




Migrating an AngularJS App to Angular

Kim Maida, Auth0 Inc.

Version 1.3.0, 2017



Contents

1 Introduction 4
1.1 AngularJS 1 and Angular 2+ . . . . . . . . . . . . . . . . . . . . 4
1.2 Migrate vs. Upgrade . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Angular 1 App “ng1-dinos” 6
2.1 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Install and Run “ng1-dinos” . . . . . . . . . . . . . . . . . . . . . 6

3 Introducing Angular 2 App “ng2-dinos” 8
3.1 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Initialize ng2-dinos . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Linting and Style Guide . . . . . . . . . . . . . . . . . . . . . . . 9

4 Customizing Our Angular 2 Project for Migration 11
4.1 Bootstrap CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Third Party Libraries . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Global SCSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Update App File Structure . . . . . . . . . . . . . . . . . . . . . 15

5 Angular 2 Root App Component 16
5.1 App Component Template . . . . . . . . . . . . . . . . . . . . . . 17
5.2 App Component Styles . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 App Component TypeScript . . . . . . . . . . . . . . . . . . . . . 18

6 Angular 2 Header Component 20
6.1 Add Header Element to App Component Template . . . . . . . . 21
6.2 Header Component Template . . . . . . . . . . . . . . . . . . . . 22
6.3 Header Component Styles . . . . . . . . . . . . . . . . . . . . . . 22

7 Angular 2 Component Interaction 25
7.1 Header Component TypeScript . . . . . . . . . . . . . . . . . . . 25
7.2 Header Communication with App Component . . . . . . . . . . . 26

8 Angular 2 Observables and DOM Properties 29

1



8.1 Add Observable to App Component TypeScript . . . . . . . . . . 29
8.2 Add DOM Property to App Component Template . . . . . . . . 31

9 Angular 2 Footer Component 33
9.1 Footer Component TypeScript . . . . . . . . . . . . . . . . . . . 33
9.2 Footer Component Template . . . . . . . . . . . . . . . . . . . . 34
9.3 Footer Component Styles . . . . . . . . . . . . . . . . . . . . . . 34
9.4 Add Footer to App Component Template . . . . . . . . . . . . . 34

10 Migrating Angular 2 Pages 36
10.1 Create Home, About, and 404 Page Components . . . . . . . . . 36
10.2 Add Title Provider to App Module . . . . . . . . . . . . . . . . . 36
10.3 Add Title to Page Components . . . . . . . . . . . . . . . . . . . 37
10.4 Home Component Template . . . . . . . . . . . . . . . . . . . . . 39
10.5 About Component Template . . . . . . . . . . . . . . . . . . . . 39
10.6 404 Component Template . . . . . . . . . . . . . . . . . . . . . . 40

11 Routing in Angular 2 41
11.1 Create a Routing Module . . . . . . . . . . . . . . . . . . . . . . 41
11.2 Import Routing Module in App Module . . . . . . . . . . . . . . 43
11.3 Display Routed Components . . . . . . . . . . . . . . . . . . . . 43
11.4 Route Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
11.5 Router Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11.6 Auto-close Menu in Header Component . . . . . . . . . . . . . . 45

12 Calling an API in Angular 2 47
12.1 Dinosaur API Data Model . . . . . . . . . . . . . . . . . . . . . . 47
12.2 Add HTTP Client Module to App Module . . . . . . . . . . . . . 48
12.3 Get API Data with Dinos Service . . . . . . . . . . . . . . . . . . 49
12.4 Provide the Dinos Service in App Module . . . . . . . . . . . . . 50
12.5 Use the Dinos Service in Home Component . . . . . . . . . . . . 51
12.6 Display a List of Dinosaurs . . . . . . . . . . . . . . . . . . . . . 52

13 Display Dino Cards 55
13.1 Dino Card Component TypeScript . . . . . . . . . . . . . . . . . 55
13.2 Dino Card Component Template . . . . . . . . . . . . . . . . . . 56
13.3 Display Dino Card in Home Component . . . . . . . . . . . . . . 56

14 Migrating Angular 1 Filtering to Angular 2 58
14.1 No Filter or OrderBy Pipes . . . . . . . . . . . . . . . . . . . . . 58
14.2 Create a Filter Service . . . . . . . . . . . . . . . . . . . . . . . . 59
14.3 Use Angular 2 Filter Service to Search . . . . . . . . . . . . . . . 60

14.3.1 Filter in Home Component TypeScript . . . . . . . . . . . 60
14.3.2 Filter in Home Component Template . . . . . . . . . . . . 62
14.3.3 Filter in Home Component Styles . . . . . . . . . . . . . . 63

15 Migrating Detail Component to Angular 2 65

2



15.1 Routing with Parameters . . . . . . . . . . . . . . . . . . . . . . 65
15.2 Linking to Routes with Parameters . . . . . . . . . . . . . . . . . 66

16 Calling the API for Data by ID 67
16.1 Create a Dino Details Model . . . . . . . . . . . . . . . . . . . . 67
16.2 Add HTTP Observable to Get Dinosaur by ID . . . . . . . . . . 68
16.3 Using API Data in Detail Component . . . . . . . . . . . . . . . 69

16.3.1 Detail Component TypeScript . . . . . . . . . . . . . . . 69
16.3.2 Detail Component Template . . . . . . . . . . . . . . . . 70
16.3.3 Detail Component Styles . . . . . . . . . . . . . . . . . . 72

17 Loading State for API Calls 74
17.1 Loading Image Asset . . . . . . . . . . . . . . . . . . . . . . . . . 74
17.2 Loading Component TypeScript . . . . . . . . . . . . . . . . . . 74
17.3 Add Loading Component to App Module . . . . . . . . . . . . . 75
17.4 Add Loading Component to Home Component . . . . . . . . . . 76

17.4.1 Implement Loading Functionality in Home Component
TypeScript . . . . . . . . . . . . . . . . . . . . . . . . . . 76

17.4.2 Implement Loading Functionality in Home Component
Template . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

17.5 Add Loading Component to Detail Component . . . . . . . . . . 79
17.5.1 Implement Loading Functionality in Detail Component

TypeScript . . . . . . . . . . . . . . . . . . . . . . . . . . 79
17.5.2 Implement Loading Functionality in Detail Component

Template . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
17.5.3 Remove “Loading. . . ” Text from Index HTML . . . . . . 80

18 Completed Migration 82
18.1 Refactoring Suggestions . . . . . . . . . . . . . . . . . . . . . . . 82

19 Bonus: Authenticate an Angular App and Node API with
Auth0 83

19.0.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
19.0.2 Sign Up for Auth0 . . . . . . . . . . . . . . . . . . . . . . 85
19.0.3 Set Up a Client App . . . . . . . . . . . . . . . . . . . . . 85
19.0.4 Set Up an API . . . . . . . . . . . . . . . . . . . . . . . . 85
19.0.5 Dependencies and Setup . . . . . . . . . . . . . . . . . . . 85
19.0.6 Authentication Service . . . . . . . . . . . . . . . . . . . . 87
19.0.7 Making Authenticated API Requests . . . . . . . . . . . . 90
19.0.8 Final Touches: Route Guard and Profile Page . . . . . . . 90
19.0.9 More Resources . . . . . . . . . . . . . . . . . . . . . . . . 91

20 Conclusion 92

3



Chapter 1

Introduction

Many AngularJS 1.x developers are interested in Angular 2+, but the major
di�erences between versions 1 and 2+ are daunting when we have so many
AngularJS 1 apps already in production or maintenance. Learn how to migrate
a real-world AngularJS app to a fresh Angular 2+ build: what’s the same,
what’s similar, and what’s completely di�erent. After this tutorial, you should
be prepared to tackle your own migrations as well as new Angular 2+ projects.
The final code for our Angular 2+ app can be cloned from the ng2-dinos GitHub
repo.

Note: The Branding Guidelines for Angular state that version 1.x should be
referred to as “AngularJS”, whereas all releases from version 2 and up are named
“Angular”. This migration article will continue to use “Angular 1” to refer to
AngularJS (1.x) and “Angular 2” to refer to Angular (2 and up) in order to
clearly di�erentiate the frameworks and reduce confusion.

1.1 AngularJS 1 and Angular 2+

AngularJS 1.x has been a frontrunner among JavaScript frameworks over the
past few years. There are thousands of production sites and apps built with
Google’s “superheroic MVW framework” and many more still in development. In
mid-September 2016, Angular 2 was released after a lengthy period of betas and
release candidates. Angular developers knew this was coming and that Angular
2 was a full rewrite and platform implementation, not an incremental update.

While Angular developers were and are eager to try Angular 2+, adoption can
be challenging. Many of us have Angular 1 apps in development or maintenance
and aren’t in a position to migrate them to Angular 2 due to tight deadlines,

4

https://github.com/auth0-blog/ng2-dinos
https://github.com/auth0-blog/ng2-dinos
http://angularjs.blogspot.com/2017/01/branding-guidelines-for-angular-and.html
https://angularjs.org/
https://www.madewithangular.com
https://www.madewithangular.com
http://angularjs.blogspot.com/2016/09/angular2-final.html
https://angular.io/
https://angular.io/


budget constraints, client or management reluctance, etc. Angular 1 is still being
maintained under the “AngularJS” moniker and Angular 1 apps are not about
to go away.

Note: Angular 2+ uses SemVer (Semantic Versioning). This means that unlike
Angular 1, there will no longer be breaking changes in point releases. There will
not be an Angular 3; instead, Angular 4 will be the next major release in order
to correlate to version 4 of the Angular router.

1.2 Migrate vs. Upgrade

Angular 2 is a powerful and attractive platform. Many developers will have their
first opportunity to dig in when they tackle migrating an existing Angular 1
app to Angular 2. At this time, upgrading the original codebase is extremely
di�cult: Angular 2 is not an iteration of Angular 1. Moving between them is
more straightforward when migrating to a fresh build that translates the same
features on the new platform.

We’ll walk through the process of migrating an Angular 1 app to Angular 2.
Our Angular 1 project is relatively small but it represents a scalable, real-world
Single Page Application. After following this tutorial, you should have a better
understanding of how to get started with Angular 2 and how features from
Angular 1 translate to Angular 2.

This tutorial assumes you are comfortable developing apps with An-
gularJS version 1.x. If you’re looking to learn Angular 2 without an Angular
1 comparison, check out resources like Angular 2 Authentication and Getting
Started with Angular 2.

5

https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
http://angularjs.blogspot.com/2016/10/versioning-and-releasing-angular.html?view=classic
https://dzone.com/articles/forget-angular-3-google-is-set-to-launch-angular-4
https://auth0.com/blog/angular-2-authentication/
https://school.scotch.io/getting-started-with-angular-2
https://school.scotch.io/getting-started-with-angular-2


Chapter 2

Angular 1 App “ng1-dinos”

Our Angular 1 app is called ng1-dinos. The code is available at the ng1-dinos
GitHub repo. It has the following features:

• Routing (dinosaurs listing with individual detail pages)
• Filtering (search for dinosaurs by name)
• Calls an external Node API to get dinosaur data
• SCSS and Bootstrap CSS
• Custom o�-canvas navigation
• Metadata factory to provide dynamic <title>s
• Gulp build
• Guided by the Angular 1 Style Guide
• Scalability

2.1 Dependencies

Follow the instructions on the following sites to install these dependencies:

• NodeJS with npm
• Gulp (install globally with npm install -g gulp)

We’ll also need to clone sample-nodeserver-dinos. This local Node server
will provide the external API for both our ng1-dinos and ng2-dinos apps. Follow
the instructions in the sample-nodeserver-dinos README to get it installed and
running on http://localhost:3001.

2.2 Install and Run “ng1-dinos”

1. Clone ng1-dinos from GitHub to a local directory of your choosing.

6

https://github.com/auth0-blog/ng1-dinos
https://github.com/auth0-blog/ng1-dinos
https://github.com/auth0-blog/sample-nodeserver-dinos
http://getbootstrap.com/css/
http://gulpjs.com/
https://github.com/johnpapa/angular-styleguide/tree/master/a1#angular-1-style-guide
https://nodejs.org
http://gulpjs.com
https://github.com/auth0-blog/sample-nodeserver-dinos
https://github.com/auth0-blog/sample-nodeserver-dinos/blob/master/README.md
http://localhost:3001
https://github.com/auth0-blog/ng1-dinos


2. Run npm install from the root directory.
3. Run gulp to serve the application (runs locally on http://localhost:8000).

Once you have ng1-dinos and the Node API running, the app should look like
this in the browser:

Figure 2.1: Angular 1 ng1-dinos home view

Important: Take some time to familiarize with the file structure, code, and
features. We won’t be making any changes to this application, but it’s important
to get comfortable with it because everything we do in our Angular 2 app will
be a migration of ng1-dinos.

7

http://localhost:8000


Chapter 3

Introducing Angular 2 App
“ng2-dinos”

Our migrated Angular 2 application will be called ng2-dinos. The full source
code for the completed app can be cloned from the ng2-dinos GitHub repo. This
app will use the same Node API. From a user’s perspective, we want ng2-dinos
to be indistinguishable from ng1-dinos. Under the hood, we’ll rewrite the app to
take advantage of the powerful new features of Angular 2.

Angular 2 brings in several technologies that ng1-dinos does not take advantage
of. Instead of a Gulp build, we’ll use the Angular CLI to set up and serve
ng2-dinos. We’re going to write the app using TypeScript and ES6 which will
be transpiled by the Angular CLI.

We’ll follow the Angular 2 Style Guide for the most part, with a few minor
exceptions regarding file structure. For this tutorial, we want to preserve as
much of a correlation with ng1-dinos as we can. This will make it easier to follow
the migration of features.

3.1 Dependencies

You should have NodeJS with npm installed already.

Next, install the Angular CLI globally with the following command:

$ npm install -g @angular/cli

8

https://github.com/auth0-blog/ng2-dinos
https://cli.angular.io/
https://www.typescriptlang.org/
http://es6-features.org/
https://angular.io/docs/ts/latest/guide/style-guide.html
https://nodejs.org
https://github.com/angular/angular-cli


3.2 Initialize ng2-dinos

The first thing we’ll do is initialize our new Angular 2 app and get it running.
We’ll use the Angular CLI to generate a new project with SCSS support using
the following command:

$ ng new ng2-dinos --style=scss

Next we can serve the app by running the following command from the root
directory of our new app:

$ ng serve

We should be able to view the site in the browser at http://localhost:4200. The
app should look like this:

Figure 3.1: New Angular 2 app initialized

Take a look at the file structure for your new ng2-dinos app. You may notice
there are test files and configuration, but we won’t cover testing in this
tutorial. If you’d like to learn more about testing Angular 2, check out Testing
in the Angular docs and articles like Angular 2 Testing In Depth: Services and
Three Ways to Test Angular 2 Components.

3.3 Linting and Style Guide

The Angular CLI provides code linting with TSLint and Codelyzer. TSLint
provides TypeScript linting and Codelyzer provides TSLint rules that adhere
to the Angular 2 Style Guide. We can view all of these linting rules at

9

http://localhost:4200
https://angular.io/docs/ts/latest/guide/testing.html
https://angular.io/docs/ts/latest/guide/testing.html
https://auth0.com/blog/angular-2-testing-in-depth-services/
https://vsavkin.com/three-ways-to-test-angular-2-components-dcea8e90bd8d#.m3gh6p8bb
https://palantir.github.io/tslint/
https://github.com/mgechev/codelyzer
https://angular.io/docs/ts/latest/guide/style-guide.html


ng2-dinos/tslint.json. We can lint our project using the following com-
mand:

$ ng lint

This tutorial follows the Style Guide and adheres to the default rules in the
TSLint config file. It’s good to lint your project periodically to make sure your
code is clean and free of linter errors.

Note: The Angular CLI TSLint "eofline": true rule requires files to end
with a newline. This is standard convention. If you want to avoid lots of newline
errors when linting, make sure that your files include this.

10

https://palantir.github.io/tslint/rules/eofline/
https://palantir.github.io/tslint/rules/eofline/
http://stackoverflow.com/questions/729692/why-should-text-files-end-with-a-newline


Chapter 4

Customizing Our Angular 2
Project for Migration

Now that we have a working starter project for our ng2-dinos app, we want to
restructure it and add some libraries.

4.1 Bootstrap CSS

Let’s start by adding the Bootstrap CSS CDN to the ng2-dinos/src/index.html
file. We can also add a default <title> and some <meta> tags:

<!-- ng2-dinos/src/index.html -->

<!doctype html>
<html>
<head>

<meta charset="utf-8">
<title>ng2-dinos</title>
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="author" content="Auth0">
<meta name="description" content="Learn about some popular as well as obscure dinosaurs!">
<base href="/">

<!-- Bootstrap CDN stylesheet -->
<link

rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"
integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"
crossorigin="anonymous">

11

http://getbootstrap.com/css/


</head>

<body>
<app-root>Loading...</app-root>

</body>
</html>

Note: The code for including the Bootstrap CSS can be found at Bootstrap CDN
- Getting Started. We’re using version 3.3.7 because it is latest stable at the
time of writing. Please note that if you upgrade to version 4.x, there are major
changes to be mindful of.

4.2 Third Party Libraries

The only third party JavaScript we want is a custom build of Modernizr. We’ll
be doing quite a bit of copying and pasting from ng1-dinos since we’re doing a
migration, so it’s best to keep your local ng1-dinos project handy.

Our minified, custom Modernizr build can be found at ng1-dinos
modernizr.min.js. Create the necessary folder structure in ng2-dinos:

ng2-dinos
|-src/

|-assets/
|-js/

|-vendor/
|-modernizr.min.js

Angular CLI uses Webpack to bundle local dependencies, so we won’t add
Modernizr to our ng2-dinos index file. Instead, we’ll add a reference to the
.angular-cli.json app’s scripts:

// ng2-dinos/.angular-cli.json

{...
"apps": [

{...
"scripts": [

"assets/js/vendor/modernizr.min.js"
],
...

12

http://getbootstrap.com/getting-started/#download-cdn
http://getbootstrap.com/getting-started/#download-cdn
https://modernizr.com/
https://github.com/auth0-blog/ng1-dinos/blob/master/src/assets/js/vendor/modernizr.min.js
https://github.com/auth0-blog/ng1-dinos/blob/master/src/assets/js/vendor/modernizr.min.js


4.3 Global SCSS

We initialized our project with the --styles=scss flag so SCSS is supported and
a global styles.scss file has already been generated. However, it’s currently
located at the root of the ng2-dinos/src/ folder. To maintain a similar file
structure with ng1-dinos, it needs to live in ng2-dinos/src/assets/scss/
instead.

Create a ng2-dinos/src/assets/scss/ folder and move the ng2-dinos/src/styles.scss
file into it. Then update the .angular-cli.json app’s styles reference:

// ng2-dinos/.angular-cli.json

{...
"apps": [

{...
"styles": [

"assets/scss/styles.scss"
],
...

Note: When moving or adding new files, you’ll need to stop and restart the
Angular CLI server (Ctrl+C, ng serve) to avoid module build errors. Changes
within files are watched and live reloaded, but reorganizing the file structure can
break this.

Now let’s add some global SCSS from ng1-dinos. We’ll copy the files
and subdirectories from ng1-dinos/src/assets/css/scss/core/ to
ng2-dinos/src/assets/scss/.

Note: If you paid close attention, you’ll notice we’ve left o� a folder in ng2-
dinos. Our Angular 1 ng1-dinos app had a css folder with scss inside it. We
don’t need the css folder in ng2-dinos because of the Angular CLI Webpack
bundling.

When we’re done, our ng2-dinos global styles file structure should look like this:

ng2-dinos
|-src/

|-assets/
|-scss/

|-partials/
|-_layout.vars.scss
|-_responsive.partial.scss

|-_base.scss
|-_layout.scss
|-_presentation.scss
|-styles.scss

13

https://github.com/auth0-blog/ng1-dinos/tree/master/src/assets/css/scss/core


Now we’ll @import these SCSS files in the ng2-dinos global styles.scss:

/* ng2-dinos/src/assets/scss/styles.scss */

// partials
@import �partials/layout.vars�;
@import �partials/responsive.partial�;

// global styles
@import �base�;
@import �presentation�;
@import �layout�;

Restart the Angular CLI server and our app’s background color should change
to grey. This is a visual indicator that our new global styles are working. If we
inspect the page, we should see the global <body> styles applied.

Finally, we’ll clean up the _base.scss file. Angular 2 doesn’t utilize ng-cloak
so we’ll remove the ng-cloak ruleset. Afterwards, this is what remains:

/* ng2-dinos/src/assets/scss/_base.scss */

/*--------------------
BASICS

--------------------*/

/*-- Cursor --*/

a,
input[type=button],
input[type=submit],
button {

cursor: pointer;
}

/*-- Forms --*/

input[type="text"],
input[type="number"],
input[type="password"],
input[type="date"],
select option,
textarea {

font-size: 16px; /* for iOS to prevent autozoom */
}

14



4.4 Update App File Structure

The Angular CLI creates all app files (modules, components, services, pipes, etc.)
relative to ng2-dinos/src/app/. Note that the ng2-dinos app has a component
(app.component.ts|.html|.scss|.spec.ts) in the root of this folder. This
is our app’s root component, but we want to move it into a subfolder to keep
ng2-dinos organized, scalable, and correlated with ng1-dinos.

Note: Recall that this tutorial won’t cover testing. The .spec.ts files have been
largely removed from the sample ng2-dinos repo to make it simpler to view. The
Angular CLI creates these files automatically when generating new architecture.
Feel free to keep them in your project and write tests. For brevity, the rest of
the tutorial will no longer mention .spec.ts files. If you’re using them,
just remember to include them whenever managing files.

Let’s move the app.component[.html|.scss|.ts] files to a new folder:
ng2-dinos/src/app/core/. The app folder’s file structure should now look like
this:

ng2-dinos
|-src/

|-app/
|-core/

|-app.component[.html|.scss|.ts]
|-app.module.ts

This breaks our build. We can fix it by updating the ng2-dinos/src/app/app.module.ts
file. If you have a TypeScript extension enabled in your code editor or IDE, you
should see syntax highlighting where TypeScript detects problems. We need to
update the path to app.component like so:

// ng2-dinos/src/app/app.module.ts

...
import { AppComponent } from �./core/app.component�;
...

Note: Always keep in mind that Angular 2 is very interconnected with regard
to dependency imports. When we move files, we break references in other
places. The CLI tells us where the problems are when we build. TypeScript code
hinting in our editor can help too. To address the issue at its root, we can use
additional @NgModules to manage dependencies; you can learn more by reading
Use NgModule to Manage Dependencies in your Angular 2 Apps.

That’s it for setup! We can o�cially start migrating ng1-dinos to ng2-dinos.

15

http://github.com/auth0-blog/ng2-dinos
https://auth0.com/blog/angular-2-ngmodules/


Chapter 5

Angular 2 Root App
Component

In the ng1-dinos Angular 1 app, ng-app was on the <html> element. This
provided Angular control over the <head>, allowing us to dynamically update
the <title> with a custom metadata factory. In Angular 2, our root app
component is located inside the <body>. Angular 2 provides a service to manage
page <title>s and we shouldn’t use an <html>-level app root anymore.

As we saw above, the body of our Angular 2 ng2-dinos index.html file looks
like this:

<!-- ng2-dinos/src/index.html -->

...
<body>

<app-root>Loading...</app-root>
</body>

In comparison, the body of our Angular 1 ng1-dinos index.html file looks like
this:

<!-- ng1-dinos/src/index.html -->

...
<body>

<div class="layout-overflow">
<div

class="layout-canvas"
nav-control
ng-class="{�nav-open�: nav.navOpen, �nav-closed�: !nav.navOpen}">

16



<!-- HEADER -->
<header

id="header"
class="header"
ng-include="�app/header/header.tpl.html�"></header>

<!-- CONTENT (Angular View) -->
<div

id="layout-view"
class="layout-view"
ng-view autoscroll="true"></div>

<!-- FOOTER -->
<footer

id="footer"
class="footer clearfix"
ng-include="�app/footer/footer.tpl.html�"></footer>

</div> <!-- /.layout-canvas -->
</div> <!-- /.layout-overflow -->
...

</body>

The layout markup, header, content, and footer children will now move to the
ng2-dinos root component app.component (<app-root>).

5.1 App Component Template

Let’s stub out app.component.html:

<!-- ng2-dinos/src/app/core/app.component.html -->

<div class="layout-overflow">
<div

class="layout-canvas"
[ngClass]="{�nav-open�: navOpen, �nav-closed�: !navOpen}">

<!-- HEADER -->

<!-- CONTENT -->
<div id="layout-view" class="layout-view">

...content goes here...
</div>

<!-- FOOTER -->

17



</div> <!-- /.layout-canvas -->
</div> <!-- /.layout-overflow -->

5.2 App Component Styles

We already included global SCSS for the site layout and o�-canvas nav function-
ality. Because the styles for the layout, header, and navigation interact with
each other, we won’t componetize the layout styles in this tutorial. We want to
maintain a fairly direct migration path with ng1-dinos, but there will be room for
refactoring after the app is migrated. We won’t use the app.component.scss
file so let’s delete it.

5.3 App Component TypeScript

Now we’ll add the navOpen boolean property we referenced for controlling the
.nav-open/.nav-closed classes in the app.component.html above. We also
need to remove the reference to app.component.scss since we deleted that file:

// ng2-dinos/src/app/core/app.component.ts

import { Component } from �@angular/core�;

@Component({
selector: �app-root�,
templateUrl: �./app.component.html�

})
export class AppComponent {

navOpen: boolean;

constructor() { }
}

If we restart the Angular CLI server now and inspect the DOM in the browser,
we’ll see a .nav-closed class on the <div class="layout-canvas"> element.
We can use the inspector to change .nav-closed to .nav-open. If we do this,
we should see the page content slide to the right:

18



Figure 5.1: Angular 2 ng2-dinos app with o�-canvas navigation open

Now we’re ready to create the header.

19



Chapter 6

Angular 2 Header
Component

We can use the Angular CLI’s g command (shortcut for generate) to generate
new components for our app. Stop the server (Ctrl+C) and let’s create a header
component:

$ ng g component header

New components are created relative to the ng2-dinos/src/app root. The
resulting output should resemble the following:

Figure 6.1: Create an Angular 2 component with the Angular CLI

We can see from the terminal output that new files were created, but let’s also
look at the app.module.ts file so we’re familiar with everything necessary for
adding new components to an Angular 2 app.

app.module.ts is our app’s primary @NgModule. It now looks like this:

20

https://github.com/angular/angular-cli#generating-components-directives-pipes-and-services
https://github.com/angular/angular-cli#generating-components-directives-pipes-and-services


// ng2-dinos/src/app/app.module.ts

import { BrowserModule } from �@angular/platform-browser�;
import { NgModule } from �@angular/core�;
import { FormsModule } from �@angular/forms�;
import { HttpModule } from �@angular/http�;

import { AppComponent } from �./core/app.component�;
import { HeaderComponent } from �./header/header.component�;

@NgModule({
declarations: [

AppComponent,
HeaderComponent

],
imports: [

BrowserModule,
FormsModule,
HttpModule

],
providers: [],
bootstrap: [AppComponent]

})
export class AppModule { }

As you can see, the HeaderComponent class is imported and has also been added
to the @NgModule’s declarations array.

6.1 Add Header Element to App Component
Template

If we open he header.component.ts file, we can see that the @Component’s
selector is app-header. We generally want custom elements to be hyphenated
as per the W3C spec for custom elements. This is also covered by the Angular
2 Style Guide. The Angular CLI generates new component selectors with a
prefix. By default, this prefix is app. This way, we won’t get conflicts with
native elements when calling this component (since <header> already exists in
the HTML5 spec).

Let’s add <app-header> to our app.component.html:

<!-- ng2-dinos/src/app/core/app.component.html -->

...
<!-- HEADER -->

21

http://w3c.github.io/webcomponents/spec/custom/#prod-potentialcustomelementname
https://angular.io/docs/ts/latest/guide/style-guide.html#!
https://angular.io/docs/ts/latest/guide/style-guide.html#!


<app-header></app-header>
...

6.2 Header Component Template

Let’s add our markup to the header component similar to ng1-dinos
header.tpl.html. Open header.component.html and add HTML for the
header, o�-canvas toggle, and navigation menu:

<!-- ng2-dinos/src/app/header/header.component.html -->

<header id="header" class="header">
<div class="header-page bg-primary">

<a class="toggle-offcanvas bg-primary" (click)="toggleNav()"><span></span></a>
<h1 class="header-page-siteTitle">

<a href="/">ng2-dinos</a>
</h1>

</div>

<nav id="nav" class="nav" role="navigation">
<ul class="nav-list">

<li>
<a href>Dinosaurs</a>

</li>
<li>

<a href>About</a>
</li>
<li>

<a href="https://github.com/auth0-blog/sample-nodeserver-dinos">Dino API on GitHub</a>
</li>

</ul>
</nav>

</header>

This is mostly standard markup. The only Angular 2 functionality so far is
a (click) binding on the link to toggle the o�-canvas menu. We’ll add more
Angular later once we have multiple views and routing in place.

6.3 Header Component Styles

First grab the Angular 1 ng1-dinos _nav.scss file and copy it into the ng2-dinos
header component folder.

Now let’s @import it and add SCSS to header.component.scss:

22

https://github.com/auth0-blog/ng1-dinos/blob/master/src/app/header/header.tpl.html
https://github.com/auth0-blog/ng1-dinos/blob/master/src/app/header/header.tpl.html
https://github.com/auth0-blog/ng1-dinos/blob/master/src/assets/css/scss/components/_nav.scss


/* ng2-dinos/src/app/header/header.component.scss */

/*--------------------
HEADER

--------------------*/

@import �../../assets/scss/partials/layout.vars�;
@import �nav�;

.header-page {
color: #fff;
height: 50px;
margin-bottom: 10px;
position: relative;

&-siteTitle {
font-size: 30px;
line-height: 50px;
margin: 0;
padding: 0 0 0 50px;
position: absolute;

top: 0;
text-align: center;
width: 100%;

a {
color: #fff;
text-decoration: none;

}
}

}

We need to make one modification in the _nav.scss file. We’ll change the
.nav-open & selector to :host-context(.nav-open) & instead:

/* ng2-dinos/src/app/header/_nav.scss */

...
:host-context(.nav-open) & {

span {
background: transparent;

&:before,
&:after { ...

This has to do with how Angular 2 encapsulates DOM node styles. If you’ve
ever used native web components or Google Polymer, you should be familiar

23

http://webcomponents.org/
https://www.polymer-project.org/


with shadow DOM encapsulation in components. Regardless, you may want to
read about View Encapsulation in Angular 2.

In a nutshell, Angular 2’s default encapsulation mode is Emulated. This means
styles are scoped to their components with unique attributes that Angular 2
generates. Having component-isolated styles is often very useful—except for
when we want to reach up the DOM tree and have our component styles a�ected
by ancestors.

We don’t need to change View Encapsulation in the header component class
though. There is only one reference to an ancestor in _nav.scss. We can use
special selectors like :host-context() to look up the cascade instead.

Now the component CSS can access the .nav-open class up the DOM tree from
the header component.

Note: Recall that the site layout and navigation functionality styles remained
global rather than being componetized in app.component.scss (instead we
deleted that file). We could have moved the sections of the global _layout.scss
into di�erent child components and replaced references to parent styles with
:host-context(). We didn’t do this because the goal of this tutorial is to
demonstrate as close to a 1:1 migration as possible while covering many
topics. When we’re finished migrating the entire app, I encourage you to refactor
where desirable! We’ll highlight refactoring suggestions at the end of this tutorial.

24

http://blog.thoughtram.io/angular/2015/06/29/shadow-dom-strategies-in-angular2.html
https://angular.io/docs/ts/latest/guide/component-styles.html#!
https://angular.io/docs/ts/latest/guide/component-styles.html#!


Chapter 7

Angular 2 Component
Interaction

Let’s make our header component functional. We need the header to communicate
with the root app component to implement the o�-canvas navigation.

7.1 Header Component TypeScript

Open the header.component.ts file. We’ll implement component communica-
tion with inputs/outputs and events. Remember that we added a click event
binding to our header HTML that looked like this:

<a class="toggle-offcanvas bg-primary" (click)="toggleNav()"><span></span></a>

Note: [], (), and [()] are “binding punctuation” and refer to the direction of
data flow. () indicates a binding to an event. You can read more about binding
syntax in the Angular 2 docs.

There are a few things we need to do to make this event handler functional.

// ng2-dinos/src/app/header/header.component.ts

import { Component, OnInit, Output, EventEmitter } from �@angular/core�;

@Component({
selector: �app-header�,
templateUrl: �./header.component.html�,
styleUrls: [�./header.component.scss�]

})
export class HeaderComponent implements OnInit {

25

https://angular.io/docs/ts/latest/guide/template-syntax.html#!
https://angular.io/docs/ts/latest/guide/template-syntax.html#!
https://angular.io/docs/ts/latest/guide/template-syntax.html#!


@Output() navToggled = new EventEmitter();
navOpen = false;

constructor() { }

ngOnInit() {
}

toggleNav() {
this.navOpen = !this.navOpen;
this.navToggled.emit(this.navOpen);

}

}

The header component is a child of the root app component. We need a way to
notify the parent when the user clicks the hamburger to open or close the menu.
We’ll do this by emitting an event that the parent can bind to.

We’ll import Output and EventEmitter from @angular/core and then create
a new event emitter @Output decorator. We also need a way to track whether
the navigation is open or closed, so we’ll add a navOpen property that defaults
to false.

Note: Notice that we didn’t declare a type annotation for navOpen. This is
because we initialized the property with a value. The type is inferred from this
value. Adding type annotations that can be inferred automatically will result in
linting errors.

Now we need to define the click event handler. We already named this function
toggleNav() in our header.component.html. The function will toggle the
navOpen boolean and emit the navToggled event with the current state of
navOpen.

7.2 Header Communication with App Compo-
nent

Next we need to listen for the navToggled event in the parent. Add the following
declarative code to app.component.html:

<!-- ng2-dinos/src/app/core/app.component.html -->

...
<!-- HEADER -->
<app-header (navToggled)="navToggleHandler($event)"></app-header>

...

26

https://angular.io/docs/ts/latest/cookbook/component-communication.html#!
https://angular.io/docs/ts/latest/api/core/index/EventEmitter-class.html


Now we’ll create the navToggleHandler($event) in app.component.ts:

// ng2-dinos/src/app/core/app.component.ts

import { Component } from �@angular/core�;

@Component({
selector: �app-root�,
templateUrl: �./app.component.html�

})
export class AppComponent {

navOpen: boolean;

navToggleHandler(e: boolean) {
this.navOpen = e;

}
}

If we build now, we should be able to open and close the o�-canvas navigation
by clicking the hamburger icon. When open, the icon should animate into an X
and the app should look like this:

Figure 7.1: Angular 2 ng2-dinos app with o�-canvas navigation

27



Everything is working correctly but this doesn’t look very good. Let’s fix it!

28



Chapter 8

Angular 2 Observables and
DOM Properties

In ng1-dinos, all o�-canvas nav functionality was handled by navControl.dir.js,
including menu toggling and layout height. We’ve migrated the navigation
functionality but we’re still missing the layout height fix.

We want our minimum page height to be the height of the window no matter
how tall the content is. This way, the o�-canvas navigation will never look
prematurely cut o�. To address this, we’ll use an RxJS observable and the
window.resize event.

Note: In ng1-dinos, we referenced the navControl directive’s DOM $element
and applied min-height styles with JS. We did this to avoid an additional watcher
in Angular 1. However, Angular 2’s change detection is vastly improved so we
can shift our concerns over watchers to other things instead.

Angular 2 strongly recommends avoiding direct DOM manipulation. There is an
ElementRef class that provides access to the native element, but using it is not
recommended and is usually avoidable. We’ll use property data binding instead.

8.1 Add Observable to App Component Type-
Script

Our app.component.ts will look like this:

// ng2-dinos/src/app/core/app.component.ts

import { Component, OnInit } from �@angular/core�;
import { Observable } from �rxjs/Rx�;

29

https://github.com.com/auth0-blog/ng1-dinos/blob/master/src/app/core/ui/navControl.dir.js
https://www.alexkras.com/11-tips-to-improve-angularjs-performance/#watchers
http://blog.thoughtram.io/angular/2016/02/22/angular-2-change-detection-explained.html
https://auth0.com/blog/understanding-angular-2-change-detection/
https://angular.io/docs/ts/latest/api/core/index/ElementRef-class.html
https://angular.io/docs/ts/latest/guide/template-syntax.html#!


declare var window: any;

@Component({
selector: �app-root�,
templateUrl: �./app.component.html�

})
export class AppComponent implements OnInit {

navOpen: boolean;
minHeight: string;
private initWinHeight: number = 0;

ngOnInit() {
Observable.fromEvent(window, �resize�)

.debounceTime(200)

.subscribe((event) => {
this.resizeFn(event);

});

this.initWinHeight = window.innerHeight;
this.resizeFn(null);

}

navToggleHandler(e: boolean) {
this.navOpen = e;

}

private resizeFn(e) {
let winHeight: number = e ? e.target.innerHeight : this.initWinHeight;
this.minHeight = �${winHeight}px�;

}
}

Let’s talk about the code above.

First we’ll import dependencies. We’re going to use the OnInit lifecycle hook
from @angular/core to manage the observable and implement initial layout
height. Then we need Observable from the RxJS library which is packaged
with Angular 2.

In order to avoid TypeScript Name not found errors, we’ll declare the type for
window to be any.

We’re using an RxJS observable to subscribe to the window.resize event and
execute a debounced function that sets a min-height. The window.resize
event doesn’t automatically fire on page load, so we need to trigger the handler
manually in ngOnInit().

30

https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html
https://github.com/Reactive-Extensions/RxJS
http://reactivex.io/rxjs/class/es6/Observable.js~Observable.html


Note: This tutorial does not cover Reactive Programming (RP) and RxJS in
depth. If RP and RxJS are new to you, please read Understanding Reactive
Programming and RxJS, or for a more Angular 2-centric approach: Functional
Reactive Programming for Angular 2 Developers - RxJs and Observables.

8.2 Add DOM Property to App Component
Template

We can then bind minHeight to the [style.min-height] DOM property on
the layout canvas element in app.component.html:

<!-- ng2-dinos/src/app/core/app.component.html -->

...
<div

class="layout-canvas"
[ngClass]="{�nav-open�: navOpen, �nav-closed�: !navOpen}"
[style.min-height]="minHeight">

...

Note: Angular 2 binds to DOM properties, not HTML attributes. This may
seem counter-intuitive because we’re declaratively adding things like [disabled]
or [style.min-height] to our markup, but these refer to properties, not at-
tributes. Please read Binding syntax: An overview to learn more.

Now our app should be the height of the window even if the content is short.
If the navigation grows longer than the content, the CSS we imported from
ng1-dinos will ensure that it gets a scrollbar. With the menu open, our app
should look like this in the browser:

31

https://auth0.com/blog/glossary-of-modern-javascript-concepts/#reactive-programming
https://auth0.com/blog/understanding-reactive-programming-and-rxjs/
https://auth0.com/blog/understanding-reactive-programming-and-rxjs/
http://blog.angular-university.io/functional-reactive-programming-for-angular-2-developers-rxjs-and-observables/
http://blog.angular-university.io/functional-reactive-programming-for-angular-2-developers-rxjs-and-observables/
https://angular.io/docs/ts/latest/guide/template-syntax.html#!


Figure 8.1: Angular 2 app with o�-canvas navigation, final

32



Chapter 9

Angular 2 Footer
Component

We have a header, so let’s add the simple footer from ng1-dinos too. Run the ng
g command to create a new component:

$ ng g component footer

9.1 Footer Component TypeScript

The footer.component.ts should be very simple. There’s no dynamic func-
tionality; we just need to create the component and display it. Let’s simplify
the FooterComponent class:

// ng2-dinos/src/app/footer/footer.component.ts

import { Component } from �@angular/core�;

@Component({
selector: �app-footer�,
templateUrl: �./footer.component.html�,
styleUrls: [�./footer.component.scss�]

})
export class FooterComponent {}

33



9.2 Footer Component Template

We can copy the footer markup from ng1-dinos footer.tpl.html to our ng2-
dinos footer.component.html file. We just need to update the link so that it
references ng2-dinos instead of ng1-dinos:

<!-- ng2-dinos/src/app/footer/footer.component.html -->

<p>
<small>MIT 2017 | <a href="https://github.com/auth0-blog/ng2-dinos">ng2-dinos @ GitHub</a></small>

</p>

9.3 Footer Component Styles

The ng1-dinos footer SCSS comes from ng1-dinos _footer.scss. We need to
add @imports so our Angular 2 component can access global layout variables
and responsive mixins. We’re also going to change .footer to the special :host
selector since .footer no longer exists and we need to style the component’s
host element:

/* ng2-dinos/src/app/footer/footer.component.scss */

/*--------------------
FOOTER

--------------------*/

@import �../../assets/scss/partials/layout.vars�;
@import �../../assets/scss/partials/responsive.partial�;

:host {
padding: $padding-screen-small;
text-align: center;

@include mq($large) {
padding: $padding-screen-large;

}
}

9.4 Add Footer to App Component Template

Finally, we’ll add the <app-footer> element to the app.component.html:

<!-- ng2-dinos/src/app/core/app.component.html -->

34

https://github.com/auth0-blog/ng1-dinos/blob/master/src/app/footer/footer.tpl.html
https://github.com/auth0-blog/ng1-dinos/blob/master/src/assets/css/scss/components/_footer.scss


...
<!-- FOOTER -->
<app-footer></app-footer>

...

Restart ng serve and we should see the simple footer in our app.

35



Chapter 10

Migrating Angular 2 Pages

We’ve implemented some links in our navigation, but we don’t have pages to
display when the links are clicked. Let’s create some components so we can
implement routing.

10.1 Create Home, About, and 404 Page Com-
ponents

In order to implement routing, the first thing we need is multiple pages. Let’s
quickly create home, about, and 404 components. These will be pages so create
a subdirectory in the ng2-dinos/src/app/ folder called pages. Stop the server
and execute the following commands:

• Home page component: $ ng g component pages/home
• About page component: $ ng g component pages/about
• 404 page component: $ ng g component pages/error404

10.2 Add Title Provider to App Module

We want to update the document <title> tag for each page. Recall that <title>
is outside the <app-root> element in the document <head>, but Angular 2
provides a useful service to set the title.

We want the Title service to be registered in the root injector so it’s available
to the entire application. Let’s add it to our app.module.ts:

// ng2-dinos/src/app/app.module.ts

36



import { BrowserModule, Title } from �@angular/platform-browser�;
...

@NgModule({
...
providers: [

Title
]

})
export class AppModule { }

To learn more about this, read the Angular 2 docs on Dependency Injection.

10.3 Add Title to Page Components

The page components should each display a heading and update the <title> with
the Title service we provided in the step above. Let’s implement this in each of
our new page components. We don’t have to provide Title at the component
level (@Component({ providers: [Title]...) because we’re providing it at
an application level in app.module.ts (above).

Open the home.component.ts file and make the following changes:

// ng2-dinos/src/app/pages/home/home.component.ts

import { Component, OnInit } from �@angular/core�;
import { Title } from �@angular/platform-browser�;

@Component({
selector: �app-home�,
templateUrl: �./home.component.html�,
styleUrls: [�./home.component.scss�]

})
export class HomeComponent implements OnInit {

pageName = �Dinosaurs�;

constructor(private titleService: Title) { }

ngOnInit() {
this.titleService.setTitle(this.pageName);

}

}

First we’ll import the Title class from @angular/platform-browser. In our
HomeComponent class, we’ll create a pageName property and set it to “Dinosaurs”.

37

https://angular.io/docs/ts/latest/guide/dependency-injection.html


Then we’ll add the private titleService: Title to our constructor function.
In our ngOnInit() function, we’ll set the title to the pageName. You can consult
the Angular 2 docs to learn more about the Title service.

Now let’s do the same for the about and 404 components: about.component.ts
and error404.component.ts. We’ll also delete the about.component.scss
and error404.component.scss files and any references to them. The about
and 404 components will be plain pages with some static copy. We can use
Bootstrap classes to style both and don’t need componetized SCSS.

Now open the about component about.component.ts:

// ng2-dinos/src/app/pages/about/about.component.ts

import { Component, OnInit } from �@angular/core�;
import { Title } from �@angular/platform-browser�;

@Component({
selector: �app-about�,
templateUrl: �./about.component.html�

})
export class AboutComponent implements OnInit {

pageName = �About�;

constructor(private titleService: Title) { }

ngOnInit() {
this.titleService.setTitle(this.pageName);

}

}

Finally we’ll update the error404 component error404.component.ts:

// ng2-dinos/src/app/pages/error404/error404.component.ts

import { Component, OnInit } from �@angular/core�;
import { Title } from �@angular/platform-browser�;

@Component({
selector: �app-error404�,
templateUrl: �./error404.component.html�

})
export class Error404Component implements OnInit {

pageName = �404 Page Not Found�;

constructor(private titleService: Title) { }

38

https://angular.io/docs/ts/latest/cookbook/set-document-title.html


ngOnInit() {
this.titleService.setTitle(this.pageName);

}

}

10.4 Home Component Template

Now we have a document title but we also want to display pageName in a heading
in our HTML. Let’s write some basic markup.

In the home.component.html file, add an <article> and a heading with an
interpolated binding to display pageName.

<!-- ng2-dinos/src/app/pages/home/home.component.html -->

<article id="content-wrapper" class="content-wrapper">
<h2 class="content-heading">{{pageName}}</h2>

</article>

We’ll add a lot more to this component later.

10.5 About Component Template

Let’s add some basic information about our app in the about.component.html
template:

<!-- ng2-dinos/src/app/pages/about/about.component.html -->

<article id="content-wrapper" class="content-wrapper lead">
<h2 class="content-heading">{{pageName}}</h2>

<p><strong>ng2-dinos</strong> is a sample application built with Angular 2 with the following features:</p>

<ul>
<li>Routing</li>
<li>Dynamic <code>&lt;title&gt;</code> metadata</li>
<li>External <code>GET</code> API</li>
<li>Custom off-canvas navigation</li>
<li>Filtering by predicate</li>
<li>Bootstrap</li>
<li>SCSS</li>
<li>Angular CLI (Webpack) build</li>

39



</ul>

<p>Download the code for this app from the <a ng-href="http://github.com/auth0-blog/ng2-dinos">ng2-dinos GitHub repo</a>. The API can be downloaded from the <a ng-href="http://github.com/auth0-blog/sample-nodeserver-dinos">sample-nodeserver-dinos repo</a>. The purpose of this project is to demonstrate an AngularJS 1.x app (<em>without</em> backported v2 features) "migration"/translation to Angular 2.</p>
</article>

10.6 404 Component Template

This component will show when the route the user attempts to access does not ex-
ist. We’ll apply a couple of Bootstrap classes in the error404.component.html
template:

<!-- ng2-dinos/src/app/pages/error404/error404.component.html -->

<article id="content-wrapper" class="content-wrapper">
<h2 class="content-heading text-danger">{{pageName}}</h2>

<p class="lead">The page you are attempting to access does not exist.</p>
</article>

Note: Our Angular 1 ng1-dinos app had classes like .home-wrapper and
.about-wrapper on the article elements but Angular 2’s view encapsulation
negates the need for this!

40



Chapter 11

Routing in Angular 2

Routing is an essential feature of our ng1-dinos app. For ng2-dinos, we’re going
to create a new @NgModule to handle routing. This gives us more flexibility to
expand routing later, if needed, without bloating the app.module.ts.

11.1 Create a Routing Module

Because of how the CLI generates multiple files per component in its own
subdirectory, sometimes it’s more straightforward to create a new feature
manually. Regardless, we should know how to do this. Let’s create a rout-
ing module in the ng2-dinos/src/app/core/ folder. We’ll name this file
app-routing.module.ts:

// ng2-dinos/src/app/core/app-routing.module.ts

import { NgModule } from �@angular/core�;
import { RouterModule } from �@angular/router�;

import { HomeComponent } from �../pages/home/home.component�;
import { AboutComponent } from �../pages/about/about.component�;
import { Error404Component } from �../pages/error404/error404.component�;

@NgModule({
imports: [

RouterModule.forRoot([
{

path: ��,
component: HomeComponent

},

41



{
path: �about�,
component: AboutComponent

},
{

path: �**�,
component: Error404Component

}
])

],
exports: [

RouterModule
]

})
export class AppRoutingModule {}

At its heart, this doesn’t look much di�erent from the Angular 1 route config
at ng1-dinos app.config.js. We declare a path and a component that should
display when routed to that path. We need to import the RouterModule as well
as any components we want to use. The wildcard path ** should be the last one.

Note: You can read more about routing in the Angular 2 docs. At time of
writing, the docs are the most reliable source of information on the Angular 2
router. When searching for blog articles or Stack Overflow answers, be mindful
of publish dates and versioning: the Angular 2 router was one of the last pieces
to reach completion and has undergone rewrites and breaking changes throughout
the beta and release candidate phases.

Let’s take a quick break to verify our ng2-dinos/src/app file structure:

ng2-dinos
|-src/

|-app/
|-core/

|-app.component[.html|.scss|.ts]
|-app-routing.module.ts

|-header/
|-_nav.scss
|-header.component[.html|.scss|.ts]

|-footer/
|-footer.component[.html|.scss|.ts]

|-pages/
|-about/

|-about.component[.html|.ts]
|-error404/

|-error404.component[.html|.ts]
|-home/

|-home.component[.html|.scss|.ts]

42

https://github.com/auth0-blog/ng1-dinos/blob/master/src/app/core/app.config.js
https://angular.io/docs/ts/latest/guide/router.html


|-app.module.ts

11.2 Import Routing Module in App Module

We have a new module to handle routing but it isn’t being imported anywhere
in our app right now. We need to add it to our app.module.ts:

// ng2-dinos/src/app/app.module.ts

...
import { AppRoutingModule } from �./core/app-routing.module�;
...

@NgModule({
declarations: [

...
],
imports: [

...,
AppRoutingModule

],
providers: [],
bootstrap: [AppComponent]

})
export class AppModule { }

Import the AppRoutingModule class and then add it to the imports array.

11.3 Display Routed Components

Routing is now configured! Now we just need to display our routed components
in the view. In Angular 1, this was done with the ng-view directive. In Angular
2, we’ll add the <router-outlet> element where we want our page components
to display in our app.component.html template:

<!-- ng2-dinos/src/app/core/app.component.html -->

...
<!-- CONTENT -->
<div id="layout-view" class="layout-view">

<router-outlet></router-outlet>
</div>

...

43



If we serve and view the app in the browser, we should see the home component
when we visit http://localhost:4200.

11.4 Route Navigation

Right now, we don’t have any live links to our routes. We still need to make
some updates to the header.component.html to enable route navigation and
active link highlighting.

Our Angular 1 ng1-dinos Header.ctrl.js had to utilize a custom
navIsActive(path) function to compare the URL path with the link
href to apply an active class in the navigation markup. The Angular 2 router
can do this for us!

Open the header.component.html file and let’s make some changes to the first
two links in the menu:

<!-- ng2-dinos/src/app/header/header.component.html -->

...
<ul class="nav-list">

<li>
<a

routerLink="/"
routerLinkActive="active"
[routerLinkActiveOptions]="{ exact: true }">Dinosaurs</a>

</li>
<li>

<a routerLink="/about" routerLinkActive="active">About</a>
</li>
...

In Angular 1, we used the ng-href directive. In Angular 2, we’ll use the router-
Link directive instead. We can also add routerLinkActive="[active-class-name]"
and Angular 2 will automatically apply our desired class to the link when that
route is active.

Note: The caveat is that this needs an additional option when dealing with the
root URL. The routerLinkActive directive returns a match if the routerLink is
contained in the URL tree. This means that routerLink="/" is also matched
by all other routes with a / in them. To enable exact matching, we need to add
[routerLinkActiveOptions]="{ exact: true }" to our root link.

Now we should be able to click the links in the o�-canvas menu and be routed
appropriately with proper active link classes. Try it out.

44

http://localhost:4200
https://github.com/auth0-blog/ng1-dinos/blob/master/src/app/header/Header.ctrl.js
https://angular.io/docs/ts/latest/guide/router.html#!
https://angular.io/docs/ts/latest/guide/router.html#!
https://angular.io/docs/ts/latest/guide/router.html#!


11.5 Router Events

You probably noticed that there’s still one thing missing that ng1-dinos had:
automatic navigation closing on route change. We definitely don’t want to
manually close the o�-canvas menu every time we switch pages.

In ng1-dinos, we used $scope.$on(�$locationChangeStart�, ...) in the
navControl directive to bind a handler and close the menu. Something similar
exists in Angular 2, so let’s implement it!

11.6 Auto-close Menu in Header Component

We’ll do this in our header.component.ts file where we emitted the event
earlier to notify the app component parent. This way we can ensure that both
components know about the change and the nav states don’t get out of sync:

// ng2-dinos/src/app/header/header.component.ts

...
import { Router, NavigationStart } from �@angular/router�;

@Component({
selector: �app-header�,
templateUrl: �./header.component.html�,
styleUrls: [�./header.component.scss�]

})
export class HeaderComponent implements OnInit {

...
constructor(private router: Router) { }

ngOnInit() {
this.router.events

.filter(event => event instanceof NavigationStart && this.navOpen)

.subscribe(event => this.toggleNav());
}
...

We need to import Router and NavigationStart from @angular/router. Next
we need to make private router: Router available in our constructor function.

Router.events is an observable of route events. We’ll filter for when the event
is an instance of NavigationStart and the navigation is open. We’ll then
subscribe to it to set navOpen to false.

Now when we click on links in the menu the correct component displays and the
navigation closes. Our app homepage now looks like this:

45

https://github.com/auth0-blog/ng1-dinos/blob/master/src/app/core/ui/navControl.dir.js
https://angular.io/docs/ts/latest/api/router/index/Event-type-alias.html


Figure 11.1: Angular 2 ng2-dinos app with basic routing

46



Chapter 12

Calling an API in Angular 2

Now our architecture and navigation is in place! We’ve arrived at the business
logic portion of our app. Angular 1 ng1-dinos used a service to call the API:
Dinos.service.js.

We’re going to author a service for this in our Angular 2 migration too. Let’s
start by creating the file. Use the following Angular CLI command to create a
service boilerplate:

$ ng g service core/dinos

When we run this command, note the warning output informing us that the
service was generated but not provided. We’ll provide it at the component level
this time instead of application-wide like we did with the Title service. This
means we won’t put DinosService in the app.module.ts.

The purpose of DinosService is to call the API and get dinosaur information.
To do this, we’ll use HTTP observables. We also need to create TypeScript
models for our fetched data.

12.1 Dinosaur API Data Model

Let’s create a model for the data we’re going to retrieve for the main listing of
dinosaurs. In order to do this, we need to know the format of the API response.
We can determine this simply by making an API request in the browser (and
consulting the sample-nodeserver-dinos API README).

The API route we want to use is http://localhost:3001/api/dinosaurs. Assuming
you have the API running locally, let’s access this route in the browser and look
at the response:

47

https://github.com/auth0-blog/ng1-dinos/blob/master/src/app/core/Dinos.service.js
https://github.com/auth0-blog/ng1-dinos/blob/master/src/app/core/Dinos.service.js
https://github.com/auth0-blog/sample-nodeserver-dinos
http://localhost:3001/api/dinosaurs


Note: You may want to install/enable a JSON formatting browser extension to
view the response.

// http://localhost:3001/api/dinosaurs

[
{

"id": 1,
"name": "Allosaurus"

},
{

"id": 2,
"name": "Apatosaurus"

},
{

"id": 3,
"name": "Brachiosaurus"

},
...

]

We can see that the response is an array of dinosaur objects. Each dinosaur has
an id and a name. We can see the id is a number and the name is a string. Now
we can create a model.

We’ll have more than one model, so let’s create a folder for models to keep our
app scalable: ng2-dinos/src/app/core/models/. In this folder, we’ll make our
model file: dino.model.ts.

export class Dino {
constructor(

public id: number,
public name: string

) { }
}

12.2 Add HTTP Client Module to App Module

Now we have the “shape” of a dinosaur defined. Let’s work on getting the data
from the API.

First we need to import the HttpClientModule in our app.module.ts:

// ng2-dinos/src/app/app.module.ts

...
import { HttpClientModule } from �@angular/common/http�;

48



...
@NgModule({

...,
imports: [

...,
HttpClientModule

],
...

Import HttpClientModule from @angular/common/http and then add it to the
NgModule’s imports array.

12.3 Get API Data with Dinos Service

Now we have the “shape” of a dinosaur defined. Let’s work on getting the data
from the API in our dinos.service.ts:

// ng2-dinos/src/app/core/dinos.service.ts

import { Injectable } from �@angular/core�;
import { HttpClient, HttpErrorResponse } from �@angular/common/http�;
import { Observable } from �rxjs/Rx�;
import �rxjs/add/operator/catch�;

import { Dino } from �./models/dino.model�;

@Injectable()
export class DinosService {

private baseUrl = �http://localhost:3001/api/�;

constructor(private http: HttpClient) { }

getAllDinos$(): Observable<Dino[]> {
return this.http

.get(�${this.baseUrl}dinosaurs�)

.catch(this.handleError);
}

private handleError(err: HttpErrorResponse | any) {
let errorMsg = err.message || �Unable to retrieve data�;
return Observable.throw(errorMsg);

}

}

49



This is pretty straightforward and it doesn’t look that much di�erent from our
ng1-dinos Dinos service. Aside from Angular 2 format, the primary di�erence
is that we’re returning typed observables instead of promises (and we haven’t
added the API call to get a single dinosaur’s details by id yet—we’ll do that
later).

Starting from the top: we import our dependencies. Services are injectable.
The CLI adds the Injectable class for us. We also need HttpClient and
HttpErrorResponse from @angular/common/http, Observable from RxJS, and
the catch operator. Finally we need our Dino model.

Note: RxJS observables are preferable over promises. Angular 2’s http.get
returns an observable but we could convert it to a promise with .toPromise()
if we had to (but we won’t in this tutorial).

We set our private API baseUrl property and make private http: Http avail-
able in the constructor function.

Then we define our getAllDinos$() function. The $ at the end of the func-
tion name indicates that an observable is returned and we can subscribe to it.
The getAllDinos$(): Observable<Dino[]> type annotation declares that we
expect an array of items matching the Dino model we created previously.

Finally we manage successes and errors. The map operator processes the result
from the observable. In our case, we’re returning the response as JSON. We’ll use
the catch operator to handle failed API responses and generate an observable
that terminates with an error.

Note: In the Angular 1 ng1-dinos Dinos service, the success function checks
for an object because some server configurations (such as NGINX) will return a
successful XHR response with an HTML error page in the case of an API failure.
The front-end promise incorrectly resolves this as the appropriate data. We do
not need to do this check in Angular 2 ng2-dinos because we have TypeScript
ensuring that the shape of the data matches our Dino model. Pay attention to
your data though: if you have a response that occasionally changes shape, you’ll
need to address that in the model so you don’t receive errors. You can read more
about TypeScript functions and optional parameters here.

12.4 Provide the Dinos Service in App Module

We want the dinos service to be a singleton. Unlike Angular 1, Angular 2 services
can be singletons or have multiple instances depending on how they’re provided.
To create a global singleton, we’ll provide the service in the app.module.ts:

// ng2-dinos/src/app/app.module.ts

...

50

https://github.com/auth0-blog/ng1-dinos/blob/master/src/app/core/Dinos.service.js
https://angular-2-training-book.rangle.io/handout/observables/observables_vs_promises.html
https://github.com/auth0-blog/ng1-dinos/blob/master/src/app/core/Dinos.service.js
https://www.typescriptlang.org/docs/handbook/functions.html


import { DinosService } from �./core/dinos.service�;

@NgModule({
...,
providers: [

...,
DinosService

],
...

We import the DinosService and then add it to the providers array. It’s now
available for use in our components.

12.5 Use the Dinos Service in Home Component

Now we have a service that fetches data from the API. We’ll use this service in our
home component to display a list of dinosaurs. Open the home.component.ts
file:

// ng2-dinos/src/app/pages/home/home.component.ts

...
import { DinosService } from �../../core/dinos.service�;
import { Dino } from �../../core/models/dino.model�;

@Component({
...

})
export class HomeComponent implements OnInit {

dinos: Dino[];
error: boolean;
pageName = �Dinosaurs�;

constructor(
private titleService: Title,
private dinosService: DinosService) { }

getDinos() {
this.dinosService

.getAllDinos$()

.subscribe(
res => {

this.dinos = res;
},
err => {

51



this.error = true;
}

);
}

ngOnInit() {
this.titleService.setTitle(this.pageName);
this.getDinos();

}

}

As always, we import our dependencies. We need our new DinosService and
Dino model.

Then we’ll implement the functionality to use this service. We’ll declare that the
dinos property should be of type Dino[] (an array of items matching the Dino
model). We’ll also create an error boolean property. We’ll add the private
dinosService: DinosService to the constructor parameters.

We can then write the getDinos() method to subscribe to the getAllDinos$()
observable and assign the response to the dinos property. In the function for
error handling, we’ll set the error property to true.

Finally, we’ll call the getDinos() method in our ngOnInit() function.

12.6 Display a List of Dinosaurs

We now have dinosaur data available, we just need to render it in the
home.component.html template. We’ll start by displaying it in a simple
unordered list. We also want to show an error if something goes wrong retrieving
data from the API:

<!-- ng2-dinos/src/app/pages/home/home.component.html -->

...
<!-- Dinosaurs -->
<ul *ngIf="dinos">

<li *ngFor="let dino of dinos">{{dino.id}} - {{dino.name}}</li>
</ul>

<!-- Error -->
<p *ngIf="error" class="alert alert-danger">

<strong>Rawr!</strong> There was an error retrieving dinosaur data.
</p>

...

52



The ng-repeat of Angular 1 has been replaced by the ngFor repeater directive.

Note: The * asterisk before ngIf and ngFor is syntactic sugar that allows us
to skip wrapping subtrees in <template> tags. You can read more about * and
<template> in the docs.

We now have a list of all the dinosaurs returned from the API. Our app homepage
looks like this in the browser:

Figure 12.1: Angular 2 ng2-dinos app showing list with API data

We can also test the error state by stopping the local Node dinos server and
then reloading our Angular 2 app. We should see this:

53

https://angular.io/docs/ts/latest/guide/template-syntax.html#!
https://angular.io/docs/ts/latest/guide/template-syntax.html#!
https://angular.io/docs/ts/latest/guide/template-syntax.html#!


Figure 12.2: Angular 2 ng2-dinos app showing API data retrieval error

54



Chapter 13

Display Dino Cards

Our Angular 1 ng1-dinos app repeats a dinoCard.dir.js directive with a
template that displays each dinosaur’s name and detail link in a card styled with
Bootstrap. The implementation in ng2-dinos will be similar.

We’ll start by generating the new dino card component in the same folder as our
home component:

$ ng g component pages/home/dino-card

13.1 Dino Card Component TypeScript

The dino card won’t have to do much processing, but we want to use
the @Input decorator to give it dinosaur data. Let’s set this up in the
dino-card.component.ts:

// ng2-dinos/src/app/pages/home/dino-card/dino-card.component.ts

import { Component, Input } from �@angular/core�;

import { Dino } from �../../../core/models/dino.model�;

@Component({
selector: �app-dino-card�,
templateUrl: �./dino-card.component.html�

})
export class DinoCardComponent {

@Input() dino: Dino;
}

55

https://github.com/auth0-blog/ng1-dinos/tree/master/src/app/pages/home/dino-card
https://github.com/auth0-blog/ng1-dinos/tree/master/src/app/pages/home/dino-card


We need to import Input from @angular/core. We also need our trusty Dino
model. Then we’ll declare our @Input() dino: Dino typed property. We don’t
need to add anything to the constructor so the constructor() { } function
can be deleted. We also aren’t using the OnInit lifecycle hook so we can remove
it from imports, the exported class, and the ngOnInit() function. Keep in mind
that if we expand functionality at some future date, we may need to replace
things we’ve cleaned up for brevity.

13.2 Dino Card Component Template

Let’s create the template for the dino card component. This file will be very
similar to the ng1-dinos dino card template:

<!-- ng2-dinos/src/app/pages/home/dino-card/dino-card.component.html -->

<div class="dinoCard panel panel-info">
<div class="panel-heading">

<h3 class="panel-title text-center">{{dino.name}}</h3>
</div>
<div class="panel-body">

<p class="text-center">
<a class="btn btn-primary" href>Details</a>

</p>
</div>

</div>

Notice that the Details button doesn’t go anywhere yet. We’ll hook this up
when we add the dinosaur detail component and routing.

13.3 Display Dino Card in Home Component

Now let’s replace the unordered list with our new dino card component in
home.component.html:

<!-- ng2-dinos/src/app/pages/home/home.component.html -->

...
<!-- Dinosaurs -->
<section *ngIf="dinos" class="row">

<div class="col-xs-12 col-sm-4" *ngFor="let dino of dinos">
<app-dino-card [dino]="dino"></app-dino-card>

</div>
</section>

...

56



We’ll add some Bootstrap classes so our cards display nicely in a grid. Then
we’ll implement the <app-dino-card> element in our repeater. We’ll pass dino
data to it with property binding.

Our ng2-dinos homepage now looks like this:

Figure 13.1: Angular 2 ng2-dinos app showing child component cards with API
data

Our migration is coming together. The Angular 2 app is finally starting to look
more like ng1-dinos!

57



Chapter 14

Migrating Angular 1
Filtering to Angular 2

You may have heard about Angular 2 pipes. Pipes transform displayed values
within a template. In Angular 1, we used the pipe character (|) to do similar
things with filters. However, filters are gone in Angular 2.

14.1 No Filter or OrderBy Pipes

In our Angular 1 ng1-dinos app, we could filter our dinosaurs repeater by binding
an ng-model="query" to an input and then using item in array | filter:
query on the repeater. This is no longer built-in in Angular 2. The Angular 2
team recommends against replicating this functionality with a custom filtering
pipe due to concerns over performance and minification.

Instead, we’ll create a service that performs filtering. You may already be
familiar with filtering this way on Angular 1 apps with large amounts of data
where performance becomes an issue. Angular 1 apps can slow to a crawl if care
isn’t taken with how filtering is handled. If you’ve ever had to search hundreds
or thousands of items or implemented faceted search, you should be familiar
with the pitfalls and workarounds.

Note: How is a filtering service di�erent from a custom pipe? Filtering lists is
very expensive. With a service, we can control when and how often the filtering
logic is executed. You can read more in the “No FilterPipe or OrderByPipe”
section of the Pipes docs (at the very bottom).

58

https://angular.io/docs/ts/latest/guide/pipes.html
https://docs.angularjs.org/api/ng/filter/filter
https://angular.io/docs/ts/latest/guide/pipes.html
https://angular.io/docs/ts/latest/guide/pipes.html


14.2 Create a Filter Service

Let’s create a service for filtering:

$ ng g service core/filter

We want our filter service to provide a search() method that accepts an array
and a query string. It should check objects in the array for strings that contain
the query and return a new array of all objects with a match. Let’s implement
this in filter.service.ts:

// ng2-dinos/src/app/core/filter.service.ts

import { Injectable } from �@angular/core�;

@Injectable()
export class FilterService {

search(array: any[], query: string) {
const lQuery = query.toLowerCase();

if (!query) {
return array;

} else if (array) {
const filteredArray = array.filter(item => {

for (const key in item) {
if ((typeof item[key] === �string�) && (item[key].toLowerCase().indexOf(lQuery) !== -1)) {

return true;
}

}
});
return filteredArray;

}
}

}

We want search to be case-insensitive so we’ll convert the query and values to
lowercase when checking for matches. If the method is called with a falsey query,
we’ll return the original array instead of trying to check for matches. For our
ng2-dinos search, we’re only going to check string values in the objects. If you
need a more robust search (ie., one that also checks dates, numbers, etc.) you’ll
want to handle that specifically. This is one of the benefits of implementing
filters this way over the old Angular 1 filter: we have more fine-grained control.

59



14.3 Use Angular 2 Filter Service to Search

Now that we have a way to filter by query, let’s implement this in our home
component.

14.3.1 Filter in Home Component TypeScript

Open the home.component.ts file:

// ng2-dinos/src/app/pages/home/home.component.ts

...
import { FilterService } from �../../core/filter.service�;

@Component({
...
providers: [DinosService, FilterService]

})
export class HomeComponent implements OnInit {

dinos: Dino[];
filteredDinos: Dino[];
error: boolean;
pageName = �Dinosaurs�;
query = ��;

constructor(..., private filterService: FilterService) { }

getDinos() {
this.dinosService.getAllDinos$()

.subscribe(
res => {

this.dinos = res;
this.filteredDinos = res;

},
err => {

this.error = true;
}

);
}

ngOnInit() {
this.titleService.setTitle(this.pageName);
this.getDinos();

}

60



filterDinos() {
this.filteredDinos = this.filterService.search(this.dinos, this.query);

}

resetQuery() {
this.query = ��;
this.filteredDinos = this.dinos;

}

get noSearchResults() {
return this.dinos && !this.filteredDinos.length && this.query && !this.error;

}

}

We need to import and then provide our FilterService. Next we’ll set its
parameter in the constructor function. Now we can use it in our home component.

Note: By providing the filter service in the component instead of app.module.ts,
we’re creating an instance unique to this component. We’re doing this here because
there is only one place we’re filtering. If you add filters to additional components
in the future, consider using a global singleton if there’s no compelling reason to
create multiple instances.

We’re going to create a property called filteredDinos alongside our dinos
property. The filtered collection should also have the Dino[] type. When we
successfully retrieve data from the API, we’ll set filteredDinos as well as
dinos. At this point it is the full collection.

Next we need a method for the template to use to filter the dinosaur list. We’ll
call this method filterDinos(). Inside this function, we’ll pass the query and
our full dinos collection to the FilterService method we created and set its
results: this.filteredDinos = this.filterService.search(this.dinos,
this.query).

Our ng1-dinos app has a way to instantly clear the search with a button. We
want the same feature in ng2-dinos, so let’s create a resetQuery() method.
This method sets the query to an empty string and then sets filteredDinos
to the original, unfiltered dinos array. The reason we have to manually reset
the array is because we’re going to declaratively run filterDinos() on keyup
in the query input field. This won’t be triggered when the user clicks the button
to clear the query.

Finally, we need a method that returns an expression informing the template that
no search results match the query. If there is a dinos array, the filteredDinos
array is empty, there is a query, and (as a catch-all), there is no API error, then
we can conclude the user’s search has produced no results. In our ng1-dinos
app, we used this expression in the ng-if in the view. Angular 2 recommends
shifting logic of this type into the component.

61

https://angular.io/docs/ts/latest/guide/template-syntax.html#!


14.3.2 Filter in Home Component Template

You can reference the Angular 1 ng1-dinos Home.view.html to check out the
markup for searching. We’re going to copy and then modify it for ng2-dinos
home.component.html:

<!-- ng2-dinos/src/app/pages/home/home.component.html -->

...
<!-- Search dinosaurs -->
<section *ngIf="dinos" class="home-search input-group">

<label class="input-group-addon" for="search">Search</label>

<input
id="search"
type="text"
class="form-control"
[(ngModel)]="query"
(keyup)="filterDinos()" />

<span class="input-group-btn">
<button

class="btn btn-danger"
(click)="resetQuery()"
[disabled]="!query">&times;</button>

</span>
</section>

<!-- Dinosaurs -->
<section *ngIf="dinos" class="row">

<div class="col-xs-12 col-sm-4" *ngFor="let dino of filteredDinos">
<app-dino-card [dino]="dino"></app-dino-card>

</div>
</section>

<!-- No search results -->
<p *ngIf="noSearchResults" class="alert alert-warning">

No information available on a dinosaur called <em class="text-danger">{{query}}</em>, sorry!
</p>

...

We want to use two-way binding with ngModel to bind the query to the search
input. On the keyup event, we’ll run our filterDinos() function. This will
update the filteredDinos array. We also have a button to clear the search
query. On click, we’ll execute resetQuery(). If there’s no query, we can
disable the button.

62

https://github.com/auth0-blog/ng1-dinos/blob/master/src/app/pages/home/Home.view.html
https://angular.io/docs/ts/latest/guide/template-syntax.html#!


Note: ngModel now requires the FormsModule from @angular/forms. The
Angular CLI creates new projects with this dependency in app.module.ts auto-
matically but it’s important to know why and how we utilize it in our app.

In order for our filtering to work in the template, we need to update the *ngFor
repeater to use the filteredDinos array instead of the dinos array.

We also want to show a message if a user searches and there are no matching
results. This message should show if the noSearchResults getter returns true.

14.3.3 Filter in Home Component Styles

If we view our app, you may notice we could use a bit of styling to put some
space between the search and the dinosaur list. Open the home.component.scss
file and add:

/* ng2-dinos/src/app/pages/home/home.component.scss */

/*--------------------
HOME

--------------------*/

.home-search {
margin-bottom: 20px;

}

We should now be able to search for dinosaurs by name:

Figure 14.1: Angular 2 ng2-dinos app with search filtering

63



If the search doesn’t return any results, we should see a message:

Figure 14.2: Angular 2 ng2-dinos app with search filtering showing no results
found

64



Chapter 15

Migrating Detail
Component to Angular 2

Our Angular 1 ng1-dinos app shows a dinosaur’s details when we click on one in
the homepage listing. We’ll implement this in our Angular 2 app now.

Let’s create a new detail component:

$ ng g component pages/detail

15.1 Routing with Parameters

Let’s make our detail component accessible in the application. We want to show
the detail page with a dinosaur ID, like this: http://localhost:4200/dinosaur/5.
Open the app-routing.module.ts file:

// ng2-dinos/src/app/core/app-routing.module.ts

...
import { DetailComponent } from �../pages/detail/detail.component�;

...
RouterModule.forRoot([

...
{

path: �dinosaur/:id�,
component: DetailComponent

},
{

path: �**�,

65



component: Error404Component
}

])
...

We’ll import our new detail component and then add a route with an :id
parameter. This route should be placed above the ** wildcard route.

15.2 Linking to Routes with Parameters

Now we need to link each dinosaur with its detail page. Open dino-card.component.html:

<!-- ng2-dinos/src/app/pages/home/dino-card/dino-card.component.html -->

...
<p class="text-center">

<a class="btn btn-primary" [routerLink]="[�/dinosaur�, dino.id]">Details</a>
</p>

...

We’ll use the routerLink directive with the Details button and bind an array
of the URL segments: [routerLink]="[�/dinosaur�, dino.id]". Now we
should be able to click on dinosaur Details in the homepage and see our detail
component.

66

https://angular.io/docs/ts/latest/api/router/index/RouterLink-directive.html


Chapter 16

Calling the API for Data by
ID

Our detail component needs to make API calls to retrieve dinosaur data by ID.
Let’s implement this functionality using a new model and a new observable in
the Dinos service.

16.1 Create a Dino Details Model

The Dinos Node API supports a route that accepts an ID and returns detailed
dinosaur information. Let’s create a model for this. Make sure the local Node
API is running and we’ll test out the route by accessing it in the browser:
http://localhost:3001/api/dinosaur/1. The response looks like this:

// http://localhost:3001/api/dinosaur/1

{
"id": 1,
"name": "Allosaurus",
"pronunciation": "AL-oh-sore-us",
"meaningOfName": "other lizard",
"diet": "carnivorous",
"length": "12m",
"period": "Late Jurassic",
"mya": "156-144",
"info": "Allosaurus was an apex predator in the Late Jurassic in North America."

}

67

http://github.com/auth0-blog/sample-nodeserver-dinos
http://localhost:3001/api/dinosaur/1


Let’s supply a model for this data shape. Create a new file in the models
directory we created earlier and name it dino-detail.model.ts:

// ng2-dinos/src/app/core/models/dino-detail.model.ts

export class DinoDetail {
constructor(

public id: number,
public name: string,
public pronunciation: string,
public meaningOfName: string,
public diet: string,
public length: string,
public period: string,
public mya: string,
public info: string

) { }
}

16.2 Add HTTP Observable to Get Dinosaur by
ID

Next we’ll add the HTTP observable to call the API and retrieve the dinosaur
data by ID. Let’s open our dinos.service.ts file and add a new method:

// ng2-dinos/src/app/core/dinos.service.ts

...
import { DinoDetail } from �./models/dino-detail.model�;

...
getDino$(id: number): Observable<DinoDetail> {

return this.http
.get(�${this.baseUrl}dinosaur/${id}�)
.catch(this.handleError);

}
...

We’ll import the DinoDetail model we just created. Then we’ll create an HTTP
observable that accepts an id: number as a parameter. The observable has a
type annotation of Observable<DinoDetail>. The ID parameter is passed to
the GET request. The handlers we set up in earlier are then used for successes
and errors. The catch operator will generate an observable that terminates with
an error.

68



16.3 Using API Data in Detail Component

Now we’re ready to get and display individual dinosaur information in our detail
component.

16.3.1 Detail Component TypeScript

Let’s update the detail.component.ts file:

// ng2-dinos/src/app/pages/detail/detail.component.ts

import { Component, OnInit } from �@angular/core�;
import { Title } from �@angular/platform-browser�;
import { ActivatedRoute, Params } from �@angular/router�;

import { DinosService } from �../../core/dinos.service�;
import { DinoDetail } from �../../core/models/dino-detail.model�;

@Component({
selector: �app-detail�,
templateUrl: �./detail.component.html�,
styleUrls: [�./detail.component.scss�]

})
export class DetailComponent implements OnInit {

dino: DinoDetail;
error: boolean;

constructor(
private titleService: Title,
private dinosService: DinosService,
private route: ActivatedRoute) { }

getDino() {
this.route.params.forEach((params: Params) => {

let id = +params[�id�]; // convert string to number

this.dinosService.getDino$(id)
.subscribe(

res => {
this.dino = res;
this.titleService.setTitle(this.dino.name);

},
err => {

this.error = true;
}

69



);
});

}

ngOnInit() {
this.getDino();

}

}

Most of this should look familiar from implementing our home component.

Let’s start by importing our dependencies. We need the Title service. We’ll also
need ActivatedRoute and Params from @angular/router in order to retrieve
the route ID parameter to use to get the appropriate dinosaur data from the
API. Finally, we’ll also need the DinosService and DinoDetail model.

We’ll create a couple of properties: dino will utilize the DinoDetail model
type and error is a boolean, like in our home.component.ts. Then we’ll add
dependencies to the constructor function so we can use them.

The getDino() method iterates over the available route parameters. We’ll con-
vert the id string to a number and then pass it to the getDino$(id) observable.
We’ll subscribe to the observable and assign the JSON response to the dino
property. We’ll also set the page title as the dinosaur’s name. If there’s an error
retrieving data, we’ll simply set the error property to true.

Finally, we’ll call the getDino() method in the ngOnInit() lifecycle hook.

16.3.2 Detail Component Template

Now we’re ready to display the dinosaur detail information in our detail compo-
nent template. Open the detail.component.html file:

<!-- ng2-dinos/src/app/pages/detail/detail.component.html -->

<article id="content-wrapper" class="content-wrapper">

<section *ngIf="dino" id="detail-content-dinosaur" class="panel panel-default">
<div class="panel-heading">

<h2 class="text-center">{{dino.name}}</h2>
</div>

<ul class="list-group">
<li class="list-group-item">

<h4 class="list-group-item-heading">Pronunciation:</h4>
<p class="list-group-item-text">

<em>{{dino.pronunciation}}</em>

70

https://angular.io/docs/ts/latest/api/router/index/ActivatedRoute-interface.html
https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html


</p>
</li>
<li class="list-group-item">

<h4 class="list-group-item-heading">Name Means:</h4>
<p class="list-group-item-text">{{dino.meaningOfName}}</p>

</li>
<li class="list-group-item">

<h4 class="list-group-item-heading">Length:</h4>
<p class="list-group-item-text">{{dino.length}}</p>

</li>
<li class="list-group-item">

<h4 class="list-group-item-heading">Diet:</h4>
<p class="list-group-item-text">{{dino.diet}}</p>

</li>
<li class="list-group-item">

<h4 class="list-group-item-heading">Lived:</h4>
<p class="list-group-item-text">

{{dino.period}}<br>
<em>({{dino.mya}} million years ago)</em>

</p>
</li>

</ul>

<div class="panel-body">
<p class="lead" [innerHTML]="dino.info"></p>

</div>

<div class="panel-footer">
<a routerLink="/">&larr; All Dinosaurs</a>

</div>
</section>

<!-- Error -->
<p *ngIf="error" class="alert alert-danger">

<strong>Rawr!</strong> There was an error retrieving data for the dinosaur you requested.
</p>

</article>

Like with the other page components we migrated, we don’t need a
.detail-wrapper class in the template. In Angular 1 ng1-dinos we used these
classes to “componetize” globally-declared CSS. Angular 2 encapsulates styles
by component so we don’t need specific wrapper classes anymore.

We’ll use Bootstrap to style most of our dinosaur details. Most of our data can
be displayed simply using interpolation with double-curly braces. The exception
is the info paragraph. Our API sometimes returns HTML markup in this string.

71

https://angular.io/docs/ts/latest/guide/template-syntax.html#!


In Angular 1 ng-dinos, we used ng-bind-html to render markup in bindings. In
Angular 2, we need to bind to the innerHTML DOM property like so:

<p class="lead" [innerHTML]="dino.info"></p>

We’ll add a link back to the homepage and then finally, show an error message if
there was a problem retrieving data from the API.

16.3.3 Detail Component Styles

We’ll just make one small tweak in the SCSS for our detail component to reduce
the amount of extra space above the dinosaur name heading. In the Angular 1
app, the detail page styles were here: ng1-dinos _detail.scss.

Our Angular 2 ng2-dinos detail component styles should look like this:

/* ng2-dinos/src/app/pages/detail/detail.component.scss */

/*--------------------
DETAIL

--------------------*/

.panel-heading h2 {
margin-top: 10px;

}

Now we have our detail component! When dinosaur details are clicked on the
homepage, the detail pages should look something like this:

72

https://github.com/auth0-blog/ng1-dinos/blob/master/src/assets/css/scss/pages/_detail.scss


Figure 16.1: Angular 2 ng2-dinos dinosaur detail route with parameters

Browse your app to make sure this is working as expected.

73



Chapter 17

Loading State for API Calls

Our Angular 1 to Angular 2 migration is almost complete! The last piece is
a simple loading state that needs to be shown while API calls are resolving.
Because we’re running our app and API locally, communication between the two
is almost instantaneous. In another environment this may not be the case. We’ll
implement a small loading state to show while data is being retrieved. This will
show in the home and detail components.

In Angular 1 ng1-dinos, this loading state was a simple directive at
loading.dir.js. In Angular 2, we’ll create a very similar loading component.

17.1 Loading Image Asset

The first thing we need is the image asset for the loading state. This can
be downloaded from the Angular 1 ng1-dinos app here: raptor-loading.gif.
We’ll place this image in our Angular 2 ng2-dinos app in an equivalent location:
ng2-dinos/src/assets/images/.

17.2 Loading Component TypeScript

The loading component will be one flat file, so we’ll add some flags to the CLI
to generate it:

$ ng g component core/ui/loading --it --is --flat

The --it flag is shorthand for inline-template. The --is is shorthand for
inline-styles, and --flat indicates a containing folder should not be gener-
ated.

74

https://github.com/auth0-blog/ng1-dinos/blob/master/src/app/core/ui/loading.dir.js
https://github.com/auth0-blog/ng1-dinos/blob/master/src/app/core/ui/loading.dir.js
https://github.com/auth0-blog/ng1-dinos/blob/master/src/assets/images/raptor-loading.gif


Note: You can also add --no-spec when generating CLI files if you
don’t want test files.

Open the new loading.component.ts:

// ng2-dinos/src/app/core/ui/loading.component.ts

import { Component } from �@angular/core�;

@Component({
selector: �app-loading�,
template: �<img class="loading" src="/assets/images/raptor-loading.gif">�,
styles: [�

.loading {
display: block;
margin: 30px auto;

}
�]

})
export class LoadingComponent { }

It’s possible to keep everything we need in the component without external
template or style files. Instead of using templateUrl we’ll use template. The
template consists of an image tag with our raptor-loading.gif file. Instead
of styleUrls, we can use a styles array and add CSS rulesets right in the
component. We’ll use an ES6 template string literal (in backticks) to maintain
readability.

17.3 Add Loading Component to App Module

In order to use our new component in our app, we need to add it to our
app.module.ts:

// ng2-dinos/src/app/app.module.ts

...
import { LoadingComponent } from �./core/ui/loading.component�;
...

@NgModule({
declarations: [

...
LoadingComponent,
...

],
...

75

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals


})
export class AppModule { }

We’ll import the LoadingComponent class and then add it to the declarations
array. Now we can use the <app-loading> element in other components.

17.4 Add Loading Component to Home Com-
ponent

The Angular 1 ng1-dinos app shows the loading directive in the home and detail
views.

17.4.1 Implement Loading Functionality in Home Com-
ponent TypeScript

In home.component.ts, let’s add the functionality we need to conditionally add
our new loading component:

// ng2-dinos/src/app/pages/home/home.component.ts

...

export class HomeComponent implements OnInit {
...
loading: boolean;

constructor(...) { }

getDinos() {
this.dinosService.getAllDinos$()

.subscribe(
res => {

...
this.loading = false;

},
err => {

...
this.loading = false;

}
);

}

ngOnInit() {

76



...
this.loading = true;
this.getDinos();

}

...

get isLoaded() {
return this.loading === false;

}

}

We’ll add a boolean loading property to track loading state. Loading should
be turned o� when the API responds either with a success or a failure; we don’t
want to get stuck in an infinite loading state. We’ll add this.loading = false
in both the onNext and onError subscription functions.

Note: This di�ers from our implemention in the Angular 1 app: ng1-dinos
used the promise method .finally(). When subscribing to observables, the
onCompleted function is only executed upon graceful termination of the observ-
able sequence. Unlike finally() with promises, it will not run if an exception
occurs.

To initiate the loading state, we’ll set the loading property to true in the
ngOnInit() lifecycle hook.

Finally, we need a getter method get isLoaded() to tell the template when
loading has completed. Angular 1 ng1-dinos implemented this expression in the
template, but the Angular 2 docs recommend moving this kind of logic to the
component.

17.4.2 Implement Loading Functionality in Home Com-
ponent Template

Now we need to implement our loading component and some template logic in
the home markup home.component.html:

<!-- ng2-dinos/src/app/pages/home/home.component.html -->

<article id="content-wrapper" class="content-wrapper">
<h2 class="content-heading">{{pageName}}</h2>

<app-loading *ngIf="loading"></app-loading>

<div *ngIf="isLoaded">

77

https://github.com/auth0-blog/ng1-dinos/blob/master/src/app/pages/home/Home.ctrl.js
https://github.com/auth0-blog/ng1-dinos/blob/master/src/app/pages/home/Home.ctrl.js
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/subscribe.md
https://angular.io/docs/ts/latest/guide/template-syntax.html#!
https://angular.io/docs/ts/latest/guide/template-syntax.html#!


<!-- Search dinosaurs -->
...

<!-- Dinosaurs -->
...

<!-- No search results -->
...

<!-- Error -->
...

</div>

</article>

We’ll add and remove the loading component with <app-loading
*ngIf="loading">. We’ll also add a container around the rest of the
page content and only stamp it if the isLoaded getter is true.

When our app home component is loading, it now looks like this:

Figure 17.1: Angular 2 ng2-dinos app loading state for API calls

The animated gif shows a running raptor until loading is completed.

78



17.5 Add Loading Component to Detail Com-
ponent

Now we’ll make similar changes to the detail component to add the loading state.

17.5.1 Implement Loading Functionality in Detail Com-
ponent TypeScript

Let’s open our detail.component.ts file:

// ng2-dinos/src/app/pages/detail/detail.component.ts

...

export class DetailComponent implements OnInit {
...
loading: boolean;

constructor(...) { }

getDino() {
...

this.dinosService.getDino$(id)
.subscribe(

res => {
...
this.loading = false;

},
err => {

...
this.loading = false;

}
);

...
}

ngOnInit() {
this.loading = true;
this.getDino();

}

get isLoaded() {
return this.loading === false;

}

79



}

We’ll make the same changes to our detail component as the home component.
We want to add a boolean loading property that is true on initialization and
false onNext and onError. A get isLoaded() getter compares the loading
state to check if it’s been set to false and will be used to stamp content in the
template.

17.5.2 Implement Loading Functionality in Detail Com-
ponent Template

Open detail.component.html:

<!-- ng2-dinos/src/app/pages/detail/detail.component.html -->

<article id="content-wrapper" class="content-wrapper">

<app-loading *ngIf="loading"></app-loading>

<div *ngIf="isLoaded">

<!-- Dinosaur details -->
...

<!-- Error -->
...

</div>

</article>

Let’s add the <app-loading> element and a wrapper to hide the content while
loading is in progress. Now the loading gif should show while we retrieve API
data for a dinosaur’s detail information.

17.5.3 Remove “Loading. . . ” Text from Index HTML

Finally, we’re going to remove the Loading... text from our index.html file’s
<app-root> element. This is the last thing we’ll do to make our Angular 2
migration feature-match our Angular 1 ng1-dinos app:

<!-- ng2-dinos/src/index.html -->

...
<body>

<app-root></app-root>

80



</body>
...

81



Chapter 18

Completed Migration

The migration of our Angular 1 ng1-dinos app to Angular 2 ng2-dinos is now
complete! If you have both apps running, they should be functionally equivalent
from a user’s perspective. Please explore the two apps in the browser to make
sure that our migration was successful.

18.1 Refactoring Suggestions

As mentioned before, this is a migration tutorial so one of our goals is to maintain
close to 1:1 correlation with ng1-dinos while still implementing Angular 2 best
practices. However, there are refactoring opportunities that we shouldn’t ignore.
Here are my refactoring suggestions from our migration tutorial:

• Consider componetizing more global SCSS, breaking files like
_layout.scss up into respective *.component.scss files and uti-
lizing selectors like :host and :host-context().

• You may want to consider using additional @NgModules to manage depen-
dencies. Modules can make dependency management easier. Read the
Angular Modules docs and [Use @NgModule to Manage Dependencies in
your Angular 2 Apps](https://auth0.com/blog/angular-2-ngmodules/) to
learn more.

• You could potentially abstract the template API error markup into its own
component. The error message is currently di�erent between the home and
detail page components, but you could use data binding to pass a custom
string into the component each time it’s utilized. This might help with
scalability if additional API calls will be made in new components in the
future.

82

https://github.com/auth0-blog/ng1-dinos
https://github.com/auth0-blog/ng2-dinos
https://angular.io/docs/ts/latest/guide/ngmodule.html


Chapter 19

Bonus: Authenticate an
Angular App and Node
API with Auth0

We can protect our applications and APIs so that only authenticated users can
access them. Let’s explore how to do this with an Angular application and
a Node API using Auth0. You can clone this sample app and API from the
angular-auth0-aside repo on GitHub.

83

https://auth0.com
https://github.com/auth0-blog/angular-auth0-aside


Figure 19.1: Auth0 hosted login screen

19.0.1 Features

The sample Angular application and API has the following features:

• Angular application generated with Angular CLI and served at http:
//localhost:4200

• Authentication with auth0.js using a hosted Lock instance
• Node server protected API route http://localhost:3001/api/dragons

returns JSON data for authenticated GET requests
• Angular app fetches data from API once user is authenticated with Auth0
• Profile page requires authentication for access using route guards
• Authentication service uses a subject to propagate authentication status

events to the entire app
• User profile is fetched on authentication and stored in authentication

service
• Access token, ID token, profile, and token expiration are stored in local

storage and removed upon logout

84

https://github.com/auth0-blog/angular-auth0-aside
https://github.com/angular/angular-cli
http://localhost:4200
http://localhost:4200
https://auth0.com/docs/libraries/auth0js/v8
https://auth0.com/lock


19.0.2 Sign Up for Auth0

You’ll need an Auth0 account to manage authentication. You can sign up for
a free account here. Next, set up an Auth0 client app and API so Auth0 can
interface with an Angular app and Node API.

19.0.3 Set Up a Client App

1. Go to your Auth0 Dashboard and click the “create a new client” button.
2. Name your new app and select “Single Page Web Applications”.
3. In the Settings for your new Auth0 client app, add http://localhost:4200/callback

to the Allowed Callback URLs and http://localhost:4200 to the
Allowed Origins (CORS).

4. Scroll down to the bottom of the Settings section and click “Show Ad-
vanced Settings”. Choose the OAuth tab and set the JsonWebToken
Signature Algorithm to RS256.

5. If you’d like, you can set up some social connections. You can then enable
them for your app in the Client options under the Connections tab.
The example shown in the screenshot above utilizes username/password
database, Facebook, Google, and Twitter. For production, make sure you
set up your own social keys and do not leave social connections set to use
Auth0 dev keys.

19.0.4 Set Up an API

1. Go to APIs in your Auth0 dashboard and click on the “Create API” button.
Enter a name for the API. Set the Identifier to your API endpoint URL.
In this example, this is http://localhost:3001/api/. The Signing
Algorithm should be RS256.

2. You can consult the Node.js example under the Quick Start tab in your
new API’s settings. We’ll implement our Node API in this fashion, using
Express, express-jwt, and jwks-rsa.

We’re now ready to implement Auth0 authentication on both our Angular client
and Node backend API.

19.0.5 Dependencies and Setup

The Angular app utilizes the Angular CLI. Make sure you have the CLI installed
globally:

$ npm install -g @angular/cli

85

https://auth0.com
javascript:signup()
https://manage.auth0.com/#/
https://manage.auth0.com/#/clients/create
https://manage.auth0.com/#/connections/social
https://manage.auth0.com/#/apis
https://expressjs.com/
https://github.com/auth0/express-jwt
https://github.com/auth0/node-jwks-rsa
https://github.com/angular/angular-cli


Once you’ve cloned the project, install the Node dependencies for both the
Angular app and the Node server by running the following commands in the
root of your project folder:

$ npm install
$ cd server
$ npm install

The Node API is located in the /server folder at the root of our sample
application.

Open the server.js file:

// server/server.js
...
// @TODO: change [CLIENT_DOMAIN] to your Auth0 domain name.
// @TODO: change [AUTH0_API_AUDIENCE] to your Auth0 API audience.
var CLIENT_DOMAIN = �[CLIENT_DOMAIN]�; // e.g., youraccount.auth0.com
var AUTH0_AUDIENCE = �[AUTH0_API_AUDIENCE]�; // http://localhost:3001/api in this example

var jwtCheck = jwt({
secret: jwks.expressJwtSecret({

cache: true,
rateLimit: true,
jwksRequestsPerMinute: 5,
jwksUri: �https://${CLIENT_DOMAIN}/.well-known/jwks.json�

}),
aud: AUTH0_AUDIENCE,
issuer: �https://${CLIENT_DOMAIN}/�,
algorithm: �RS256�

});
...
//--- GET protected dragons route
app.get(�/api/dragons�, jwtCheck, function (req, res) {

res.json(dragonsJson);
});
...

Change the CLIENT_DOMAIN variable to your Auth0 client domain. The
/api/dragons route will be protected with express-jwt and jwks-rsa.

Note: To learn more about RS256 and JSON Web Key Set, read
Navigating RS256 and JWKS.

Our API is now protected, so let’s make sure that our Angular appli-
cation can also interface with Auth0. To do this, we’ll activate the
src/app/auth/auth0-variables.ts.example file by deleting the .example
from the file extension. Then open the file and change the [CLIENT_ID] and
[CLIENT_DOMAIN] strings to your Auth0 information:

86

https://github.com/auth0-blog/angular-auth0-aside
https://github.com/auth0-blog/angular-auth0-aside/tree/master/server
https://github.com/auth0-blog/angular-auth0-aside/blob/master/server/server.js
https://github.com/auth0/express-jwt
https://github.com/auth0/node-jwks-rsa
https://auth0.com/blog/navigating-rs256-and-jwks/
https://github.com/auth0-blog/angular-auth0-aside/blob/master/src/app/auth/auth0-variables.ts.example


// src/app/auth/auth0-variables.ts
...
export const AUTH_CONFIG: AuthConfig = {

CLIENT_ID: �[CLIENT_ID]�,
CLIENT_DOMAIN: �[CLIENT_DOMAIN]�,
...

Our app and API are now set up. They can be served by running ng serve
from the root folder and node server.js from the /server folder.

With the Node API and Angular app running, let’s take a look at how authenti-
cation is implemented.

19.0.6 Authentication Service

Authentication logic on the front end is handled with an AuthService authenti-
cation service: src/app/auth/auth.service.ts file.

import { Injectable } from �@angular/core�;
import { Router } from �@angular/router�;
import { BehaviorSubject } from �rxjs/BehaviorSubject�;
import * as auth0 from �auth0-js�;
import { AUTH_CONFIG } from �./auth0-variables�;
import { UserProfile } from �./profile.model�;

@Injectable()
export class AuthService {

// Create Auth0 web auth instance
// @TODO: Update AUTH_CONFIG and remove .example extension in src/app/auth/auth0-variables.ts.example
auth0 = new auth0.WebAuth({

clientID: AUTH_CONFIG.CLIENT_ID,
domain: AUTH_CONFIG.CLIENT_DOMAIN,
responseType: �token id_token�,
redirectUri: AUTH_CONFIG.REDIRECT,
audience: AUTH_CONFIG.AUDIENCE,
scope: AUTH_CONFIG.SCOPE

});
userProfile: UserProfile;

// Create a stream of logged in status to communicate throughout app
loggedIn: boolean;
loggedIn$ = new BehaviorSubject<boolean>(this.loggedIn);

constructor(private router: Router) {
// If authenticated, set local profile property and update login status subject
if (this.authenticated) {

87

https://github.com/auth0-blog/angular-auth0-aside/blob/master/src/app/auth/auth.service.ts


this.userProfile = JSON.parse(localStorage.getItem(�profile�));
this.setLoggedIn(true);

}
}

setLoggedIn(value: boolean) {
// Update login status subject
this.loggedIn$.next(value);
this.loggedIn = value;

}

login() {
// Auth0 authorize request
this.auth0.authorize();

}

handleAuth() {
// When Auth0 hash parsed, get profile
this.auth0.parseHash((err, authResult) => {

if (authResult && authResult.accessToken && authResult.idToken) {
window.location.hash = ��;
this._getProfile(authResult);
this.router.navigate([�/�]);

} else if (err) {
this.router.navigate([�/�]);
console.error(�Error: ${err.error}�);

}
});

}

private _getProfile(authResult) {
// Use access token to retrieve user�s profile and set session
this.auth0.client.userInfo(authResult.accessToken, (err, profile) => {

this._setSession(authResult, profile);
});

}

private _setSession(authResult, profile) {
// Save session data and update login status subject
localStorage.setItem(�access_token�, authResult.accessToken);
localStorage.setItem(�id_token�, authResult.idToken);
localStorage.setItem(�profile�, JSON.stringify(profile));
localStorage.setItem(�expires_at�, authResult.expiresAt);
this.userProfile = profile;
this.setLoggedIn(true);

}

88



logout() {
// Remove tokens and profile and update login status subject
localStorage.removeItem(�access_token�);
localStorage.removeItem(�id_token�);
localStorage.removeItem(�profile�);
localStorage.removeItem(�expires_at�);
this.userProfile = undefined;
this.setLoggedIn(false);

}

get authenticated(): boolean {
// Check if current time is past access token�s expiration
const expiresAt = JSON.parse(localStorage.getItem(�expires_at�));
return Date.now() < expiresAt;

}

}

This service uses the config variables from auth0-variables.ts to instantiate
an auth0.js WebAuth instance.

An RxJS BehaviorSubject is used to provide a stream of authentication status
events that you can subscribe to anywhere in the app.

The login() method authorizes the authentication request with Auth0 using
your config variables. An Auth0 hosted Lock instance will be shown to the user
and they can then log in.

Note: If it’s the user’s first visit to our app and our callback is on
localhost, they’ll also be presented with a consent screen where
they can grant access to our API. A first party client on a non-
localhost domain would be highly trusted, so the consent dialog
would not be presented in this case. You can modify this by editing
your Auth0 Dashboard API Settings. Look for the “Allow Skipping
User Consent” toggle.

We’ll receive an id_token, access_token, and expires_at in the hash from
Auth0 when returning to our app. The handleAuth() method uses Auth0’s
parseHash() method callback to get the user’s profile (_getProfile()) and set
the session (_setSession()) by saving the tokens, profile, and token expiration
to local storage and updating the loggedIn$ subject so that any subscribed
components in the app are informed that the user is now authenticated.

Note: The profile takes the shape of profile.model.ts from the
OpenID standard claims.

The handleAuth() method can then be called in the app.component.ts con-
structor like so:

89

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/behaviorsubject.md
https://manage.auth0.com/#/apis
https://github.com/auth0-blog/angular-auth0-aside/blob/master/src/app/auth/profile.model.ts
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://github.com/auth0-blog/angular-auth0-aside/blob/master/src/app/app.component.ts
https://github.com/auth0-blog/angular-auth0-aside/blob/master/src/app/app.component.ts


// src/app/app.component.ts
import { AuthService } from �./auth/auth.service�;
...

constructor(private auth: AuthService) {
// Check for authentication and handle if hash present
auth.handleAuth();

}
...

Finally, we have a logout() method that clears data from local storage and
updates the loggedIn$ subject. We also have an authenticated accessor to
return current authentication status.

Once AuthService is provided in app.module.ts, its methods and properties
can be used anywhere in our app, such as the home component.

The callback component is where the app is redirected after authentication. This
component simply shows a loading message until hash parsing is completed and
the Angular app redirects back to the home page.

19.0.7 Making Authenticated API Requests

In order to make authenticated HTTP requests, we need to add a Authorization
header with the access token in our api.service.ts file.

// src/app/api.service.ts
...

getDragons$(): Observable<any[]> {
return this.http

.get(�${this.baseUrl}dragons�, {
headers: new HttpHeaders().set(

�Authorization�, �Bearer ${localStorage.getItem(�access_token�)}�
)

})
.catch(this._handleError);

}
...

19.0.8 Final Touches: Route Guard and Profile Page

A profile page component can show an authenticated user’s profile information.
However, we only want this component to be accessible if the user is logged in.

With an authenticated API request and login/logout implemented, the final touch
is to protect our profile route from unauthorized access. The auth.guard.ts
route guard can check authentication and activate routes conditionally. The guard

90

https://github.com/auth0-blog/angular-auth0-aside/blob/master/src/app/app.module.ts#L32
https://github.com/auth0-blog/angular-auth0-aside/tree/master/src/app/home
https://github.com/auth0-blog/angular-auth0-aside/tree/master/src/app/callback
https://github.com/auth0-blog/angular-auth0-aside/blob/master/src/app/api.service.ts
https://github.com/auth0-blog/angular-auth0-aside/tree/master/src/app/profile
https://github.com/auth0-blog/angular-auth0-aside/blob/master/src/app/home/home.component.ts
https://github.com/auth0-blog/angular-auth0-aside/blob/master/src/app/auth/auth.guard.ts
https://github.com/auth0-blog/angular-auth0-aside/blob/master/src/app/auth/auth.guard.ts


is implemented on specific routes of our choosing in the app-routing.module.ts
file like so:

// src/app/app-routing.module.ts
...
import { AuthGuard } from �./auth/auth.guard�;
...

{
path: �profile�,
component: ProfileComponent,
canActivate: [

AuthGuard
]

},
...

19.0.9 More Resources

That’s it! We have an authenticated Node API and Angular application with
login, logout, profile information, and protected routes. To learn more, check
out the following resources:

• Why You Should Always Use Access Tokens to Secure an API
• Navigating RS256 and JWKS
• Access Token
• Verify Access Tokens
• Call APIs from Client-side Web Apps
• How to implement the Implicit Grant
• Auth0.js v8 Documentation
• OpenID Standard Claims

91

https://github.com/auth0-blog/angular-auth0-aside/blob/master/src/app/app-routing.module.ts
https://github.com/auth0-blog/angular-auth0-aside/blob/master/src/app/app-routing.module.ts
https://auth0.com/blog/why-should-use-accesstokens-to-secure-an-api/
https://auth0.com/blog/navigating-rs256-and-jwks/
https://auth0.com/docs/tokens/access-token
https://auth0.com/docs/api-auth/tutorials/verify-access-token
https://auth0.com/docs/api-auth/grant/implicit
https://auth0.com/docs/api-auth/tutorials/implicit-grant
https://auth0.com/docs/libraries/auth0js/v8
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims


Chapter 20

Conclusion

Our ng2-dinos app is complete! Make sure you’ve run ng lint and corrected
any issues. With clean code, we shouldn’t have any errors. We’ve successfully
migrated our AngularJS 1.x ng1-dinos application to Angular 2+! We’ve even
covered adding authentication with Auth0 so we can authorize routes or make
secure API calls in the future.

Thanks for following along. Hopefully you’re now ready to dive into Angular
migrations as well as new Angular 2 projects with confidence!

92


	Introduction
	AngularJS 1 and Angular 2+
	Migrate vs. Upgrade

	Angular 1 App ng1-dinos
	Dependencies
	Install and Run ng1-dinos

	Introducing Angular 2 App ng2-dinos
	Dependencies
	Initialize ng2-dinos
	Linting and Style Guide

	Customizing Our Angular 2 Project for Migration
	Bootstrap CSS
	Third Party Libraries
	Global SCSS
	Update App File Structure

	Angular 2 Root App Component
	App Component Template
	App Component Styles
	App Component TypeScript

	Angular 2 Header Component
	Add Header Element to App Component Template
	Header Component Template
	Header Component Styles

	Angular 2 Component Interaction
	Header Component TypeScript
	Header Communication with App Component

	Angular 2 Observables and DOM Properties
	Add Observable to App Component TypeScript
	Add DOM Property to App Component Template

	Angular 2 Footer Component
	Footer Component TypeScript
	Footer Component Template
	Footer Component Styles
	Add Footer to App Component Template

	Migrating Angular 2 Pages
	Create Home, About, and 404 Page Components
	Add Title Provider to App Module
	Add Title to Page Components
	Home Component Template
	About Component Template
	404 Component Template

	Routing in Angular 2
	Create a Routing Module
	Import Routing Module in App Module
	Display Routed Components
	Route Navigation
	Router Events
	Auto-close Menu in Header Component

	Calling an API in Angular 2
	Dinosaur API Data Model
	Add HTTP Client Module to App Module
	Get API Data with Dinos Service
	Provide the Dinos Service in App Module
	Use the Dinos Service in Home Component
	Display a List of Dinosaurs

	Display Dino Cards
	Dino Card Component TypeScript
	Dino Card Component Template
	Display Dino Card in Home Component

	Migrating Angular 1 Filtering to Angular 2
	No Filter or OrderBy Pipes
	Create a Filter Service
	Use Angular 2 Filter Service to Search
	Filter in Home Component TypeScript
	Filter in Home Component Template
	Filter in Home Component Styles


	Migrating Detail Component to Angular 2
	Routing with Parameters
	Linking to Routes with Parameters

	Calling the API for Data by ID
	Create a Dino Details Model
	Add HTTP Observable to Get Dinosaur by ID
	Using API Data in Detail Component
	Detail Component TypeScript
	Detail Component Template
	Detail Component Styles


	Loading State for API Calls
	Loading Image Asset
	Loading Component TypeScript
	Add Loading Component to App Module
	Add Loading Component to Home Component
	Implement Loading Functionality in Home Component TypeScript
	Implement Loading Functionality in Home Component Template

	Add Loading Component to Detail Component
	Implement Loading Functionality in Detail Component TypeScript
	Implement Loading Functionality in Detail Component Template
	Remove Loading… Text from Index HTML


	Completed Migration
	Refactoring Suggestions

	Bonus: Authenticate an Angular App and Node API with Auth0
	Features
	Sign Up for Auth0
	Set Up a Client App
	Set Up an API
	Dependencies and Setup
	Authentication Service
	Making Authenticated API Requests
	Final Touches: Route Guard and Profile Page
	More Resources


	Conclusion

