type": "function"

}, {
"anonymous": false,
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"inputs": [{
"indexed": false,
"name": "sender",
"type": "address"

}, {
"indexed": false,
"name": "challenge",
"type": "string"

}],
"name": "LoginAttempt",
"type": "event"

}]

The contract ABI (application binary interface) is a file that gets generated when com-
piling a contract. This file describes in which way contracts can interact with one
another.

Figure 2.7: Watch contract

As a test, now try to send some Ether to the contract: Contracts -> Login -> Transfer Ether
& Tokens. Send 1 Ether or any other amount less than your balance. You will need to provide

48



the passphrase for your account.

Figure 2.8: Send Ether

2.3.1.7 7. Deploy the backend

Go to the backend folder and run:

npm install
node app.js

2.3.1.8 8. Serve the frontend

Go to the frontend folder and run:

npm install -g static-serve
static-serve

You may use any other simple static HTTP server such as Python’s SimpleHTTPServer. If you do
so, make sure to serve the app in port 9080. This is important due to CORS.

49



2.3.1.9 9. Test everything together!

Open your browser at http://localhost:9080. Now attempt to login by putting your Ethereum
address in the input field. A challenge text will be generated. Go to the Mist (Ethereum Wallet)
and go to the Login contract. To the right you will see “WRITE TO CONTRACT”. Select the
login function and paste the challenge in the text fill that appears there. Then click on Execute.
Input your passphrase and send the transaction.

Now switch back to the login page. After a few seconds the login will be completed and a welcome
message will appear. Voilà!

Watch video: “Login”23

This example shows how a typical Ethereum user can use his existing Ethereum account to log in
to any third party website supporting Ethereum. And all of this is done without a central server.
Although authentication is not performed by the owner of the website, there is no central authority
validating the user: it is the Ethereum network that does so.

Grab the full example.24

2.4 Summary

We have taken a deeper look at Ethereum: a decentralized, blockchain-based framework for devel-
oping applications. Applications run on each node, and each state transition produced by them
is validated and recorded by the blockchain. The power of the approach extends the concepts of
Bitcoin to more than just monetary transactions or simple non-Turing complete contracts. The
power of distributed apps is just beginning to be tapped. In the next chapter we will take a look
at an actual application developed on the Ethereum network: a two-factor authentication system
for Ethereum users using a mobile validator application. Stay tuned!

23https://cdn.auth0.com/blog/ethereum2/login.mp4
24https://github.com/auth0-blog/ethereum-login-sample
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Chapter 3

A Practical Authentication
Solution for Ethereum Users

3.1 Introduction

In the previous chapter we took a closer look at Ethereum, a decentralized, Turing-complete plat-
form for developing applications using a blockchain. In Ethereum, applications run on each node
in the network. The results of those computations are then encoded in blocks, which, through the
proof-of-work system, are validated by each node in the network. Furthermore, these operations
(transactions) are carried on out on behalf of users. Users must sign each transaction with their
private-key, thus making it possible to track whether a certain user can perform certain operations
or not. In particular, transactions have a cost, and users must be able to pay that cost by spending
Ethereum’s cryptocoin: Ether.

In the previous chapter we also had a look at practical applications of Ethereum. The Decentralized
Autonomous Organization (DAO)1, a central bank2, a crowdfunding system3, a proof of existence
system4, and even our own simple authentication system5. All of these examples run without a
central authority holding any control over them. All operations are carried out by each node on
the network, and these are only effective after all nodes agree on the results. This makes Ethereum
particularly powerful for applications were no single entity must be able to validate or approve
operations.

Our simple login system on Ethereum did work as expected, but it was less than ideal. Let’s take
a look at how it worked:

Watch video: “Login”6

1https://www.ethereum.org/dao
2https://www.ethereum.org/token
3https://www.ethereum.org/crowdsale
4https://chainy.info
5https://auth0.com/blog/an-introduction-to-ethereum-and-smart-contracts-part-2/
6https://cdn.auth0.com/blog/ethereum2/login.mp4
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The objective of the system is to make it possible for any third-party to allow users to log into
their website using an Ethereum address as an identifier. No username or password is required.
We assume a user attempting to login with an Ethereum address is a user who currently holds an
Ethereum address with some Ether (that is, a user that holds an Ethereum account for other uses).
Based on these assumptions, this is how our sample system worked:

1. A user browses to a third-party website that requires login. An input text area for the user’s
Ethereum address is displayed.

2. The user inputs his or her Ethereum address and clicks “login”.
3. The third-party backend produces a challenge string and signs a JWT with the challenge

embedded in it.
4. The user sends the challenge string to the login method of the Login contract already avail-

able on Ethereum.
5. The backend watches the Ethereum network for the challenge string. It must be sent by the

owner of the Ethereum address that was input in step 2.
6. If the challenge is seen by the backend within a reasonable timeframe, the user is then marked

as logged in using the Ethereum address from step 2 as the identifier. A new JWT with full
access to the third-party website is issued.

There are a series of problems with this approach. Namely:

• The user must manually make a call to the login method of the Login contract using an
Ethereum wallet of his or her choice.

• The user must know the address and the interface of the Login contract beforehand.
• The user must spend some Ether to login because the contract relies on events that are

logged to the blockchain (that is, they perform writes). This makes the contract require gas
to run.

• The backend must wait for a new block to be mined and propagated through the network
before the login is completed (minimum latency in the order of 12 seconds or more).

As you can imagine, these limitations make our simple authentication example impractical. So
what can we do about them?

3.2 Towards a Practical Authentication Solution for
Ethereum Users

Authentication is what we do at Auth0, so we teamed up with the guys from GFT’s Innovation
Team (Ivo Zieliński, Konrad Kozioł, David Belinchon and Nicolás González)7 to think of a better
way of using Ethereum for this purpose. We came up with a proof of concept which we will share
with you in this chapter. First, let’s describe the design goals for our system:

• It should allow users with an Ethereum address to use that address to login to a third party
website (that supports this login method).

• It should be easy to use and reasonably easy to setup.
• It should not compromise the security of the user’s Ethereum account.

7http://www.gft.com/
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• It should allow users to recover their credentials in case of loss or theft.
• It should not require knowledge of contracts or manually calling contract methods.
• It should have reasonable latency for a login system (no more than a couple of seconds).
• It should not cost users gas (or money) to login.
• It should be reasonably easy for developers to implement in their apps.

One of the biggest problems with our initial approach was that writes were necessary. This forced
users who wanted to log in to spend Ether to do so. Worse, they had to wait for confirmation of the
transaction before the login was successful. On the other hand, this made the login process truly
decentralized.

Writes were a requirement for our previous system due to the way Ethereum events work. Events
are special operations in the Ethereum network that can be watched by nodes. Internally, events
are Ethereum Virtual Machine ops that create data that is added to the transaction when it is
mined. Events do not work on read-only (constant) Solidity functions, since they are added to a
transaction when it is mined, this forces users of our first system to pay to generate a LoginAttempt
event.

This limitation forced us to make a compromise: rather than remain entirely decentralized, we
added a server to handle authentication requests. In turn, this server relies on data stored in the
Ethereum blockchain. However, our system does retain the ability to allow for serverless logins. We
will see how that works later on.

Another big limitation of our first system was that the user needed access to his Ethereum wallet
to login. This is impractical for several reasons:

• Users usually keep a single wallet. In other words, they do not carry around their private
keys to easily use them on different devices.

• If a user loses his or her Ethereum private key, he may never be able to authenticate again
with that address to a third party service, not even to switch his main address or recover his
information. This poses a problem for long term use of the system.

• Requiring a user to use his or her private key for each login can be a security issue for accounts
holding big amounts of value. For those accounts, private keys may be stored safely and used
only when necessary. Requiring their use for each login is less than ideal.

So some way of using an Ethereum address to login without requiring the private key for that
address must be implemented for our new system.

3.3 A Login System for Ethereum Users

So, here is what we implemented. Our system relies on three key elements: an authentication server,
a mobile application, and the Ethereum network. Here’s how they play together.
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Figure 3.1: Architecture

To keep the user’s Ethereum address separate from the authentication process, a different, authen-
tication only, Ethereum address is generated by the system. This address is associated to the user’s
Ethereum address using an Ethereum contract. In other words, a mapping between the user’s
Ethereum address and the system’s login-only address is established. This mapping is stored in
Ethereum’s blockchain with the help of a contract.

pragma solidity ^0.4.2;
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contract Mapper {

event AddressMapped(address primary, address secondary);
event Error(uint code, address sender);

mapping (address => address) public primaryToSecondary;
mapping (address => bool) public secondaryInUse;

modifier secondaryAddressMustBeUnique(address secondary) {
if(secondaryInUse[secondary]) {

Error(1, msg.sender);
throw;

}
_;

}

function mapAddress(address secondary)
secondaryAddressMustBeUnique(secondary) {
// If there is no mapping, this does nothing
secondaryInUse[primaryToSecondary[msg.sender]] = false;

primaryToSecondary[msg.sender] = secondary;
secondaryInUse[secondary] = true;

AddressMapped(msg.sender, secondary);
}

}

Although this contract is a bit more complex than we have seen so far, it remains fairly accessible.
Let’s break it down:

• There are two events: AddressMapped and Error. The AddressMapped event is generated
any time a user’s primary Ethereum address is mapped to a secondary, login-only, address.
The Error event is only generated in case of errors, such as when a mapping using an existing
secondary address already exists.

• Then two variables are declared: primaryToSecondary and secondaryInUse. primaryToSecondary
is a map of addresses: given the primary address, it can tell the secondary address mapped
to it. secondaryInUse is a map of addresses to booleans, used to check whether a secondary
address is already in use.

• Next comes secondaryAddressMustBeUnique. This special function is a modifier. Mod-
ifiers in Solidity are special functions that can be attached to contract methods. These
run before the method code and can be used to modify their behavior. In this case,
secondaryAddressMustBeUnique uses the secondaryInUse variable to confirm whether the
secondary address passed as parameter is in use. If it is, this is flagged as an error and the
Error event is emitted. If it is not in use, then execution continues. The _ placeholder is
where the code from the modified function is logically inserted.

• And lastly there is the mapAddress method. This method takes a secondary address and maps
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it to the address of the sender or caller of this method. The semantics of Ethereum make
sure that the sender is who he says he is. In other words, only the owner of the private key for
an address can make calls as the sender to a Solidity method. This makes sure, without any
special check, that only the rightful owner of the primary address can establish a mapping
between it and a secondary address used for logins. This is the crux of our system.

In summary, our contract does four things:

• It establishes a mapping between two Ethereum addresses: one high value address (the pri-
mary address) and a low value, login-only, secondary address.

• It certifies only the owner of the primary address can establish this mapping.
• It records this information publicly in the blockchain.
• It emits events to monitor and react to changes in the data stored in it.

This is all we need to make our system work. Let’s go over the full registration and authentication
flow to see how it all works together. We assume the user is the rightful owner of an Ethereum
account with a certain amount of Ether.
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3.3.1 Registration

Figure 3.2: Registration

This is a one time only step to be performed the first time the user tries to use the system. Once
registered, the user can use his or her Ethereum address with any third-party website. In other
words, this is a system-wide, one time only step.

To simplify the authentication experience, our implementation uses a mobile application to authorize
or deny authentication requests. A user who wants to enable his Ethereum account for use as an
authentication factor first registers through the mobile application.

Registration is performed by following these steps:

1. The user opens the mobile application.
2. The user enters his or her email address and an unlock pattern.
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3. A new Ethereum address is generated behind the scenes by the mobile application. This is
the secondary address. This address is sent to the user to his or her email for convenience.

4. The user establishes a link between his or her primary Ethereum address and this secondary
address. To do so the user can manually call the mapAddress method of the Mapper contract
or use a special wallet app developed for this purpose. This step requires the user to spend
a minimum amount of gas from his primary account.

5. Once the link between addresses is established, the mobile application will show a confirmation
dialog. If the user confirms, the mapping is established and the process is complete.

One of the added benefits of this approach is that it makes throwaway accounts harder to use. Point
4 forces the user to spend Ether to establish the mapping between his personal Ethereum address
and the login-only address. This way, third-parties can be sure that the Ethereum account used by
the user is not a throwaway account (i.e. a spam account).
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3.3.2 Authentication

Figure 3.3: Authentication

Whenever a user who has already registered wants to use his or her Ethereum account to login to
a third party website, he or she follows this process:

1. The user inputs his or her primary Ethereum address or his or her email in an input field and
clicks “Login”.
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2. The third-party website contacts the authentication server requesting authentication
for that address. To do so the third-party website generates a challenge string with a specific
format and passes it to the authentication server.

3. The authentication server checks the Ethereum network for the current secondary address
of the user. It then checks the internal database for the necessary data to contact the mobile
device associated to that address.

4. The user receives a mobile push notification to confirm or deny the login request.
5. If the user accepts, the private key of the secondary address is used to sign the challenge.

The signed challenge is then sent back to the authentication server.
6. The authentication server verifies the signature and if it is valid and the challenge matches,

it considers the login successful. It then sends back the signed challenge to the third-party
website for optional independent confirmation.

That is all there is to it, really! This scheme separates the signature process from a sensitive primary
address, preventing the exposure of a potentially important private key while still giving the third
party site confirmation that the user is the rightful owner of that address. Furthermore, although it
relies on the authentication server for convenience, it can still work without it and does not require
trust to be placed in it (the third party website can check the signature itself). Thus it remains
decentralized in worst-case scenarios (authentication server down) and convenient for the common
case.

As an added benefit, this system can easily be adapted to work like “Login with Facebook” or
“Login with Google” do. In fact, a future version could be included in Auth0!

3.3.3 Cons

As we have seen so far, our system appears to be more convenient than our initial, simple approach
from part two of this series. However, it does come with a few limitations of its own. Let’s take a
brief look at them.

Our initial approach sported a key element from blockchain based systems: it was entirely decen-
tralized. Our newer approach relies on an authentication server for convenience. Although it is
possible for the system to work without the authentication server, it is not convenient to use it this
way. This is by design and must be considered if convenient decentralized operation is mandatory
in all cases. In every case, however, no trust is placed in the server.

3.4 Try it out!

Since this is just a proof-of-concept and getting your feet wet with Ethereum can be a bit hard at
first, here is a step by step guide for new users to test the system. Please note that this is just a
test system so it uses Ethereum’s testnet. In other words, no hard guarantees are provided with
regard to the integrity of the data stored in the Ethereum testnet, do not put important stuff in the
accounts created in this guide, they won’t be protected by the same guarantees as the Ethereum
mainnet.
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3.4.1 Get an Ethereum Wallet

To perform operations in Ethereum you need a wallet. A wallet is an application that allows you to
interact with the rest of the network. Wallets store the private-keys for your Ethereum addresses.
For simplicity we will be using Metamask8. Metamask is a browser-based wallet that runs locally
as a Chrome extension. Keys are stored locally and transactions are signed with them. These are
then sent to the rest of the network through a Metamask operated public node.

3.4.1.1 1. Get Metamask

Go to the Chrome Webstore9 and install Metamask.

3.4.1.2 2. Create a New Account

Click on the Metamask icon on the top right corner of your Chrome windows and follow the wizard
to create an account. Make sure it is created in the Rinkeby testnet. To check this, after creating
the account, click on the icon next to the Metamask fox, on the top left corner of the Metamask
window. If you are using another network, just switch to Rinkeby and then follow the wizard again.

Watch video: “Creating a Rinkeby Account using Metamask”10

3.4.1.3 3. Get Some Ether

To register you will need a minimum amount of Ether. Fortunately, this is easy to get in the testnet
(in the mainnet you must either buy it or be lucky enough to be able to mine it). For the testnet
it is possible to use “faucets”. Faucets are places to get free Ether. The most popular Rinkeby
faucet11 requires users to create a GitHub gist12. This is a simple way to limit misuse of the faucet.
Creating gists is easy, you only require a GitHub account. Create a public GitHub gist and paste
your Metamask Rinkeby address in it. Then go back to the faucet and place the link to the gist
in the required field, then click on “Give Me Ether” (the faucet is located in the crypto faucet
section on the left bar).

After a bit, you should see your newly acquired Ether in Metamask.

To get your Rinkeby Ethereum address, go to Metamask and then click on the “copy” icon next to
your account name. This will be your primary Ethereum address. In an actual production system,
this would be the address of an account with lots of Ether in it. One that you would not want to
expose every time you want to log in to some third party site using your Ethereum address.

Watch video: “Using a Rinkeby Faucet to Obtain Ether”13

8https://metamask.io/
9https://chrome.google.com/webstore/detail/metamask/nkbihfbeogaeaoehlefnkodbefgpgknn

10https://cdn.auth0.com/blog/ethereum3/Metamask-Account-Rinkeby.mp4
11https://www.rinkeby.io/
12https://gist.github.com/
13https://cdn.auth0.com/blog/ethereum3/Metamask-Faucet-Rinkeby.mp4
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3.4.2 Get the Mobile Authenticator App

Now it’s time to set up your secondary address and login helper app. This application will be the
authentication factor used to confirm your login request. Any time you want to login to some site,
you will receive a notification through this app. This notification will allow you to either confirm
or deny the authentication request.

3.4.2.1 1. Get the App

Go to the Android Play Store and download our Auth0 PoC app14.

3.4.2.2 2. Register

Open the app and input your email address. Now choose an unlock pattern. You will be asked to
input this same pattern any time you want to log in to a site. Then click Register. You will be
asked to confirm the registration through the mobile app. Click Sign to confirm it.

The mobile app is now set, let’s enable your Ethereum account for logins.

Watch video: “Register Using the Mobile App”15

3.4.3 Enable Your Ethereum Address for Logins

This step, like the previous ones, is only performed once. This sets up the mapping between your
primary address and the login address. In other words, it connects your Metamask account to the
mobile app in your smartphone.

3.4.3.1 1. Get Your Mobile App (Secondary) Address

If you now look at your emails (please check spam, promotions, etc.) you will find your Ethereum
secondary address. This is the address of the account managed through your smartphone. Just
copy it to the clipboard.

14https://play.google.com/store/apps/details?id=block.chain.auth.zero
15https://cdn.auth0.com/blog/ethereum3/Mobile-Register.mp4
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Figure 3.4: Registration email

3.4.3.2 2. Call the Contract!

If you are an Ethereum user and you have your own wallet, you can perform this step manually.
For simplicity, however, we have set up a site that will do the hard work for you. Using the same
Chrome instance where you installed Metamask, navigate to our PoC wallet16. This site is a simple
local-only wallet-like app that creates the Ethereum transaction necessary to call the contract. This
site communicated with Metamask so that you don’t have to input your account details manually.

Once you are in the site, paste the Ethereum address you copied from the email in the previous step
and click Register. A Metamask window will pop-up. This is a confirmation that you are about
to make a transaction from your primary account that will spend Ether. Click Sign. After a while
your primary and secondary accounts will be connected! The time for this to happen depends on
the Ethereum network. In general it is just a few seconds.

In case you are already experienced with Ethereum you may want to perform this step manually.
Call the mapAddress method of the Mapper contract located at 0x5e24bf433aee99227737663c0a387f02a9ed4b8a.
You can get the JSON API here17. The only parameter is the address you got in your email.

16http://auth0-ethereum.com:3002/wallet/
17https://github.com/auth0/ethereum-auth-client/blob/master/config/abi.json
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After this is done everything is set!

Watch video: “Register Using the Wallet Webapp and Metamask”18

3.4.4 Login to Our Test Site

You may now login to any third party site that supports this authentication method using either
your email address or your primary Ethereum address as a credential. Go to our sample website19,
put your email address and click Login. Watch your smartphone for notifications to approve your
login.

You will notice there is a checkbox labeled Trustless Authentication. As explained before, third
parties may opt for different levels of security. They can opt to trust the authentication server when
it says the login is valid (trustful authentication) or they may opt to not trust the authentication
server and validate the signature internally. In this case, the third party website must validate the
signature of the secondary address itself, first be querying the secondary address using the Mapper
contract (which is publicly available) and then by verifying the signature of the returned data using
the secondary address to find the public key of the secondary address. This provides the highest
level of security and uses the authentication server as simply a messenger.

Watch video: “Login”20

3.4.5 Explore the Code

If you are interested in taking a closer look at how our PoC works, here are all the repositories:

• The authentication server21

• The mobile app22

• The sample third party web app23

• The registration wallet using Metamask24

• Docker scripts for easy testing25

There are also a couple of helper libraries that were developed for this PoC, these are used by the
repositories above:

• Ethereum crypto helper lib26

• JavaScript library for doing auth as used by this PoC27

• A simple database abstraction helper28

18https://cdn.auth0.com/blog/ethereum3/Wallet-Register-Rinkeby.mp4
19https://auth0-ethereum.com/authzero
20https://cdn.auth0.com/blog/ethereum3/Login.mp4
21https://github.com/auth0/ethereum-authentication-server
22https://github.com/auth0/ethereum-authenticator-app-public
23https://github.com/auth0/ethereum-sample-web
24https://github.com/auth0/ethereum-browser-wallet
25https://github.com/auth0/ethereum-docker-deployment
26https://github.com/auth0/ethereum-crypto
27https://github.com/auth0/ethereum-auth-client
28https://github.com/auth0/ethereum-user-db-service
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• Preconfigured Ethereum client node for this PoC29

3.5 Summary

We have taken our simple authentication for Ethereum accounts concept from our previous chapter
and expanded it to make it more convenient. Let’s review our design goals from the beginning of
this chapter:

• It should allow users with an Ethereum address to use that address to login to a
third party website (that supports this login method). After registration, users can
login to any site implementing this protocol using their Ethereum address or email address.

• It should be easy to use and reasonably easy to setup. It is simpler than our previ-
ous example and simple enough for typical Ethereum users: one mobile app to install, one
transaction to execute once.

• It should not compromise the security of the user’s Ethereum account. Logins
are now handled using a separate Ethereum account so the user does not need to expose his
valuable Ethereum account.

• It should allow users to recover their credentials in case of loss or theft. In case of
theft of the mobile device, the user can create a mapping to a new account for logins using
his primary Ethereum address.

• It should not require knowledge of contracts or manually calling contract methods.
The mobile wallet app and Metamask combined isolate users from interacting with contracts
directly.

• It should have reasonable latency for a login system (no more than a couple of
seconds). Logins are only affected by network latency between the authentication server and
the mobile device. In other words, they are as fast as any login system.

• It should not cost users gas (or money) to login. Users only spend Ether once when
first setting up their account. After that, logins to any third party websites do not use gas or
Ether.

• It should be reasonably easy for developers to implement in their apps. Developers
can implement this by calling two endpoints of a RESTful API. Really simple.

Not bad for our initial research into integrating Ethereum with classic technologies. This shows
Ethereum can be integrated into traditional applications today. The platform works, and the
concept of decentralized applications is picking up steam.

Another interesting approach to Ethereum authentication is currently under development by
uPort30. The landscape of blockchain based applications is still being explored.

29https://github.com/auth0/go-ethereum
30https://www.uport.me/
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Many thanks to GFT’s Innovation Team (Ivo Zieliński, Konrad Kozioł, David Belinchon and Nicolás
González) for doing an amazing job developing this proof-of-concept, and to Manu Aráoz31 for
reviewing and providing insight for this chapter.

31https://twitter.com/maraoz
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