
Whitepaper

OAuth 2.0 and
OpenID Connect:
The Professional Guide
by Vittorio Bertocci

curated by Andrea Chiarelli

OAuth2 and OpenID Connect: The Professional Guide 2

4	 Preface

5	 Introduction

6	 Chapter 1 - Introduction to Digital Identity

9	 From User Passwords in Every App...

11	 ...to Directories

13	 Cross-Domain SSO

18	 The Password Sharing Anti-Pattern

20	 Delegated Authorization: OAuth 2.0

24	 Layering Sign In on Top of OAuth 2.0: OpenID Connect

28	 Auth0: an Intermediary Keeping Complexity at Bay

30	 Chapter 2 - OAuth 2.0 and OpenID Connect

32	 OAuth 2.0 Roles

34	 OAuth 2.0 Grants and OIDC Flows

35	 Chapter 3 - Web Sign-In

35	 Confidential Clients

37	 The Implicit Grant with Form Post

37	 A detailed walkthrough

44	 Anatomy of an ID Token

47	 Principles of Token Validation

50	 Metadata and Discovery

53	 Chapter 4 - Calling an API from a Web App

53	 The Authorization Code Grant

64	 Sidebar: Essential Authorization Concepts and Terminology

68	 The Refresh Token Grant

75	 Sidebar: Access Tokens vs. ID Tokens

Contents

OAuth2 and OpenID Connect: The Professional Guide 3

79	 ID Tokens and the Back Channel

80	 The Userinfo Endpoint

85	 The Hybrid Grant

85	 Client Credentials Grant

92	 Chapter 5 - Desktop and Mobile Apps

92	 Public Clients

93	 Native Applications and the Browser

95	 Meet the PKCE

95	 Desktop Applications and Browsers

96	 The Authorization Code Grant with PKCE

101	 The Problem with Refresh Tokens

103	 The Resource Owner Grant

108	 Other Grants for Native Apps

110	 Chapter 6 - Single Page Applications

110 	 The Nature of Single Page Applications

110	 Security Challenges of Single Page Applications

111	 Single Page Applications and the Implicit Grant

113	 SPAs and the Authorization Code with PKCE Flow

115	 SPAs with a Backend

119	 Conclusion

OAuth2 and OpenID Connect: The Professional Guide 4

I met Vittorio when I joined Auth0 in 2019. I only knew him as an authoritative

expert in the field of Identity, and I knew very little about that topic. Usually, he

was in charge of onboarding training for the technical staff, but when I went to

Bellevue for my onboarding, another trainer was assigned. However, he came

to the office to greet me because he had learned an Italian was in the group of

new hires. A clear signal that he was more than just an Identity expert: he was

a person full of empathy.

I had the honor of working closely with Vittorio at the beginning of my career

at Auth0, partly for helping him with this book and partly for reviewing other

developer content my team and I created. This gave me the opportunity to

learn a lot, not only about the technical aspects of Identity but also about how

to explain complex concepts based on the specific audience. His style, rich

in metaphors and anecdotes (you will find several in this book), has always

fascinated me. His histrionic manner, his marked accent, and his all-Italian

gestures establish him in my imagination as a great storyteller.

We started this book project at the end of 2019 and have published it

incrementally in two editions. Vittorio had already drawn up the roadmap

for the book and shared diagrams and notes with me, but his innumerable

commitments led him to postpone its completion.

His untimely death in October 2023 shocked me, as well as the entire

community of Identity professionals. Several times, I received requests for

information from developers about the book's completion. Therefore, it

seemed right to me not to disappoint readers and at the same time honor

Vittorio's memory by completing the book according to the original roadmap

and based on his notes. I tried as much as possible to maintain his style, even

if it was unique and unrepeatable. Since this project started, some things have

changed in the meantime, so I had to update some references, even in the

already published part. In this work of adaptation, updating, and revision, the

help of Aaron Parecki and Filip Skokan was invaluable, and my heartfelt thanks

go to them.

One last note before leaving you to read the book. This is not a technical

manual about OAuth 2.0 and OpenID Connect. This book will not give you

detailed guidelines on how to use OAuth 2.0 and OpenID Connect in your

applications. Or rather, you will learn this too, but more than anything else,

this guide will explain to you the reason for the small details of these protocols,

why we arrived at them, and how we arrived at them.

Understanding the reason for the technical choices and, therefore, the history

behind them will help you better understand OAuth 2.0 and OpenID Connect

and gain a professional knowledge of them. That said, I hope you will enjoy

reading this book!

Andrea Chiarelli

Preface

OAuth2 and OpenID Connect: The Professional Guide 5

Introduction This book will help you to make sense of OAuth, OpenID Connect, and

the many moving parts that come together to make authentication and

delegated authorization happen.

You will discover how authentication and authorization requirements

changed in past years and how today’s standard protocols evolved and

augmented their ancestors to meet those challenges - problems and

solutions locked in an ever-escalating arm’s race.

You will learn both the whys and the hows of OAuth 2.0 and OpenID

Connect. You will learn what parts of the protocol are appropriate to use

for each of the classic scenarios and app types (Sign-on for traditional

web apps, Single Page Apps, calling API from desktop, mobile, and web

apps, and so on). We will examine every exchange and parameter in detail -

putting everything in context and always striving to see the reasons behind

every implementation choice within the larger picture.

After reading this book, you will have a clear understanding of the classic

problems in authentication and delegated authorization, the modern

tools that open protocols offer to solve those problems, and a working

knowledge of OAuth 2.0 and OpenID Connect. All that will allow you to

make informed design decisions - and even to know your way through

troubleshooting and network traces.

OAuth2 and OpenID Connect: The Professional Guide 6

Introduction to
Digital Identity

In this chapter, you will be able to grasp some of the essentials of identity,

both in terms of concepts and the jargon that we like to use in this context.

And you'll have a good feeling of the problems, the classic dragons that we

want to slay in the identity space, which also happens to be the things that

Auth0 by Okta can do for customers.

Without further ado, what is the deal with identity? Why is everyone always

saying, "Oh, this is complicated." Why? Just look at the following picture. It is

trivially simple: I have just two bodies in here and your basic physics course.

It would be one of the easy problems:

Figure 1.1

I have a resource of some kind, and I have a user — an entity of some kind

that wants to access that resource in some capacity. It's just two things

doing one action. Why is this so complicated?

Well, for one, there's the fact that this is mission-critical.

When something goes wrong in this scenario, it goes catastrophically

wrong. And so, like every mission-critical scenario, of course, it deserves our

respect and our attention, and our preparation. There is a lot of energy that

goes into preventing this catastrophic scenario from coming true. But in this

specific domain of development, the thing that makes this complex is the

Cartesian product of all the factors that come into play to determine what

you have to do to have a viable solution. Consider the following factors:

•	 Resource types

Just think of all the types of resources you can have. Just a few

years ago, if you’d walk into a bank, you'd have a host, they’d have

some central database, and that's it. Today, conversely, pretty much

everything is accessible programmatically. So you have the API

economy, you have serverless — all those buzzwords actually point to

different ways of exposing resources and, of course, websites, apps,

and all the things you use in your daily life. Whenever you interact with a

computer system, there is a kind of resource that you have to connect

to. And, from the point of view of a developer, implementing that

connection is actually a lot of work.

Chapter 1

OAuth2 and OpenID Connect: The Professional Guide 7

•	 Development stacks

There are minor differences between development stacks that translate

into big differences in the code you have to write for implementing

access to a resource and the way in which you interact with it. This is

one level of complexity.

•	 Identities sources

The other level of complexity is the sheer magnitude of the sources of

identities that you can use today.

Think of all the ways in which your own identity gets expressed

online. You can be a member of a social network, an employee of one

company, a citizen of a country. And all of those identities somewhat

get expressed in a database somewhere, and that somewhere

determines how you pull this information out.

You connect to Facebook in a certain way. You connect to Active

Directory in a different way. You get recognized when you're paying

your taxes to your country in yet another way. So, again, we encounter

another factor of complexity: if you want to extract identity from these

repositories, you have to find a way of doing it according to each

repository’s requirements and characteristics.

•	 Client types

Finally, there are many more complexity factors, but I just want to

mention another one: the incredible richness with which we can

consume information today. Think of all the possible clients you can

use: from your mobile phone and applications to websites, to your

watch. You can literally use anything you want to access the data.

And again, these compounds in terms of complexity with the kinds

of resources you want to access, the places from where you are

extracting information. So, this picture might look simple, but it's all but.

Now, what can Okta do for you to make this a bit more manageable? We

offer many different things, but the most salient component of our offering

is Auth0. It is a service that you can use for outsourcing most of the

authentication functions that you need to have in your solutions - so that

you don't have to be exposed to that complexity. In particular, we offer:

•	 Ways of abstracting away the details of how you connect to multiple

sources of identities. Every identity provider will have a different style

of doing the identity transactions, and we abstract all of that away

from you.

OAuth2 and OpenID Connect: The Professional Guide 8

•	 A way of dealing with the user-management lifecycle. We have user

representations and features for dealing with the lifecycle of users

and similar.

•	 A very large number of SDKs and samples, which help you to cross

the last mile so that when you're using a particular development

stack, you can actually use components to connect to Auth0 in a way

that is aligned with the idiom that you're using in that context.

•	 A degree of customization ability that is absolutely unprecedented

in the industry. There is no other service at this point that offers the

same freedom you have with Auth0 to customize your experience.

Now, when you need to connect your application to Auth0, you need

to do something to tell us, "Auth0, please do authentication". And that

something in Auth0 is implemented using open standards.

Open standards are agreements, wide consensus agreements that

have been crafted by consortiums of different actors in the industry. We

identity professionals decided to work on open standards when we came

to the realization that everyone - users, customers, and vendors - would

have been better off if we had enshrined in common standards, common

messages, common protocols, some of the transactions that we know

needed to occur when you're doing authentication, and similar. What

happened back then is that we went to semi-expensive hotels around

the world, met with our peers across the industry, and argued about how

applications should present themselves when offering services in the

context of an identity transaction. We discussed similar considerations

for identity providers. What kind of messages should be exchanged?

We literally argued message details down to the semicolon. That's how

fun standards authoring is, but it's all worth it: now that we have open

standards and all vendors have implemented the open standards, you, as

the customer, can choose which vendor you want to use without worries

about being locked into a particular technology or vendor. Above all, you

can plan to introduce different technologies afterward, without worrying

about incompatibilities.

Of course, this is mostly theory: a bit like those simplified school

problems disregarding friction or gravity of the moon influencing tides.

In reality, there are always little details that you need to iron out. But

largely, if you worked in our industry for the last couple of decades,

you know that we are so much better off now that we have those open

standards we can rely on.

OAuth2 and OpenID Connect: The Professional Guide 9

In identity management, you're going to get in touch with many protocols,

many of them probably not even invented yet. The ones that are a daily

occurrence nowadays are:

•	 OpenID Connect, which is used for signing in.

•	 OAuth 2.0, which is the basis of OpenID Connect and it is a delegation

protocol designed to help you access third party APIs.

•	 JSON Web Token or JWT, which is a standard token format. Most of

the tokens you'll be working with are in this format.

•	 SAML, which is somewhat a legacy (but still very much alive) protocol

that is used for doing single sign-on across domains for browsers.

SAML also defines a standard token format, which has been very

popular in the past and is still very much in use today.

From User Passwords in Every App...

Let’s spend the next few minutes going through a time-lapse-

accelerated-whirlwind tour of how authentication technologies evolved.

My hope is that by going back to basics and revisiting this somewhat

simplified timeline, I'll have the opportunity to show you why things are the

way they are today. In doing so, I’ll also have the opportunity to introduce

the right terms at the right time. By being exposed to new terminology

at the correct time, that is to say, when a given term first arose, you

will understand what the corresponding concepts mean in the most

general terms. Contrast that with the narrower interpretations of a term’s

meaning you’d end up with if you were exposed to it only in the context

of solving a specific problem. You might end up thinking that the problem

you are solving at the moment is the only thing the concept is good for,

missing the big picture and potentially stumbling in all sorts of future

misunderstandings. We won’t let that happen!

Let's go back to the absolute basics and think about the scenario I

described earlier in Figure 1.1 - the scenario in which I have one resource of

some kind, let's say a web application, and a user, and we want to connect

the two. Now, what is identity in this context?

We won't get bogged down with philosophy and similar. Identity here

can be defined in a very operational, very precise fashion. We call digital

identity the set of attributes that define a particular user in the context of a

function delivered by a particular application.

OAuth2 and OpenID Connect: The Professional Guide 10

What does it mean? That means that if I am a bookseller, the relevant

information I need about a user is largely their credit card number, their

shipping address, and the last ten books they bought. That's their digital

identity in that context. If I am the tax department, then the digital identity

of a user is, again, a physical address, an identifier (here in the USA is the

Social Security number), and any other information that is relevant to the

motion of extracting money from the citizen. If I am a service that does DNA

sequencing, the identity of my user is the username that they use

for signing in, their email address for notifications, and potentially their

entire genome.

You can see how, for all the various functionalities we want to achieve, we

actually have a completely or nearly completely different set of attributes.

These might correspond to the same physical person or not. It doesn't

matter. From the point of view of designing our systems, that's what the

digital identity is. So, you could say that the digital identity of this user is this

set of attributes we can place in the application’s store. Now, the problem of

identity becomes: when do I bring those particular attributes into context?

The oldest trick in the world is to have the resource and the user agree on

something, such as a shared secret of some sort. So, when the user comes

back to the site and presents that secret or demonstrates knowledge

of that secret, the website will say, “Okay, I know who you are. You’re

the same user I saw yesterday”. Here is your set of attributes, welcome

back. I authenticated the user. In summary, that means grabbing a set of

credentials, sending it over, and assuming that those credentials were

saved previously in a database. If they match, the user is authenticated.

This scenario is summarized in the following picture:

Figure 1.2

OAuth2 and OpenID Connect: The Professional Guide 11

Now, you hear a lot of bad things about username and password... and they

are all true. That's unfortunate, but it's true. However, it is an extraordinarily

simple schema, and as such, it is very, very, very resilient.

Even if we have more advanced technologies, which do more or less

the same job, passwords are still very popular. I predict that this year,

like every year, someone will say that this is the year in which passwords

will die. But I think that passwords will still be around for some time. My

favorite metaphor for this is what happens in the natural world. Humans

are allegedly the pinnacle of evolution. However, there are still plenty of

jellyfish in the sea. They are so simple, and sure, we are more advanced,

but I am ready to bet that there are more individual jellyfish than there are

humans. The fact that their body plan is simple doesn't mean that it is not

successful. You'll see, as we go through this history, that passwords are

somewhat building blocks on which more advanced protocols layer on

top of. Again, I'm not discounting the efforts of eliminating passwords and

using something better, but I'm just trying to set expectations that it's still

going to take some time.

...to Directories

Let's make things a bit more interesting. Imagine the scenario in which

we have one user and one application. Now, extend this scenario to the

situation in which this user is an employee of some company. There is a

collection of applications being used by this particular user in the context

of the company’s business. Most applications are all part of what the user

does in the context of their employment. Imagine that one application is

for expense notes, the other is for accounting, the other is for warehouse

management. Anything you can think of. A few years ago, what happened

was that we had a bunch of apps on a computer. Then, we had someone

showing up with a coaxial cable, installing token ring networks, and

placing all these computers in the network. But that alone didn't make the

environment, and in particular the applications, automatically network-

ready. What happened is that you'd have exactly the situation - the big

thing here - in which you'd have a user accessing different independent

apps that knew nothing about each other and that replicated all the

functionality that could have been easily centralized. In particular, every

user had different usernames and passwords - or I should say different

usernames, because, of course, people reuse their passwords. Every time

users went to a new app, they had to enter their credentials.

OAuth2 and OpenID Connect: The Professional Guide 12

And whenever a user had to leave the company, willingly or not, the

administrator had to go on a pilgrimage on all these various apps, run

after the user’s entries in there, and deprovision them by hand, which, of

course, is a tedious and error-prone flow. It's difficult. You often hear horror

stories of disgruntled employees using procurement systems to buy large

amounts of items just to get back at their former bosses and being able to

do so because their credentials in the procurement system weren’t

timely revoked.

That wasn't a great situation, to say the least.

What happened is that the industry responded by introducing a new entity,

which we call the directory. The directory is still extremely popular. It is a

software component, a service, which centralizes a lot of the functionalities

that you see in Figure 1.3.

Basically, the directory centralized credentials and attributes and made it

redundant for applications to implement their own identity management

logic. At this point, users would simply sign in with their own central

directory, and from that moment onward, they'd have Single Sign-On

access to all the other applications. The application developers didn't

Figure 1.3

OAuth2 and OpenID Connect: The Professional Guide 13

actually have to code anything for identity to achieve that result. In fact,

now that the network infrastructure itself provided the identity information,

administrators could now take advantage of this centralized place to deal

with the user lifecycle. It can be said that the introduction of the directory

is what truly created identity administrators as a category of professionals.

The ubiquitous availability of directories created an ecosystem of tooling

that helps people run operations, identities, and similar. So, a fantastic

improvement - which was predicated on the perimeter. In order for all this

to work as intended, you had to have all the actors within that perimeter.

The perimeter was often the office building itself, with users actually

walking in the building, sitting in front of a particular physical device,

and having direct “line of sight” with this cathedral in the center of the

enterprise: the directory, a central place knowing everything

about everyone.

Cross-Domain SSO

Of course, we know from current business practices that this approach

doesn't scale. It works well when you are within one company, but

there are so many business processes that require having more than

one company.

Think of a classic supplier or reseller. Any of those relationships requires

spanning multiple organizations. And so what happens is that when you

have a user in one organization that needs to access a different resource

in a different organization, you have a problem. In fact, this user does not

exist in the resource side directory.

The first way the industry tried to give a solution to this problem was to

introduce what we call shadow accounts, which means provisioning the

user to the resource side directory. This is completely unsustainable, as

it presents the same problems we mentioned earlier at a different scale

when every application handled identity explicitly. Let's say that we have

a user whose lifecycle is managed in one place, their own home directory,

but that has been provisioned as an entry in the resource side directory

as well. When the user is deprovisioned from their home directory, then

there might be a trail of user accounts provisioned in other directories

(such as the resource side directory in our scenario) that are still around

and that need to be manually deprovisioned. That's, of course, a big

problem because the deprovisioning isn’t likely to happen timely or, like any

OAuth2 and OpenID Connect: The Professional Guide 14

changes in general, is harder to reflect in distributed systems that are not

centrally managed. Plus, imagine the complexity of having this company,

which may be a reseller for many other companies, but needs to somewhat

duplicate the work that its customer companies are already doing in their

own directories for managing their own users. It's just not sustainable.

So, what happened was that, just like it's classic in computer science,

we solved this problem by adding a level of abstraction. We took the

capabilities we have seen for the local directory case, and we just

abstracted it away. We provided the same transactions, but we described

them in a way that is not dependent on network infrastructure. For example,

Active Directory, and directories in general, rely on an authentication

protocol called Kerberos, which is very much integrated with a network

layer, hence has specific network hardware requirements. Whereas, of

course, in this case of scenarios spanning multiple companies, we have

to cross the chasm of the public Internet and cannot afford to impose any

requirements as requests will traverse unknown network hardware.

What happened was that the big guys of that time, Sun, IBM, and others, sat

at one table and came up with this protocol called SAML, which stands for

Security Assertion Markup Language. In a nutshell, the protocol described a

transaction in which a user can sign in in one place and then show proof of

signing in in another place and gain access. Here’s how it works. We need

something that facades my actual resource with some software capable of

talking with that protocol, which in this particular case is going to be what

we call a middleware: a component that stands between your application

and the caller, intercepting traffic and executing logic before the requests

reach the actual application. Similar protocol capabilities would be exposed

on the identity provider side. In the topology shown in Figure 1.3, we have

the machine already fulfilling the local directory duties (what we call the

domain controller in the directory jargon). We just teach that machine to

speak a different language, SAML, which can be considered somewhat

of a trading language that we can use for communication outside the

company’s perimeter.

In order to close this transaction, what happens is that we need to introduce

another concept: trust. Think of the scenario we were describing earlier,

the one within one single directory: in it, every application and every user

implicitly believes and trusts the domain controller. The network software

itself, whenever you need to authenticate, will send you back to the domain

OAuth2 and OpenID Connect: The Professional Guide 15

controller, and the domain controller will do its authentication. It is just

implicit, it's as natural as the air you're breathing because there is only one

place that can perform authentication duties in the entire network.

Now, look at this particular scenario:

The application within the Company 2 perimeter can be accessed by any

of its business partners: there is now a choice about from where we want

to get users’ identities, and there is no longer an obvious default users’

source. We say that a resource trusts an identity provider or an authority

when that resource is willing to believe what the authority says about its

users. If the authority says, “This user is one of my users and successfully

authenticated five minutes ago”, then the resource will believe it. That's all

trust means.

When you set up your middleware in front of your application, you typically

configure it with the coordinates of the identity providers that you trust.

How does that come into play when you actually make a transaction? Let's

see how this works in an actual flow by describing in detail each numbered

step shown in the following figure:

Figure 1.4

OAuth2 and OpenID Connect: The Professional Guide 16

In the first leg of the diagram, the user points the browser to the

application and attempts to GET a page (1). The middleware in front of the

application intercepts the request, sees that the user is not authenticated,

and turns the request into an authentication request to the identity provider

(IdP), as it is configured as one of the trusted IdPs (2).

In concrete terms, the middleware will craft some kind of message,

probably a URL with specific query string parameters, and will redirect

the browser against one particular endpoint associated with the identity

provider (3).

In this particular scenario, the target endpoint belongs to a local identity

provider. You can see that the call to the IdP authentication endpoint is

occurring within the boundaries of the enterprise. That means that that

call will be authenticated using Kerberos, like any other call on the local

network. You can already see these layering of protocols, one on top of the

other. Thanks to the use of Kerberos and the fact that the user is already

authenticated with the local directory, the user will not have to enter any

credentials during this call.

Figure 1.5

OAuth2 and OpenID Connect: The Professional Guide 17

Next, the identity provider establishes that the user is already correctly

authenticated and determines that the resource is one of the resources

that have been recorded and approved. Because of those positive checks,

the IdP issues what we call a security token (4) to the user. A security

token is an artifact, a bunch of bits, used to carry tangible proof that the

user has successfully authenticated. Security tokens are digitally signed.

What does it mean? A digital signature is something that protects bits from

tampering. Let's say that someone modifies any of those bits in transit:

when the intended recipient tries to check the signature, it will find that the

signature does not compute. The recipient will know for sure that those

bits have been modified in transit.

This property is useful for two reasons. One reason is that given that

we use public-key cryptography, we expect that the private key used to

perform the signature is only accessible by the intended origin of this

token. No one else in the universe can perform with that signature, but that

particular party. Remember what we just said about trust: that property

can be used as proof that a token is coming from a specific entity, and

in particular, whether it is a trusted one. The second reason is that given

that the token content cannot be modified in transit without breaking the

signature, I can use tokens as a mechanism to provide the digital identity

of a user on the fly. Instead of having to negotiate in advance the

acquisition of the attributes that define the user (the user identity,

according to our definition), as an application, I can receive those attributes

just in time, together with the token. This might be the first and the last

time that this particular user accesses this application, but thanks to the

fact that there is trust between the two organizations, I didn't need to do

any pre-provisioning steps.

The attributes that travel inside tokens are called claims. A claim is simply

an attribute packaged in a context that allows the recipient to decide

whether to believe that the user indeed possesses that attribute. Think

about what happens when boarding a plane. If I present my passport to

the gate agents, they will be able to compare my name (as asserted by the

passport) with the name printed on my boarding pass and decide to let me

go through. The gate agents will reach that conclusion because they trust

the government, the entity that issued my passport. If I’d pull out a post-it

with my name jolted down with my scrawny chicken legs handwriting and

present it to the gate agents in lieu of the passport, I'm probably not going

OAuth2 and OpenID Connect: The Professional Guide 18

to board the plane - in fact, I'm likely going to be in trouble. The medium

truly is the message in this case. The token really does carry the potential

to decide whether you trust that particular information or not. Attributes

inside tokens become claims. It is an important difference.

Once the identity provider issues a SAML token, it typically returns it to the

browser inside an HTML form, together with some JavaScript that triggers

as soon as the page is loaded - POSTing the token to the application,

where it will be intercepted by the middleware (5). The middleware looks

at the token, establishes whether it's coming from a trusted source,

establishes whether the signature hasn't been broken, etc., etc., and if it's

happy with all that, it emits what we call a session cookie (6). The session

cookie represents the fact that successful authentication occurred. By

setting a cookie to represent the session, the application will be spared

from having to do the token dance again for every subsequent request.

The session cookie is simply used to enable the application to consider

the user authenticated every time the application receives a postback.

This is how SAML solved the particular problem of cross-domain single

sign-on. We’ll see that this pattern of exchanging a token for a cookie will

also occur with OpenID Connect.

The Password Sharing Anti-Pattern

All this happened in the business world, but the consumer world also

didn't stay still from the identity perspective. One thing that happened

was that, as we got more and more of our lives online, we found ourselves

more and more often with the need to access resources that we handle in

a certain application... from a different application.

Let me make a very concrete example. I guess that many of you have

LinkedIn, and many of you also have Gmail. Imagine the following scenario.

Say that a user is currently already signed in to LinkedIn in whatever way

they want. The mechanics of how they got signed in to LinkedIn are not

the point in this scenario. Say that LinkedIn wants to suggest you invite all

of your Gmail contacts to become part of your LinkedIn network.

OAuth2 and OpenID Connect: The Professional Guide 19

Now, how was LinkedIn used to do this? I'm using LinkedIn as an example

here, but it's basically the behavior of any similar service you can think of

before the rise of delegated authorization. Let’s take a look at this flow by

following the steps in the following figure:

LinkedIn would actually ask you for your Gmail username and password,

which are normally stored and validated by Gmail (1). You provide

LinkedIn with your Gmail credentials (2), and then LinkedIn would use

them to actually access the Gmail APIs used by the Gmail app itself for

programmatic access to its own service (3). This would achieve what

LinkedIn wants, which is to call the APIs in Gmail for listing your contacts

(4) and sending emails on your behalf.

We are using LinkedIn and Gmail only because

they are familiar names with familiar use cases,

but we are in no way implying that they are really

implemented in this way nor that they played any

direct role in authoring this book.

Figure 1.6

OAuth2 and OpenID Connect: The Professional Guide 20

What is the problem with this scenario? Many problems, but two, in

particular, are impossible to ignore.

The first problem is that granting access to your credentials to any entity

that is not the custodian of those credentials is always a bad idea. That is

mostly because those different entities will not have as much skin in the

game as the entity that is actually the original place for those credentials.

If LinkedIn does not apply due diligence and save those credentials in an

insecure place... sure, they'd get bad PR, but it will not be the catastrophe

that it would be for Gmail, for which the user access is now impacted. For

example, Gmail users will need to change passwords, creating a situation

where they are highly likely to defect or at least to experience lower

satisfaction with the service.

Here’s the second bad thing. Although LinkedIn’s intent with this

transaction was good (it is mutually beneficial both for me as a user

and for LinkedIn as a service to expand my network), the way in which

they have implemented the function gives them way too much power.

LinkedIn can actually use this username and password to do whatever

they want with my Gmail. They can read my emails, they can delete emails

selectively, they can send other emails, they can do everything they want

beyond the scenario originally intended - and that's clearly not good.

Delegated Authorization: OAuth 2.0

In response to the challenges outlined at the end of the preceding

section, the industry came up with a way of working around the problem

of giving too much power to applications.

OAuth 2.01 was designed precisely to implement the delegated access

scenario described earlier, but without the bad properties that we

identified as part of the brute force approach. The defining feature

of the OAuth 2.0 approach lies in the introduction of a new entity, the

authorization server, which explicitly handles operations related to

delegated authorization. I won't go too much into the details right now

because I'm going to bore you to death about it later in this book.

[1] The first incarnation of OAuth was OAuth 1.0, a protocol that resolved the delegated access scenario

but had several limitations and complications. The industry quickly came up with an evolution, named
OAuth 2.0, which solved those problems and completely supplanted OAuth1 for all intents and purposes.
For that reason, in this text we only discuss OAuth 2.0.

OAuth2 and OpenID Connect: The Professional Guide 21

Suffice it to say here that the authorization server has two endpoints:

•	 The authorization endpoint, designed to deal with the interaction with

the end-user. It's designed to allow the user to express whether they

want a certain service to access their resources in a certain fashion.

The authorization endpoint handles the interactive components of the

delegated authorization transaction.

•	 The token endpoint, which is designed to deal with software-to-

software communication and takes care of actually executing on

the intent that the user expressed in terms of permission, consent,

delegation, and similar concepts. More details later on.

Please note that in the following discussion, we assume that the user is

already signed in to LinkedIn even before the described scenario plays

out. We don’t care how the sign-in occurred in this context; we just

assume it did. OAuth 2.0, as you will hear over and over again, is not a

sign-in protocol.

Let’s say that, as part of their LinkedIn session, the user gets to a point

in which LinkedIn wants to gain access to Gmail API on their behalf, as

described in the last section for the analogous scenario.

In the OAuth 2.0 approach, that means that LinkedIn will cause the

user to go to Gmail and grant permission to LinkedIn to see their contacts

and send mail on their behalf. Let’s follow this new flow by taking a look

at this figure:

Figure 1.7

OAuth2 and OpenID Connect: The Professional Guide 22

LinkedIn follows the OAuth 2.0 specification to craft an authorization

request and redirect the user’s browser to Gmail’s authorization server

and, in particular, the authorization endpoint (1).

The authorization endpoint is used by Gmail to prompt the user (2)

for credentials if they are not currently authenticated with the Gmail

web application.

This is all within the natural order of things. In fact, it's Gmail asking a

Gmail user for Gmail credentials. So, no foul playing here; everything is

fine. As soon as the user is authenticated, the Gmail authorization server

will prompt the end-user, saying something along the lines of, "Hey, I have

this known client, LinkedIn, that needs to access my own APIs using your

privileges. In particular, they want to see your contacts, and they want to

send emails on your behalf. Are you okay with it?"

Once the user says okay, presumably, the authorization server emits an

authorization code (3). An authorization code is just an opaque string

that constitutes a reminder for the authorization server of the fact that the

user granted consent for those permissions for that particular client. The

authorization code is returned to LinkedIn via browser (4). From now on,

the rest of the transaction occurs on the server side.

Please note: before any of the described transactions could occur,

LinkedIn had to go to the authorization server and register itself as a

known client. As part of the client registration operation, LinkedIn received

an identifier (called client id) and, most importantly, a client secret. The

client id and client secret will be used to prove LinkedIn’s identity as an

application in requests sent to Gmail’s authorization server, in particular to

its token endpoint.

The remainder of the diagram explanation will give you an example of how

this occurs. Now that it has obtained an authorization code, LinkedIn will

reach out to the token endpoint of the authorization server (5) and present

with its own credentials (client id and client secret) and the authorization

code, substantially saying, "Hey, this user consented for this, and I'm

LinkedIn. Can I please get access to the resource I want?"

As an outcome of this, the authorization server will emit a new kind of

token, which we call an access token (6). The access token is an artifact

used to grant LinkedIn the ability to access the Gmail APIs (7) on the user’s

behalf, only within the scope of the permissions that the user

consented to (8).

OAuth2 and OpenID Connect: The Professional Guide 23

This solves the excessive permissions problem described in The

Password Sharing Anti-Pattern section. In fact, as long as LinkedIn

accesses the Gmail APIs only by attempting operations the user

consented to, the requests to the API will succeed. As soon as LinkedIn

tries to do something different from the consented operations, like, for

example, deleting emails, the endpoint will deny LinkedIn access because

the access token accompanying the API call is scoped down to the

permissions the user consented to (in our example, read contacts and

send emails). Scope is the keyword that we use here to represent the

permissions a client requested on behalf of the user. This mechanism

effectively solved the problem of excessive permissions, providing a way

to express and enforce delegated authorization.

What we have described so far is the canonical OAuth 2.0 use case, the

one for which the protocol was originally designed. In practice, however,

OAuth 2.0 is used all over the place, and it incurs all sorts of abuses,

that is, in ways in which OAuth 2.0 wasn't designed to be used. Be on

the lookout for those problematic scenarios: every time you hear that

some solution uses OAuth 2.0, please think of the canonical use case as

described here first. OAuth 2.0 supports many other scenarios, and we

will discuss most of them in this book. However, the core intent is as we

expressed in the use case we described in this section. Thinking about

whether a solution is using OAuth 2.0 in line with the intent expressed

here or delving from it significantly is a useful mental tool to verify whether

you are dealing with a canonical scenario or need to brace for non-

standard approaches.

OAuth2 and OpenID Connect: The Professional Guide 24

Layering Sign In on Top of OAuth 2.0: OpenID Connect

Let me give you a demonstration of one particularly common type of

OAuth 2.0 abuse. As OAuth 2.0 and delegated authorization scenarios

started gaining traction, many application developers decided that they

wanted to do more than just call APIs. They wanted it to achieve in the

consumer space what we achieved with SAML. They wanted to allow

users to sign in to their apps, reusing accounts living in a completely

different system. Instantiating this new requirement in the scenario we’ve

been discussing, LinkedIn might like users with a Gmail account to be

able to use it to sign in to LinkedIn directly, without the need to create a

LinkedIn account. In other words, LinkedIn would just want users to be

able to sign up on LinkedIn by reusing their Gmail accounts.

This is a sound proposition because, in many cases, people typically

aren't crazy about creating new accounts, new passwords, and similar. So,

making it possible to reuse accounts is not a bad idea in itself.

However, OAuth 2.0 was not designed to implement sign-in operations.

Most providers only exposed OAuth 2.0 as a way of supporting delegated

authorization for their API. They did not expose any proper sign-in

mechanism as it wasn’t the scenario they were after. That didn’t deter

application developers, who simply piggybacked on OAuth 2.0 flows

to achieve some kind of poor man's signing in. Imagine the delegated

authorization scenario described for the canonical OAuth 2.0 flow and

imagine it taking place with the user not being previously signed in to

LinkedIn. The following picture describes this flow:

Figure 1.8

OAuth2 and OpenID Connect: The Professional Guide 25

LinkedIn can perform the dance to gain access to Gmail APIs without

having any authenticated user signed in yet (1). As soon as LinkedIn

successfully accesses Gmail APIs (2), it might reason, “Okay, this proves

that the person interacting with my app has a legitimate account in

Gmail”. So LinkedIn might be satisfied by that and consider this user

authenticated, which in practice could be implemented by creating and

saving a session cookie (3), as we did during sign-in flows early on when

we discussed the SAML approach.

This pattern for implementing sign-in is still a common practice today. A

lot of people do this. It's usually not a good idea, mainly because access

tokens are opaque to the clients requesting them, which makes many

important details impossible to verify. For example, the fact that an access

token can be used to successfully call an API doesn't really say anything

about whether that access token was issued for your client or for some

other application. Someone could have legitimately obtained that access

token via another application (in our scenario, not as LinkedIn, but as

some other app) and then somehow managed to inject the token into the

request. If LinkedIn just uses that token for calling the API and it reasons,

“Okay, as long as I can use this token to call the API without getting an

error, I’ll consider the current user authenticated”, then LinkedIn would be

fooled in creating an authenticated session.

Another consequence of access tokens being opaque to clients is that an

attacker could get a token from a user and somehow inject it into the sign-

up operation for a completely different user. Once again, LinkedIn wouldn't

know better because unless the API being called returns information that

can be used to identify the calling user, the sheer fact that the API call

succeeds will not provide any information the client can use to determine

that an identity swap occurred.

This would be a good time to remind you that we

are using LinkedIn and Gmail only because they are

familiar names with familiar use cases, but we are

in no way implying that they are really implemented

in this way.

OAuth2 and OpenID Connect: The Professional Guide 26

The attacks I'm describing are called the Confused Deputy attack, and

they are a classic shortcoming of piggybacking sign-in operations on top

of OAuth 2.0.

Even more aggravating: with this approach, there is no way to standardize

the OAuth 2.0-based sign-in flow. In our model scenario, the last mile is

a successful call to Gmail APIs. If I want to apply the same pattern with

Facebook, the last mile would be a successful call to the Facebook Graph

APIs, which are dramatically different from the Gmail API. That makes it

impossible to enshrine this pattern in a single SDK that can be used to

implement sign-in with every provider across the industry, even if they all

correctly support OAuth 2.0.

This is where the main players in the industry once again came together

and decided to introduce a new specification called OpenID Connect,

which formalizes how to layer signing in on top of OAuth 2.0. I'll go into

painstakingly fine details about that effort in the rest of the book, but in

a nutshell, the central point of the approach is the introduction of a new

artifact, which we call the ID token. The ID token can be issued by an

authorization server via all the flows OAuth 2.0 defines. OpenID Connect

describes how applications can, instead of asking for an access token

(or alongside access token requests), ask for an ID token. The following

picture summarizes one of such flows:

Figure 1.9

OAuth2 and OpenID Connect: The Professional Guide 27

An ID token is a token meant to be consumed by the client itself, as

opposed to being used by the client for accessing a resource. The

characteristic of the ID token is that it has a fixed format that clients

can parse and validate. Using a known format and the fact that the

token is issued for the client itself means that when a client requests

and obtains an ID token, the client can inspect and validate it - just like

web apps secured via SAML inspect and validate SAML tokens. It also

means the ability to extract identity information from it, once again, just

like we learned that it's a common practice with SAML. Those properties

are what make it possible to achieve proper signing-in using OAuth 2.0.

The news introduced by OpenID Connect didn't stop there: the new

specification introduced new ways of requesting tokens, including one

in which the ID token can be presented to the client directly via the front

channel, between the browser and the application. That makes it possible

to implement sign-in very easily, just like we have learned in the SAML

case, without having to use secrets and a backside integration flow as

the canonical OAuth 2.0 API invocation pattern required.

What we have seen in this chapter can be thought of as a rough timeline

for the sequence of events that culminated with the creation of OpenID

Connect. In the next chapters, we will expand on the high-level flows

described here, going deep into the details of the protocol.

OAuth2 and OpenID Connect: The Professional Guide 28

Figure 1.10

Auth0: an Intermediary Keeping Complexity at Bay

What's the role of Auth0 in all this? You can think of Auth0 as an

intermediary that has all the capabilities in terms of protocols to talk to

pretty much any application that supports the protocols you support,

such as OAuth 2.0, OpenID Connect, SAML, WS Federation.

You can simply integrate your application with Auth0, which, in a

nutshell, is a super authorization server, using any of the standard

protocol flows we described in this chapter. From that moment on,

Auth0 can take over the authentication function. When it’s time to

authenticate, your app can redirect users to Auth0 and, in turn, Auth0

will talk to the different identity providers you want to integrate with,

in each case using whatever protocol each identity provider requires.

If the identity providers of choice use one of the open protocols I

mentioned, the integration Auth0 needs to perform is very easy. But if

they are using any proprietary approach, for the application developer,

it doesn't matter. Once the app redirects to Auth0, Auth0 takes care of

the integration details. For you, it's just a matter of flipping a switch and

saying, “I want to talk with this particular identity provider” - the result,

mediated by Auth0, will always come in the format determined by the

open protocol you chose to use for integrating with Auth0. In concrete,

OAuth2 and OpenID Connect: The Professional Guide 29

that's what we meant earlier when we stated that Auth0 abstracts

away the problem from you.

In addition, Auth0 offers a way of managing the lifecycle of a user.

Auth0 maintains its own user store; it integrates with external user

stores and exposes various operations you can perform to manage

users. For example, you can have multiple accounts sourced from

various identity providers that accrue to the same account in Auth0 and

your app. You can normalize the set of claims you receive from different

identity providers so that your application doesn't have to contain any

identity provider-specific logic.

We also provide ways of injecting your own code at authentication time

so you can easily execute custom logic, such as subscription, billing, or

any functionality that just makes sense in your scenario to occur at the

same time as authentication.

You have full control over the experience your users will go through,

as Auth0 allows you to customize every aspect of the authentication

UX. Auth0 makes it very easy for you to use the set of features, mostly

by providing a dashboard with a very simple point-and-click interface.

You can also use Auth0’s management APIs to achieve programmatic

access to everything the dashboard does and more.

That's it for Identity 101. It was a pretty quick whirlwind tour of the last

15 to 20 years of evolution in the world of digital identity. In the next

chapters, we'll spend a bit more time sweating the details.

OAuth2 and OpenID Connect: The Professional Guide 30

OAuth 2.0
and OpenID
Connect

Let's dig a bit deeper and specifically turn our attention to OAuth and

OpenID Connect (OIDC) as protocols.

Have you ever read any of the specifications of those protocols? I am

an old hand at this: I was working in this space when there were still

CORBA, WS-Trust, and various other old man's protocols. In the past,

identity protocols tended to be extraordinarily complicated: they were

XML-based and exhibited high-assurance features that made them

hard to understand and implement. For example, the cryptography they

used supported what was called message-based security - granting the

ability to achieve secure communications even on plain HTTP. It was an

interesting property, but it came at the cost of really intricate message

formatting rules that made implementation costs prohibitive for everyone

but the biggest industry players.

Now, the new crop of protocols - OAuth, OpenID Connect, and similar -

are based on simple HTTP and JSON - a reasonably simple format - and

they heavily rely on the fact that everything occurs on secure channels.

This simple assumption enormously simplifies things: together with other

simplifications and cuts, this makes the new protocols more approachable

and at least readable.

However, we are not exactly talking about Harry Potter. Plowing through

eighty-six pages of intensely technical language, such as the ones

constituting the OpenID Connect Core specification, is a pretty big

endeavor, even for committed professionals. If you work in the identity

space, you'll find yourself referring to the specifications in detail, over

and over again, with a lawyer-like focus, on each and every single word

- those documents are dense with meaning. You can also see that the

specifications have a pretty high cyclomatic complexity. That's to say,

there are multiple links that provide context, and usually, there is not a lot

of redundancy. If there is a link pointing to another specification defining

a concept used in the current document, you've got to follow the link

and actually learn about that concept before you can make any further

progress. There's really a very large number of such specifications, even if

you limit the scope to just one or two hops from the OpenID Connect and

OAuth 2.0 core specs. All the specifications you see in the constellation

of OAuth, OpenID, JWT, JWS, and similar are the core, describing the

most fundamental aspects that come into play when handling the main

scenarios those specifications are meant to address. An entire ring of best

practices or new capabilities is not shown here. The complete picture is, in

fact, much larger.

Chapter 2

OAuth2 and OpenID Connect: The Professional Guide 31

The main reason I am showing you this is to dispel the notion, which a

lot of people really like to believe, that adding identity capabilities to one

application is just a matter of reading the spec. If you want to do modern

identity, just read the OAuth 2.0 and OpenID Connect specifications, and

you'll be fine. Of course, the reality is quite different. If that were true, then

not many people would be doing modern authentication nowadays.

In fact, reading all these things is our job as identity professionals - as the

ones who build identity services, SDKs, quick starts, samples, and guides

that developers can use to get their job done without necessarily having

to be bogged down in the fine-grained details of the underlying protocols.

That said, given that the book you are reading is meant to be read by

aspiring identity professionals, the fine-grained details of the protocol

are among the things we want to learn about - and what you'll find in

abundance in the rest of the text.

However, I dislike the classic academic approach, which is so common

in other learning material about identity. There, you just get the lecture

and a laundry list of the concepts listed in these various specifications -

Figure 2.1

OAuth2 and OpenID Connect: The Professional Guide 32

college style - and are expected to figure out on your own how they apply

to your scenarios. The messages, artifacts, and practices defined in those

specifications are all there for specific reasons. Typically, it is for addressing

use cases and scenarios. Their language is such that it's not usually

presented in a scenario-based approach, as it would not be economical in

a specification to do so. That's a great approach for formal descriptions and

keeping ambiguity to a minimum, but not great for actually understanding

how to apply things in concrete.

I'm going to turn things around, and actually, apart from giving you some

basic definitions, I want to operate at the scenario level. I want you to

understand why things are the way they are and how they are applied in

particular solutions rather than just asking you to study for a test. In the

process, we will eventually end up covering all the main actors and all the

main elements in the specifications. Simply, we will not be following the

traditional order in which those artifacts are listed in the specs themselves.

We'll just follow the order dictated by the jobs to be done

that we want to tackle.

OAuth 2.0 Roles

Let's start with the few definitions I mentioned we need before starting our

scenario-based journey through the specifications. OAuth 2.0 and OpenID

Connect define a number of primitives required for describing what's going

on during identity transactions.

In particular, OAuth 2.0 introduces several canonical roles that different

actors can play in the context of an identity transaction. As OpenID Connect

is built on OAuth 2.0, it inherits those roles as well:

•	 The first one is the resource owner. The resource owner is, quite simply,

the user. Think of the LinkedIn and Gmail scenario in the preceding

chapter: the resource LinkedIn wants to access is the user's Gmail

inbox; hence the user in the scenario is the resource owner.

•	 Then we have the resource server, which is the guardian of the

resource, the gatekeeper that you need to clear in order to obtain

access. It typically is an API. In our model scenario, the resource server

is whatever protects the API that LinkedIn calls for enumerating contacts

and sending emails with Gmail on behalf of the resource owner.

OAuth2 and OpenID Connect: The Professional Guide 33

For OAuth 2.0, which is a delegated authorization protocol and a

resource access protocol, every application is modeled as a client.

However, we'll see that when we start layering things on top of

OAuth 2.0, and for example, we'll use OpenID Connect for signing in,

very often what, according to the spec jargon, is called the client will,

in fact, be the resource that we want to access. In that sentence,

I use “resource” not in the OAuth sense but in the general English

language sense of the word. You can see how naming “client” the

resource you want to get access to might be confusing!

Now that you have seen in Chapter 1 how OpenID Connect was

built on top of OAuth 2.0 scenarios, you know why. That's because

in OpenID Connect, signing in means requesting an ID token, which

is a special semantic access token meant to be consumed by the

requestor itself, rather than for accessing an external resource. Your

application is both the client (because it requests the IDtoken) and

the resource itself (because it consumes it instead of using it for

calling an API), but the term we end up using for describing the app

in protocol terms is just client. That can be confusing for the non-

initiated, but that's the way it is. I will often highlight this discrepancy

throughout the book.

•	 Then, there is the client, probably the most salient entity for developers.

From the OAuth 2.0 perspective, the client is the application that needs

to obtain access to the resource. In our example, that would be the

LinkedIn web application.

•	 Finally, we have the authorization server, which, as defined in

Chapter 1, Introduction to Digital Identity, is the collection of endpoints

used for driving the delegated authentication scenarios described there

(and many more).

The authorization server exposes the authorization endpoint, which is

the place where users go for anything that entails interactivity. Practically

speaking, the authorization endpoint serves back web pages. It's not always

literally the case, as we'll see in the chapter about SPA, but the cases in

which we don't show a UI on the authorization point are an exception.

The authorization server also features a token endpoint, which apps

typically speak to programmatically, performing the operation that actually

retrieves tokens.

OAuth2 and OpenID Connect: The Professional Guide 34

Authorization and token endpoints are defined in OAuth 2.0 Core.

OpenID Connect augments those with the discovery endpoint. This is a

standard endpoint that advertises, in a machine-consumable format, the

capabilities of the authorization server. For example, it will list information

like the addresses of the two endpoints I just described. Another essential

information the discovery endpoint provides is the key that OIDC clients

should use for validating tokens issued by this particular authorization server,

and so on, and so forth.

OAuth 2.0 Grants and OIDC Flows

The most complicated things in the context of OAuth 2.0 and OpenID

Connect are usually what we call grants. In a nutshell, grants are just

the set of steps a client uses to obtain some kind of credential from the

authorization server, for the purpose of accessing a resource. As simple

as that. OAuth 2.0 defines a large number of grants because each of them

makes the best of the ability of a different client type to connect to the

authorization server in their own ways, according to its peculiar security

guarantees. Grants also serve the purpose of addressing different scenarios,

such as scenarios where access is performed on behalf of the user vs. via

privileges assigned to the client itself and many more.

I won't go into details of the various grants here because we are going to

pretty much look at all of them inside out through this book. Suffice it to say

at this point that there is a core set of grants originally defined by OAuth 2.0:

Authorization Code, Implicit, Resource Owner Credentials, Client Credentials,

and Refresh Token. OpenID Connect introduces a new one, the Hybrid,

which combines two particular OAuth 2.0 grants into one single flow.

In addition to the grants defined by the core OAuth 2.0 and OpenID Connect

specifications, the OAuth 2.0 working group at IETF and the OpenID

Foundation continuously produce independent extensions devised to

address scenarios not originally contemplated by the core specs, or deemed

too specific for inclusion. The ability to add new specifications to extend and

specialize the core spec is a powerful mechanism that helps the community

receive the guidance it needs to address new scenarios as they arise.

The book will examine every essential grant in detail, with a particular

emphasis on the scenarios for which a specific grant is most appropriate,

the reasons behind the main features characterizing every grant, and the

most important factors that need to be taken into account when choosing

to solve a scenario with a specific grant.

OAuth2 and OpenID Connect: The Professional Guide 35

OAuth 2.0
and OpenID
Connect

Starting with this chapter, we are going to dive deeper into concrete

scenarios. Let's begin with the most common one: Web Sign-In.

Confidential Clients

Before I actually get into its mechanics, I have to introduce at high level

a couple of artifacts and terminology that we use in the context of

OAuth 2.0 in OpenID Connect. In particular, I want to talk to you about

client types.

A confidential client in OAuth 2.0 is a client that has the ability to

prove its own application programmatic identity. It's any application to

which the authorization server can assign a credential of some type

that allows the app to prove its identity as a registered client during any

request to the authorization server.

This typically happens with any singleton app. Think of a website that

is running on a certain set of machines. Even if executing on a cluster,

it's one logical entity running there. When I provision my client by

registering it at the authorization server, I have a clear identity for it. I

have URLs that determine where this client lives, and I have a flow for

getting whatever secret we want to agree upon, which I can save and

protect locally.

Allegedly, if the application runs on a server, the server administrator

is the only person who can access that secret. Contrast all of this with

applications that, for example, run on your device: those apps are all

but a singleton. Every phone will have a different instance of Slack,

for example. When you download the application from the application

store, there is no easy way to get a unique key representing that

particular instance of a client.

You certainly cannot embed such a key in the code because it would

be de-compiled in a second, and you'd be in trouble. Also, the device

is always available in the pockets of the people using it. It is outside

of your control, so there is no way for you to protect the key for an

extended period of time. A motivated hacker has an infinite time to

actually dig into the device, as opposed to a server that must first be

breached before it can reveal its secrets.

Chapter 3

OAuth2 and OpenID Connect: The Professional Guide 36

In summary, confidential clients are clients for which it's appropriate to

assign a secret. The classic scenario is websites that run with a server

But you can also think of an IoT scenario in which you want to identify the

device itself rather than its user.

Another scenario involves long-running processes.

For example, consider a continuous integration system that uses your

Jenkins, compiles your product overnight, runs tests, and similar long-

running tasks. You’ll likely want that daemon to run with its own identity,

as opposed to the identity of a user. In fact, if you use the identity of a

user and then the user leaves the company, everything may grind to a

halt, and no one knows why. This happens because people very often

forget that a particular user identity was used for running these scripts.

So, assigning its own identity to the daemon is a better option.

One subtlety here is that even if an application is a confidential client,

not every single grant that the application does will require using a client

credential. It is a capability that the application has, but it doesn't have

to exercise it every time. There will be, in fact, scenarios like the one that

we are about to explore, in which there is no need to use keys. Typically,

the key is used to prove your identity as a client when you're asking for a

token to access a different resource. Instead, we'll see that in the case of

Web Sign-In, you are the resource.

OAuth2 and OpenID Connect: The Professional Guide 37

The Implicit Grant with Form Post

The grant we're going to use here is the Implicit grant with Form Post.

It is kind of a mouthful, but, unfortunately, that's the way the protocol

defines it. This is something that wasn't possible before OpenID Connect.

It is the easiest way to achieve Web Sign-In using OpenID Connect, and

it is really similar to SAML. In fact, it basically follows the same steps

that I've described when I demonstrated the first SAML flow in the first

chapter, Introduction to Digital Identity.

This grant constitutes the basis of something that only OpenID Connect

can do, that is, combining signing in to a website with granting that

website delegated permission to access an API. What we are going to do

now is to study half of that transaction. We'll only look at the sign-in part.

When we will talk about APIs, we'll look at the other half. Those two halves

can be combined so that the user experience is truly streamlined. Also, in

terms of design, combining sign-in and API invocation capabilities makes

it possible for an application to play multiple roles. This is a really powerful

scenario that wasn't possible before OpenID Connect.

Given that we're using the front channel, we don't need to use the

application credentials. There are security implications here and there,

but, as just said, it is just like SAML.

Setting this thing up from a developer’s perspective is a thing of beauty.

You just install your middleware in front of your application. Then, you

use your configuration to point it to the discovery endpoint, as we

mentioned in Chapter 2, OpenID Connect and OAuth, and just specify the

identifier assigned as a client when you registered your application. In the

authorization server, you need to specify the address where you want to

get tokens back to the app, and you’re done.

A detailed walkthrough

Let's see in detail how the Implicit grant with form_post works. Take a look

at the scenario shown in Figure 3.1:

OAuth2 and OpenID Connect: The Professional Guide 38

Figure 3.1

OAuth2 and OpenID Connect: The Professional Guide 39

We have a user with a browser, a web application protected by a

middleware implementing OpenID Connect, and an authorization server.

You might notice that in this authorization server, I'm showing only the

authorization and discovery endpoints. I don't show the token endpoint

because we don't use it in this particular flow.

The idea is that, as soon as this web application comes alive, the

middleware will reach out to the discovery endpoint and learn

everything it needs about the authorization server. In particular, it will

get the authorization endpoint’s address and the key to be used for

checking signatures. We’ll show how all those steps occur in detail

later (see Metadata and Discovery section). For now, we’ll focus on the

authentication phase properly.

1.	 Request Protected Route on Web App

In the first step, the browser reaches out to the application

to get one particular route, which happens to be protected

and hence not accessible by anonymous requests.

2.	 Authorization Request Redirect

The middleware intercepts this call and emits an authorization request

for the authorization server in response. The HTTP response has an

HTTP 302 status code, i.e., it's a redirect. It has several parameters

meant to communicate all the information necessary to perform

the required authentication operation to the authorization server.

Let's see how the access plays out by describing each numbered step.

Figure 3.2

OAuth2 and OpenID Connect: The Professional Guide 40

It’s really important to understand the anatomy of this message since all

the other messages we'll see will be derivatives of this. Here, we're going

to touch on all the most relevant parameters.

•	 Authorization endpoint

The first element is the authorization endpoint. That's the address

where we expect the authorization endpoint functionality to be for

the authorization server.

•	 Client ID

This client_id parameter is the identifier of your application at the

authorization server. The authorization server has a bundle of

configuration settings associated with your app, and it will bring those

up in focus when it receives this particular client ID.

•	 Response type

The response_type parameter indicates the artifact that I want. In this

particular case, I want to sign in, so I need an ID token. Consequently,

the value of the response_type parameter will be id_token. I can ask

for a wide variety of artifacts, including combinations of artifacts; we'll

see those combinations in detail.

•	 Response mode

Response mode is how I want these artifacts to be returned to me.

I have all the choices that HTTP affords me. I can get things in the

query string, but this is usually a bad idea because artifacts end up

in the browser history. I can get the artifacts in a fragment, which is

still part of the URL but not transmitted to a server. I can get them as

a form post (form_post), which is what we are using here. In this case,

we just want to make sure that we post the token to our client. This

way, we don't place stuff in the query string, which, as mentioned,

is generally a bad practice from the security perspective. The use of

a POST also allows us to have large tokens. In fact, if you place stuff

anywhere but in a form post, you might run into size limitations.

•	 Redirect URI

The redirect_uri parameter has a very important role. It represents

the address in my application where I expect tokens and artifacts to

be returned. I need to specify this because the tokens we use in this

context are what we call bearer tokens. Bearer tokens are tokens

that can be used just by owning them. In other words, I can use

them directly without needing to do anything else, as other types

of tokens might require. For example, other types of tokens may

require me also to know a key and use it at the same time. But bearer

tokens don't. You will hear much more about bearer tokens in the

OAuth2 and OpenID Connect: The Professional Guide 41

token validation section (see Principles of Token Validation). So, it is

imperative that I use only HTTPS so that no intermediary can interject

itself and intercept traffic.

Also, it is very important that I specify the exact address I want the

response to be sent back to. If I don’t and, for example, instead of

doing a strict match with the provided address, I allow callers to

attach further parameters, I put communication security at risk. What

might happen - and it did happen in the past - is that there might be

flaws in the development stack I'm using that will cause my request to

be redirected elsewhere. That would mean shipping my bearer tokens

to malicious actors, and that’s all they’d need to impersonate me.

OAuth 2.0 and OpenID Connect are strict about this: the redirect URI

you specify in the request must be an exact match of what you want.

•	 Scope

The scope parameter represents the reason I'm asking for the

artifacts. In the example above, I specified openid, profile, and email,

which are scopes that cause the authorization server to issue an ID

token with a particular layout. It's somewhat redundant with the earlier

response type, but I’m also asking for enriching this ID token with the

user’s profile and email information, if present.

In short, with the scope, I am specifying the reason I want the

artifacts I am requesting. We will see that, when we use APIs, we ask

for particular delegated permissions we want to acquire.

•	 Nonce

The nonce parameter is mostly a trick for preventing token injection.

At request time, I generate a unique identifier and save it somewhere

(like in a cookie). This identifier is sent to the authorization server, and

eventually, the ID token that I receive back will have a claim containing

the same identifier. At that point, I'll be able to compare that claim with

the identifier I saved, and I'll be confident that the token I received

is the one I requested. If I receive a token with a different (or no)

identifier, I have to conclude that the response has been forged and

the token injected.

It is worth mentioning that I specified form_post as the value for

response_mode because the default response mode of the ID token would

be different (it would have been fragment); hence I had to override it explicitly.

The following table shows the default response mode for each response

type defined by OAuth 2.0 and OpenID Connect. If I omit response_mode in

the request, the authorization server will apply its default value:

OAuth2 and OpenID Connect: The Professional Guide 42

Note that the upcoming OAuth 2.1 specification will deprecate the

token response type, so all the response types containing token will be

deprecated as well.

response_type default response_mode

code query

token fragment

id_token fragment (query disallowed)

none query

code token fragment (query disallowed)

code id_token fragment (query disallowed)

id_token token fragment (query disallowed)

code id_token token fragment (query disallowed)

3.	 Authorization Request

The next step for the browser is to honor the 302 redirection and

actually perform a GET, hitting the authorization endpoint with all the

parameters I just described.

From now on, the authorization server does whatever it deems

necessary to authenticate a user and prompt for consent. How

this occurs isn't specified by OAuth 2.0 or OpenID Connect. The

mechanics of user authentication, credentials gathering, and the

like are a completely private matter of the authorization server as

long as the eventual response is in the standard's format. You can

have multi-factor authentication, multiple pages, or one single page.

It doesn't matter as long as you come out with a standard result.

OAuth2 and OpenID Connect: The Professional Guide 43

4.	 Authorization Response

Once everything works out, you get an HTTP response with a 200

status code. This means that you have successfully authenticated with

the authorization server. The authorization server will set a cookie that

represents your session with it. So, if you need to hit the authorization

endpoint again later on, you will not have to enter credentials to sign in

explicitly. You might have to give more consent, for example, but you

shouldn't have to re-enter credentials.

The other important part to note here is the ID token we requested.

It is being returned as a parameter in the form post we are getting.

You can see in the body of the HTML being returned that the

JavaScript onload event is wired up to submit a form automatically.

5.	 Send the Token to the Application

As soon as the page returned by the authorization server gets

rendered, it will post the form to our application. This means that the

requested ID token has finally been sent to my web application.

6.	 Token Validation and Web App Session Creation

What happens now is pretty much the same thing that we studied

earlier in the web sign-on scenario in the first chapter, Introduction

to Digital Identity. The application receives the ID token and decides

whether or not it likes it according to all the various trust rules and

what it has learned from the discovery endpoint. If it likes it, the app

will emit an HTTP 302 response with its own cookie. Thanks to that

cookie representing an authenticated session with my app, I will

not need to get the ID token again as long as the cookie is valid.

With the cookie creation, the app emits an HTTP 302 response,

redirecting the browser to the original route it requested.

7.	 Request Protected Route with Authorization

As the browser honors the redirect, we end up where we started:

we request a protected route, but this time, we present a

session cookie with it.

If you compare the original request with this redirect, you will discover

that it is exactly the same request but with a cookie coming along.

OAuth2 and OpenID Connect: The Professional Guide 44

8.	 Access the Protected Route

Finally, after this long back-and-forth, we can get our response: an

HTTP 200 response with a page in the body.

From now on, every subsequent request to the application will carry

the session cookie, proving that an authenticated session is in place.

Anatomy of an ID Token

As we said earlier, the ID token is an artifact that proves that successful

authentication occurred. We have two ways of requesting it: using a

response_type parameter with the id_token value and using a scope

parameter with the openid value.

The reason we have two mechanisms is that the authors of the

specifications wanted to be able to use OpenID Connect even if your

SDK was only based on OAuth 2.0. In fact, at the OAuth 2.0 time, there

was no ID token in the enumeration of a response type. Since scopes are

completely generic as a parameter, then the ability to use one particular

scope that would cause the authorization server to return an ID token

was a great way of being backward-compatible. Today, it's a great way of

getting confused, but now that you know, you no longer run this risk.

OpenID Connect defines the ID token as a fixed format, the JSON Web

Token (JWT) format. The specification actually defines not just the format

but also the list of claims that must be present in an ID token. In addition,

it even tells you in normative terms what you need to do in order to

validate some of those claims. As we said, if I include a profile or email

value in the scopes of my request, I will cause the content of the ID token

to look different.

OAuth2 and OpenID Connect: The Professional Guide 45

Just to get a feeling of it, here you can see what you would normally see on

the wire:

That’s what a JWT token normally looks like, with its Base64 encoded

components. If you go to jwt.io, which is a very handy utility offered

by Auth0, you can actually paste the bits of your ID token and see it

automatically decoded. The following picture shows an example of

such decoding:

Figure 3.3

Figure 3.4

OAuth2 and OpenID Connect: The Professional Guide 46

On the right side, you can see a header that describes the shape of this

specific JWT. In particular, by examining the header content, we find that

this token is in JWT format, what algorithm has been used for signing it,

and a reference to the key required to validate the signature, which in

this case corresponds to the key that we downloaded from the discovery

endpoint (more on that in a moment).

If you look at the payload, you’ll find that it contains the actual information

we expected to retrieve. Going into more details, we have:

•	 The issuer (iss), which is a string representing the source of the token.

It is the entity behind the authorization server - like the key, also found

via the discovery endpoint.

•	 The audience (aud), which represents the particular application the

token has been issued for. It is very important to check this claim. As

an app receives this token, the middleware used for validating it will

compare what was configured to be the app identifier (in the case

of sign-in and ID tokens, that will correspond to the client ID of the

app) with the audience claim. If there is a mismatch, that means that

someone stole a token from somewhere else and is trying to trick the

app into accepting it.

•	 The issued-at (iat) and expiration (exp) are coordinates used to

evaluate whether this token is still within its validity window or if,

being expired, it can no longer be accepted. During the API

discussion, we'll see that access tokens and ID tokens typically

have a limited validity time.

•	 All the other claims are pretty much identity information about the

user, which is present in the ID token only because I asked for profile

and email in the scope parameter.

OAuth2 and OpenID Connect: The Professional Guide 47

Principles of Token Validation

We've been talking about validating tokens quite a lot, relying on the

intuition that it entails validating signatures and performing metadata

discovery. Let's explore the matter in more detail and have a more organic

discussion about what it means to validate tokens.

We have seen the function that tokens perform in a couple of scenarios.

We have seen signing in with SAML. We have seen access tokens for

calling APIs, and in particular, right now, we have seen how to use an ID

token to sign in. All those scenarios entail an entity, the resource, receiving

a token and making a decision about whether it entitles the caller to

perform whatever operation the caller is attempting. How does the

resource make that decision?

Subject Confirmation

Subject confirmation is a concept we inherit from SAML. In particular,

the subject confirmation method determines how a resource decides

whether a token has been used correctly.

•	 Bearer

Is the simplest. It is similar to finding 20 dollars on the floor. You pick

up the money, go wherever you want to use this money, use it, and

you're going to get the goods or services you are paying for. No

further questions will be asked because all it takes to use 20 dollars

is to own those 20 dollars and for them to change hands. That's the

substance of the bearer subject confirmation method. If you have the

bits of a token in your possession, you are entitled to use the token

•	 Proof of possession

Is something more advanced. In proof of possession, you have a

token containing a key of some kind in some encrypted section.

This encryption is specifically done for the intended recipient of

the token. The idea is that when a client obtains such a token, they

also receive a separate session key, the same key embedded in the

encrypted section of the token. When the client sends a message to

the intended recipient, it attaches the token as in the bearer case,

but it also uses this session key to do something - like signing part

of a message.

OAuth2 and OpenID Connect: The Professional Guide 48

Until recently, almost no one used proof of possession in OAuth 2.0 or

OpenID Connect. But proof of possession is now coming back. A recent

specification, Demonstrating Proof of Possession (DPoP), shows how to

use the mechanism I just described in OAuth 2.0 and OpenID Connect,

although it will take some time before it is widely adopted. So, to all intents

and purposes, you can think of Bearer tokens as being the law of the land.

There is another concept - the sender constraint - but I'll talk more about

it when we deal with native clients (Chapter 5, Desktop and Mobile Apps).

Format Driven Validation Checks

In OAuth 2.0, access tokens have no format. The standard doesn't specify

any format, mostly because originally, it was intended for a scenario where

the authorization server and the resource server are co-located and can

share memory.

Think, for example, of the scenario we described in the first chapter,

where Gmail is the resource server with its own APIs, and it's also the

authorization server.

In that particular scenario, those two entities can share memory. They

can have, for example, a shared database. So, when a client asks for an

access token, this access token can be just an opaque string that is the

primary key in a specific table where the authorization server has saved

the consent granted by the user to the client.

When the client makes a call to the resource server presenting this token,

the resource server grabs the token and just uses it to find the correct row

in the database and then the consented permissions. The resource server

uses that information to make an authorization decision.

When the resource receives the token and the message, they will

validate the token in the usual way as we described for the bearer

method. Once that is done, they will extract the session key from

the portion that was encrypted for them. They'll use the session key

to validate the signature in the message. If the validation works, the

recipient will know for certain that the caller is the original requestor

that obtained the token in the first place. Otherwise, they would not

have been able to use the session key.

This mechanism is more secure than the bearer: an attacker

intercepting the message would be able to replay the token, but

without knowledge of the session key, they could not perform the

additional signature and provide proof of possession.

OAuth2 and OpenID Connect: The Professional Guide 49

This scenario complies with the spirit of the spec - and also the letter of the

spec - and we didn't need to mandate any specific format.

However, in the case of OpenID Connect, we did define a format for the ID

token. We expected the receiver actually to look inside a token and perform

validation steps. This typically happens when the resource and authorization

servers are not co-located and, hence, cannot use shared memory to

communicate. In those cases, you typically (but not always) rely on an

agreed-upon format.

Also, in the SAML case, we defined a format, a set of instructions on how to

encode a token.

In the case of format-driven validation checks, there are certain constraints

that apply pretty much to every format, and in particular, to JWT:

•	 Signature for integrity

Your token is signed, and we have seen the reasons we want to sign

a token: to be sure of the token’s origin and to prevent tampering in

transit. The token must provide some indication about the key and the

algorithm used so its recipient can check its signature.

•	 Infrastructural claims

Token formats typically include infrastructural claims, which provide

information the token recipient must validate to determine whether the

incoming token should be accepted. One notable example of those

claim types is the issuer, which is, to say, the identifier of the entity

that issued (and signed) the token, and that should correspond to

one of the issuers trusted by the intended recipient. Another common

infrastructural claim, the audience, says for whom a token is meant to.

You need the audience claim to have a way of validating that the token

is actually for a specific recipient. You also need expiration times claims:

tokens have typically restricted validity so that there is the opportunity to

revoke them.

Those are all claims that you would expect tokens to have and that the

middleware is typically on point to validate.

Alternative Validation Strategy: Introspection

There is a different way of validating tokens, which goes under the name of

introspection. With this approach, the resource receiving a token considers

it opaque. It may happen because it doesn’t have the capability to validate

the token. It should be rare in the JWT case because checking a JWT is

pretty trivial and can be done in any dev stack.

OAuth2 and OpenID Connect: The Professional Guide 50

However, imagine that, for some reason, you cannot assume that incoming

tokens are in a format that you know how to validate. You can take the

incoming token and send it to the introspection endpoint, which is an

additional endpoint that authorization servers can expose. Given that

you connect to the introspection endpoint using HTTPS, you can actually

validate the identity of the server itself. You can be confident that you are

sending the token where it's meant to go, as opposed to a malicious site.

The authorization server examines the token, determines whether that

token is valid or not, and, if it is valid, sends down the same channel the

content of the token itself (e.g., claims).

In a nutshell, the resource server sends back tokens to the authorization

server saying, "Please tell me whether it's valid or not." The authorization

server can render a decision and send it back to the client, along with the

content of the token, so that the resource can peek inside.

Personally, I'm not crazy about introspection, mostly because it's brittle.

You need to have the authorization server up and available, and if your

application is very chatty, you might get throttled, for example. Also, with

this approach, you need to wait until you have one extra network round

trip before you can actually make an access control decision about the

resource you're calling. You might run out of outgoing HTTP connections,

which typically live in a pool. It's a lot of work.

Sometimes there are no alternatives. But in general, for Auth0, given that we

always use JWTs and public cryptography, it's usually better if you validate

your own token at your API.

Metadata and Discovery

Token validation middleware discovers the values expected in valid tokens

through the discovery endpoint. The middleware simply hits the URL

./well-known/openid-configuration, which is defined by OpenID Connect,

and retrieves validation information according to the specification.

The document published at this URL typically contains direct information

that we need to have, like the issuer value, the addresses of our

authorization endpoint, and similar. It also connects to a different file

containing the actual keys, which could be literally the bits of X.509 public

key certificates.

Let’s take a look at how middleware extracts validation information from the

discovery endpoint by following the numbered steps in Figure 3.5.

OAuth2 and OpenID Connect: The Professional Guide 51

Figure 3.5

OAuth2 and OpenID Connect: The Professional Guide 52

2.	 Receive Configuration Document

What you get back is a big JSON document with all the values required

to validate incoming tokens.

For example, just to highlight some of these values, you have the

address of the authorization endpoint (authorization_endpoint), the

value of the issuer (issuer), which is the value that we are supposed

to validate against, a list of supported claims (claims_supported),

the supported response modes (response_modes_supported),

and a pointer to the file where all keys are kept (jwks_uri).

3.	 Request Keys

The next step is to actually make a GET request to

the address where the keys are published.

4.	 Receive Keys

The result of that request will be another file containing a collection

of keys with their respective supported algorithm (alg), their identifier

(kid), and the bits of the public key. The middleware programmatically

downloads all of that stuff and keeps it ready.

Those keys will occasionally roll because it's good practice

to change them. Your middleware will simply have to reach

out and re-download these keys when it happens.

1.	 Request Configuration

At load time or even the first time you receive a message, the

middleware contacts the discovery endpoint.

That’s a simple matter of making an HTTP GET request to the

./well-known/openid-configuration endpoint of the authorization server.

OAuth2 and OpenID Connect: The Professional Guide 53

Calling an API
from a Web App

In this chapter, we move our attention to calling APIs. This is the

quintessential scenario addressed by OAuth 2.0: delegated access to APIs

is the main reason for OAuth’s existence.

Most of the discussion will focus on the canonical grant OAuth 2.0 offers

to address the delegated API access scenario, the Authorization Code

grant. We’ll also take a look at other grants, such as the Hybrid flow and

the Client Credentials grant, which can be used to call APIs in slightly

different scenarios.

The Authorization Code Grant

At a high level, the way we typically invoke an API from a web application

is roughly the same way we’d call an API from any client flavor. Details will

differ, as we will see throughout the book.

Depending on the client’s flavor, we'll use different grants with different

properties. In particular, in this chapter, we want to focus on the scenarios

in which a web application calls an API from its server-side code. For

that purpose, we use the OAuth 2.0 Authorization Code grant. The

Authorization Code grant, Code grant from now on for brevity, empowers

one web application to access an API on behalf of a user and within the

boundaries of what the user granted consent for. This is the grant we

encountered when introducing OAuth 2.0 in Chapter 1.

In the section Layering Sign In on Top of OAuth 2.0: OpenID Connect

of Chapter 1, we've seen that some people tried to stretch this grant to

achieve sign-in, as opposed to invoking an API. In the same section, we

have seen how if you just use this grant to obtain and use access tokens

for signing in, things don’t work out that well. We have seen how OpenID

Connect is layered on top of this grant to achieve sign-in the right way,

and we'll have more considerations about it in this chapter. At this point, I

just want to stress that what we are looking at in this chapter is aimed at

calling APIs and not at signing in.

Chapter 4

OAuth2 and OpenID Connect: The Professional Guide 54

Another important concept to grok upfront is that

the Code grant will only empower an application to

do up to as much as the user can already do and

no more. If anything, the application will usually end

up having fewer access rights. Users cannot use

the Code grant to grant applications access to the

resources the users themselves don't own or have

the rights to. When thinking about OAuth 2.0 and

the Code grant in particular, it's easy for people to

get confused. They observe that APIs grant access

to a call depending on the presence of scopes in

the token. That lends to the belief that the scopes

themselves are what grant the client the privileges

to access the resource. Actually, the scopes

select what privileges the user already has and is

delegating to the client.

I just want to stress that the Authorization Code

grant is a delegated flow. It allows clients to do

things on the user’s behalf, which means that

the user’s capabilities are a hard limit for what an

application can do on the user’s behalf. In other

words, a client obtaining a token via Code grant

cannot do more than the user can. If you need a

client to do more than the user can do, which is

a common scenario, then you need to switch to

a different flow in which permissions are granted

directly to the application that needs it, with no user

involvement. Clear as mud? Don’t worry. We'll revisit

those points later in the chapter.

OAuth2 and OpenID Connect: The Professional Guide 55

In the last chapter, we explored how to perform web sign-in through

the front channel, which afforded us the luxury of implementing the

full scenario without any secrets. As you witnessed in the detailed

descriptions of flows and network traces, no secret came into play. In

the Authorization Code grant, however, using an application credential

such as a client secret is inevitable. Whenever the web app redeems

an authorization code, it needs to authenticate as a client to the

authorization server.

We will approach the delegated API invocation scenario differently

depending on whether one needs to access the APIs only while a user is

present and currently signed in to the application, or whether one needs

to acquire permanent access to the APIs and perform calls to these APIs

even when no user is present.

My favorite example is an application that can publish tweets at an

arbitrary time. Personally, I don't like to wake up early in the morning; I

really hate it. Nonetheless, it turns out that tweets get the best exposure

when they come out pretty early. The fact that I’m based on the West

Coast makes things even worse: if I have to publish tweets manually at

a time that should be considered morning in the entire North America,

I’d have to wake up really early. Luckily, there are applications I can use

for tweeting on my behalf at whatever time I schedule beforehand.

Those applications are a typical example of a client needing an access

token always available to call the Twitter API on my behalf, regardless of

whether I am currently signed in an active session or am blissfully still

asleep. This is one of the classic scenarios, offline access, demonstrating

the need and intended usage of a very important artifact - the refresh

token. Once again, we’ll explore this scenario in detail in this chapter.

Without further ado, let's dive into the details of the Authorization Code

grant with the help of the diagram in Figure 4.1.

OAuth2 and OpenID Connect: The Professional Guide 56

Figure 4.1

OAuth2 and OpenID Connect: The Professional Guide 57

1.	 Route Request

In our sample scenario, the user hits a web application route that

allows the user to book an appointment. Booking an appointment

requires accessing the booking API on behalf of the user, which

causes the web app to generate a request for delegated access.

Note, if you compare the equivalent step in the flow described in

Chapter 3, section The Implicit Grant with Form Post for the sign-in

operation, you will notice that the web app does not have a middleware

in front to intercept the route request. In this case, the route isn’t the

asset we want to protect: requesting that route just happens to be

the thing that triggers the need to acquire a token to call an API. The

logic necessary to generate the associated delegated authorization

request is, in fact, inside the app codebase itself (although it will

often be implemented by an SDK rather than from scratch).

2.	 Authorization Request

The application’s reaction to the request is somewhat familiar: a 302

HTTP status code response with a message for the authorization

server. However, you can see a number of differences with the

equivalent step 2 in section The Implicit Grant with form_post

of Chapter 3.

The diagram depicts the usual actors we encountered in Chapter 2:

•	 On the far left, the user and their browser.

•	 The authorization server, on top. Note that this time, both the

authorization and the token endpoints are present in the picture, as

both will come into play.

•	 A web application roughly in the middle.

•	 The API the web app needs to call as part of our scenario.

Just like we did during the first explanation of the OAuth 2.0 flow in

Chapter 1, section Delegated Authorization: OAuth 2.0, we assume the

user has already signed in to the web application. We don't know how

that sign-in operation occurred, and we don't care in this context - the

API invocation operation can be performed independently of the sign-in

(although we will later see, in the section on Hybrid flow, that there are

potential synergies there). Let’s examine the message sequence in detail.

OAuth2 and OpenID Connect: The Professional Guide 58

First, we are setting a cookie to track the nonce value

(see Chapter 3, section Authorization Request Redirect for more

details), as besides the access token needed for accessing the API,

we'll also be asking for an ID token. The ID token is useful in this flow,

knowing a bit more about the transaction, given that the access

token itself is opaque to the client. More details later in this chapter.

Next, in the captured trace message, we have the authorization

endpoint. Let’s ignore the audience parameter for a second. The

next entry is the client_id, which represents the client ID identifying

the web app at the authorization server.

The response_type for this particular grant is code. We want to

obtain a code from the authorization endpoint, which the web app

will later exchange via the token endpoint for an access token.

We don't need to specify the response mode because we are okay

with a default response mode, which in the case of code response

type is query - meaning that we expect the authorization server to

return the authorization code in a query string parameter.

Next, we find the scope parameter. This message includes all the

same scope values encountered earlier - openid, profile, and email -

indicating that we require an ID token alongside the code. This time,

however, we aren’t requesting an ID token for sign-in purposes; we

just want to have some information about who the resource owner

granting permission in this transaction is. Without an ID token, that

is to say, something the client itself can consume, we would have no

way to know. We'd just blindly get an access token and use it with no

indication about the identity of the user who obtained it.

The scope collection includes a scope value we haven’t

encountered yet, read:appointment. That scope value represents a

permission exposed by the API we want to invoke; in other words,

one of the things that can be done when using that particular API

and can be gated by an authorization check. By presenting that

scope value in the authorization request, the client says to the

authorization server, “This web application wants to exercise the

read:appointment privilege on behalf of the user”. That's something

that the authorization server needs to know. It will determine

important details in the way the request is handled, such as the

content of the consent prompt presented to the user and the actual

outcome of granting the delegated permissions.

OAuth2 and OpenID Connect: The Professional Guide 59

The next parameter represents the redirect URI, which you are already

familiar with. The last parameter in the captured message is the nonce,

a token injection prevention mechanism we encountered earlier

in the book.

Now that we covered every message parameter in detail, let’s revisit

the audience parameter. When requesting an access token for an API

protected by Auth0, a client is required to specify one extra parameter,

called audience, indicating the identity of the resource to which the

client is requesting access.

The core OAuth 2.0 specification does not contain any parameter

performing this function, mostly because there is an underlying

assumption (though not a requirement) that the resource server

and authorization server are co-located. This assumption makes it

unnecessary to identify which resource server the request refers to.

For a concrete example of this scenario, consider how Facebook

uses OAuth 2.0 for gating access to its Graph API. The Facebook

authorization server can only issue access tokens for the Facebook

Graph API; there is no other resource server in the picture. The only

latitude left to clients is to specify different scopes for that one

resource server, the Facebook Graph. Different scopes will express

different permissions and operations I intend to exercise, but they

will all refer to the same resource server, which doesn’t need to be

explicitly named in the authorization request. Similar considerations

hold for Google, Dropbox, and other popular services. Whenever

clients get tokens from those services, they are always calling the

provider’s own APIs, whose identity results self-evident from the

context without requiring an identifier in the request.

When the solution includes a third-party authorization server, like in

the case of an Auth0 customer leveraging the Auth0 authorization

server to secure its own custom API, the topology allows the same

authorization server to gate access for a multitude of resources, which

can all live in different places. In that scenario, the client needs to be

able to specify which resource it intends to request access to.

There are multiple ways a message could be constructed to include

explicit references to a particular resource server. For example, an API

might embed a resource server identifier in individual scope strings

themselves. However, this approach has issues: scope strings could

get really long and hard to read. Also, including multiple scopes

referring to different resources in the same request might generate

OAuth2 and OpenID Connect: The Professional Guide 60

3.	 302 Redirect Execution

Next, the browser executes the 302 HTTP status code redirection by

sending the message we examined toward the authorization endpoint.

4.	 Authorization Response

Upon receiving the authorization request, the authorization server

takes care of the interactive portion of the flow.

The authorization endpoint decides what's necessary for

authenticating the user, and goes through it. Then, it presents

them with a consent prompt saying, "Hey, client X wants to read

appointments on your behalf." When the user grants consent, the

authorization endpoint returns its response with the requested

authorization code in the query string, in accordance with the

response_type we asked for. Also, the response includes the usual

set-cookie command with which the authorization server records in

the browser that an authentication session has been established.

5.	 Providing the Authorization Code to the Web App

At this point, the browser simply executes the redirect that will dispatch

the authorization code to the web application. From this moment

on, the web application will continue the flow on the server side.

6.	 Redeeming the Authorization Code

The web application combines the authorization code with its own

client credentials and sends them in a message to the token endpoint.

ambiguity about which resources the resulting access token

could be used with.

Given those complications, Auth0 and other identity vendors decided

to introduce a dedicated parameter for identifying resources. Azure AD,

for example, has a resource parameter whose semantics are equivalent

to Auth0’s audience.

Since those individual vendor decisions have been made, the IETF

OAuth 2.0 working group officially recognized the usefulness of

such primitives and issued a new specification, OAuth 2.0 Resource

Indicators. This specification extends OAuth 2.0 with a resource

parameter, which is, to all intent and purposes, equivalent to Auth0’s

audience. We plan to start accepting those standard parameters too in

a future update.

OAuth2 and OpenID Connect: The Professional Guide 61

The message to the token endpoint is in the form of an

HTTP POST request where the app presents its client_id

and client_secret, the authorization code received from

the front channel, and a new parameter, the grant_type.

The message layout is shown, annotated, in Figure 4.2.

Every time an application talks to the token endpoint, it has to specify

the desired grant type, letting the authorization server know how

to interpret the request. In this particular case, the desired flow is

the authorization_code grant. That tells the authorization server to

search for an authorization code in the message, and to consider

the client ID and secret in the context of this specific grant. If, for

example, the request would have specified client_ credentials as the

grant type, a flow we’ll discuss later on, then the authorization server

would have ignored the authorization code, would have looked only

at the client ID and client secret and would have considered only

the identity of the client application itself rather than the consent

options of the resource owner implied by the authorization code.

In other words, the grant_type parameter is used to disambiguate

the flow the client expects the authorization server to perform.

The request also includes the audience for the reasons stated

earlier. In this particular case, audience is redundant. The

authorization code has been granted in the context of that audience,

Figure 4.2

OAuth2 and OpenID Connect: The Professional Guide 62

and the authorization server knows it, hence there’s no need

to provide it again in this request. However, some extra clarity

can be beneficial: for example, this helps to interpret what this

request is for while examining a network trace without the need

to correlate it with the earlier messages that led to this point.

Finally, the message contains a redirect_uri parameter. In this phase,

the authorization server doesn’t really have any opportunity to

perform redirects, given that the client is talking to the authorization

server via a direct channel. Rather, the redirect_uri is used as a

security measure to prevent redirection URI manipulation - the

authorization server will verify that the redirect_uri presented here

is identical to the one provided during the authorization code

request leg of the flow, preventing an attacker from performing URI

replacement (see https://tools.ietf.org/html/rfc6749#section-10.6).

7.	 Receiving the Access Token in the Token Endpoint Response

Assuming that the request is accepted by the authorization server

and processed without issues, the grant concludes with a response

message carrying the artifact originally indicated by the

response_type in step 2 - Authorization Request, in this case, an

access token. Here’s a breakdown of the response message content:

•	 The requested access token.

•	 An ID token, in response to the presence of openid

in the list of requested scope values.

•	 The token type, which is always Bearer for the time

being - as discussed in the token validation section.

•	 The expires_in parameter, expressing the time through which

the access token should be considered valid. Although, at

times, the access token itself might contain that information

and happen to be in a format that can be inspected, access

tokens should always be treated as opaque by clients. As

such, expires_in needs to be provided as a parameter in the

response so the client can use that information (for example,

to decide how long an access token should be cached).

OAuth2 and OpenID Connect: The Professional Guide 63

Important

Access tokens should always be assumed and treated as opaque

by client applications because their content and format are a private

matter between the authorization server and the resource server.

The terms of the agreement between the authorization server

and the resource server can change at any time: if the client app

contains code that relies on the ability to parse the access token

content, even minor changes will break that code - often

without recourse.

Imagine a case in which access tokens, initially sent in the clear,

start being encrypted so that only the intended resource recipient

can decrypt. Any client will lose access to the token’s content.

Client code relying on the ability to access the token content will

irremediably break. In summary, avoid logic in client applications that

inspects the content of access tokens. Examining a token’s content

in a network trace is perfectly fine for troubleshooting purposes,

as the information will be consumed via debugging tools without

generating code that can break in the future.

8.	 Using the Access Token to Call the API

Once the client obtains the requested access token, it can finally

invoke the API: all it needs to do is include the access token bits

in a classic REST call. In this particular example, the call is a GET,

but any REST invocation style is possible. The key feature in that

message is the Authorization HTTP header, which exhibits the Bearer

authentication scheme and carries the bits of the access token.

The OAuth 2.0 Bearer Token Usage specification, the document

describing how to use bearer tokens obtained through OAuth 2.0

for accessing resources, says that it's possible to place the token

elsewhere in the outgoing request, for example, in the body of a call

or even a request link, as a query parameter. Encountering clients that

send tokens in the body is very rare. The use of the query string for

sending access tokens is actively discouraged, as it has important

security downsides. Consider the case in which your client is running

in a browser: whenever a token is included in the query string, its

bits will end up in the browser history. Any attack that can dump the

browser history will also expose the token. Moreover, if the API call is

OAuth2 and OpenID Connect: The Professional Guide 64

immediately followed by a redirect, the query string will be available to

the redirect destination host in the referral header: once again, that will

expose the token outside of the normal client-resource exchanges.

For those and other reasons, it is reasonable to expect that

the near totality of the API calls encountered in the wild that

rely on OAuth 2.0 will use the Authorization HTTP header.

Authorization Code Grant and PKCE

The latest OAuth 2.0 Security Best Current Practice (BCP) documents

suggest that every Authorization Code flow should leverage Proof Key for

Code Exchange (RFC 7636), an extension to the authorization code grant

meant to protect Authorization Code from being stolen in transit. PKCE was

originally devised for public clients, where it performs essential security

functions that we’ll describe in detail in the next chapter. We have chosen

to keep this section light and to defer introducing PKCE in the next chapter,

as you will be more familiar with the original grants, and it will be easier to

add PKCE as an incremental step. However, we wanted to point out the BCP

guidance already here so that if you read about it elsewhere, you’ll know

what it is all about.

Sidebar:
Essential Authorization Concepts and Terminology

OAuth 2.0 offers a delegated authorization framework. Unfortunately,

developers often disregard the “delegated” part and attempt to use OAuth

primitives and flows to solve pure authorization scenarios that the protocol

hasn’t been explicitly designed to address. The outcome is solutions

that might appear to work in toy scenarios, but fall short as soon as the

approach is applied in more realistic settings.

For that reason, it is a worthwhile investment to spend a few paragraphs

discussing essential concepts and terminology in authorization, spelling

out explicitly their relationship with OAuth - and in particular, what is part

of OAuth and what is instead a property of the underlying resources we

are exposing.

Permissions

Imagine that you want to expose programmatic access to an existing

resource. Depending on the nature of the resource, varying sets of

operations can be performed on or with it. In the context of a document

OAuth2 and OpenID Connect: The Professional Guide 65

editing system, users will be able to see, read, comment on, or modify

documents. An API that facades a printer might expose the ability to

print in black and white or in color. Any kind of resource will have a set of

permissions that make sense for that particular resource and that can

be allowed or denied for a particular caller. A permission is just that, a

statement describing the type of things that can be done with a resource:

document:read, document:write, print:bw, print:color, mail:read, mail:send,

and so on.

Permissions describe intrinsic properties of resources, which exist

regardless of how those resources are exposed. OAuth 2.0 solutions might

surface them if they are useful in the context of a delegated authorization

scenario involving those resources. Still, in the general case, permissions

exist in their own right and will be used outside of OAuth as well.

Privileges

A privilege is an assigned permission: it declares that a particular principal

(say, John) can perform a certain operation on a given resource (say, calling

the printer API to print in full color).

As was the case for permissions, the concept of privilege exists

independently of OAuth (or any other higher-level protocol, for that matter).

For example, the framework necessary to describe privileges needs

primitives for principals (users and apps to whom permissions might be

assigned) that OAuth 2.0 does not define.

The existence of permissions and privileges applied to a set of resources

will influence the behavior of OAuth 2.0 solutions based on those

resources, but how that will happen is not described directly in the protocol

and messages defined in the OAuth 2.0 specification.

Scopes

Finally, we get to talk about an OAuth primitive. In the case in which a

resource needs to be exposed in the context of a delegated authorization

solution, the scope is the primitive that enables a client application to

request exercising a user’s privilege for a particular permission for a given

resource. The mechanism that the client uses for expressing this to the

authorization server is by including the scopes corresponding to the

permissions being requested in an authorization request. When used with

this semantic - that is, lists of permissions for a given resource - scopes

are used to define the subset of user privileges that a client application

wants to exercise on behalf of the user. Note that the scopes can be used

OAuth2 and OpenID Connect: The Professional Guide 66

for other purposes: we have seen examples of that in the case of openid

(requesting the presence of an extra artifact, in that case, the ID token) or

profile, email (influencing returned content).

Effective Permissions

We are finally ready to piece together how all those concepts interact with

each other.

Consider a classic delegated authorization flow in which a client requests

the authorization server to access a resource. In particular, the client

specifies what permissions will be required for the operations it intends to

perform on the resource. Upon receiving the request and authenticating

the user, the authorization server will typically prompt the user to grant

the app delegated access to the corresponding permissions. The user

granting consent through that prompt is effectively saying, "Yes, I'm

okay with this particular client exercising on my behalf the privileges

being requested".

Say, for example, that the client implements an email solution, and the

permission it requests is mail.read. The scope requested is mail.read and

the access token being returned will include (by value or by reference,

depending on the format) mail.read.

Once the client obtains the access token, it will use it to call the API and

request to read a list of email messages. Upon receiving and validating the

access token, the middleware protecting the API will verify that the scope

it carries includes mail.read, the permission required by the API to perform

the read operation requested and allow the request to move along.

But the authorization checks aren’t over yet! Imagine that the client

requests the list of emails from the inbox of a user different from the

user who granted consent and obtained the access token. Should the

API allow the request to succeed? Of course not! Scopes do not create

privileges where there are none. Scopes can grant a client a subset of

the privileges a resource owner has on a resource but can never add

privileges the resource owner didn’t have. The effective permissions are

the intersection of the privileges a resource owner has and the scopes

that have been granted to the client. The effective permissions represent

what a client can actually do, and that can be a subset of what’s declared

in the scopes. You always need to check at runtime whether the scopes

represent something the resource owner can actually do for the resource

being accessed.

OAuth2 and OpenID Connect: The Professional Guide 67

Also, note that there is no guarantee that the privileges the resource

owner had at the moment of granting consent will be preserved forever.

Hence, even if your authorization server conflates scopes and privileges

(for example, by only allowing a user to consent if they possess the

corresponding privileges), nothing prevents some of those privileges from

being revoked at a later time. This makes it necessary for the API to check

rather than just relying on the scopes in the incoming access token. This is

one subtle point that is often misunderstood in the context of OAuth.

Note that OAuth can also be used for application-to-application flows,

in which no user is involved. The client obtains an access token for

a resource from the authorization server only through its own client

credentials, as opposed to requesting access on behalf of a resource

owner. You could say that in those scenarios, the client application itself is

the resource owner: there is no delegation, so there’s no need for scopes

to limit the privileges involved. We will study the corresponding OAuth

2.0 grant, the Client Credentials grant, in a later section of this chapter.

In this case, it's not completely clear how permissions are expressed,

as the core OAuth 2.0 specifications don’t provide any mechanism to

express assigned privileges (though there is a new specification, the JWT

Profile for OAuth 2.0 Access Tokens, that does introduce some guidance

about that). Regardless of the implementation details of how those

privileges are expressed, this is a case in which privileges are actually

carried in the token. There might be other cases where the authorization

server includes user privileges, roles, group memberships, and other

authorization information in the access token. Those cases are all valid

and represent real, important scenarios. However, they aren’t described by

the specifications we are studying in this book, so we will not add further

details here.

Finally, consider that although scopes often map to permissions, that

is not always the case. Remember the openid scope? Its presence in

a request just causes an ID token to be included in the response from

the authorization server. Or think about the profile scope, which, when

added to a request, causes the ID token to include claims that wouldn’t

be present otherwise. So it's easy to map between permission and scope.

Scopes do correspond to permissions in many common cases, which

might erroneously create the belief that scopes and permissions are the

same concepts, but in fact, it’s important to remember that they aren’t.

OAuth2 and OpenID Connect: The Professional Guide 68

The Refresh Token Grant

Let's now go back to grants. I mentioned this in passing earlier: tokens

typically have an expiration time. They have an expiration time because a

token caches a number of facts and user attributes, and those facts might

change after the token has been issued.

Also, the ability of a client to obtain a token at a given time doesn’t

guarantee that the same client will be able to get the same token in the

future. For example, the resource owner might visit the authorization

server and revoke consent for that client to obtain tokens with the scopes

previously granted. This makes the content of any previously issued tokens

obsolete as they no longer reflect the current situation.

The idea is that by endowing tokens with a short duration, we ensure that

the client cannot really use them (and hence, the information they cache)

for too long. Upon token expiration, clients will be forced to call back home

and repeat a request to obtain a new token. This new request creates the

opportunity for the authorization server to issue a new token containing

up-to-date information or refuse to issue a new token if conditions have

changed (e.g., the user account has been deleted from the system).

The shorter the token validity interval, the more up-to-date the issued

information will be. Solutions typically seek compromises that balance the

token's validity interval with performance and traffic considerations.

Of course, this brings another challenge: although we do want up-to-date

information, we don't want to give users a bad experience to achieve that.

The user should be blissfully unaware of all the low-level mechanisms

unfolding behind the scenes to achieve those updates. We need to

empower clients to renew tokens in a way that does not impact the user

experience. OAuth solved this by introducing a new artifact, the refresh

token, and associated grants, which are used to handle token renewals

without displaying prompts.

The first step in working with refresh tokens is to request one. The OAuth

2.0 core specification doesn’t define a mechanism to request refresh

tokens, leaving the decision to issue one to individual authorization servers.

However, OpenID Connect does define a mechanism to request refresh

tokens, and the result is that a large number of OAuth 2.0 authorization

servers adopt that mechanism as their main (or even only) way of

requesting refresh tokens.

Let’s revisit the authorization code grant examined in an earlier section and

add a few small changes, as shown in Figure 4.3.

OAuth2 and OpenID Connect: The Professional Guide 69

Figure 4.3

OAuth2 and OpenID Connect: The Professional Guide 70

The original message in step 3 carried the list of scope values the client

required to request an ID token with rich attributes content (openid, profile,

email) and the access level required for the operations the client intends to

perform (read:appointment). The message in step 3 in Figure 4.3 contains

an extra scope value, offline_access. This is a scope value defined in

the OpenID Connect core specification: its presence in a request asks

an authorization server to include a refresh token in its token endpoint

response alongside all the other artifacts (in this case, an ID token and an

access token). In particular, the validity of that refresh token will extend

beyond the duration of the authentication session within which it has been

issued. Don’t worry if that’s not very clear for now. We’ll expand on what

that means later in this section.

If you observe step 7 in the diagram, you’ll see that, as expected, the

authorization server returns a refresh token along with the usual access

token and the ID token.

Now the client has a refresh token in its possession. Let's take a look at

how the client uses it, and in particular how the refresh token makes it

possible to get new access tokens without prompting the user again. The

entire flow occurs on the server side, as it entails the client (in this case,

a web app whose code runs on the server) connecting directly to the

token endpoint of the authorization server. The browser, used to send the

request and drive the interactive portions of the transaction, is now entirely

out of the picture. Follow the numbered steps in Figure 4.4.

OAuth2 and OpenID Connect: The Professional Guide 71

Figure 4.4

OAuth2 and OpenID Connect: The Professional Guide 72

2.	 Refresh Token Response

The authorization server response returns a new access token, a new

ID token (because the original request included openid), and the list of

scopes that were granted when the refresh token was obtained, in this

case, during the Authorization Code grant.

The authorization server returns the list of granted scopes because

the client might not really know what this particular refresh token

was originally granted with or if the conditions at the authorization

server have changed since its original issuance. Furthermore, the

client can request a certain list of scopes, but the authorization

server can always decide to return a subset of those scopes. In

that case, if the authorization server wouldn't return the list of

scopes that have been granted in the context of this particular

refresh token redemption, the client would have no way of knowing.

Even if it remembered the ones originally requested, there would

be no guarantee that such a list would be accurate. Remember

that the client is bound to consider the access token as opaque,

so it cannot simply look into the access token to find out.

In this particular case, the authorization server does not return

a new refresh token alongside the access and ID tokens.

The client is expected to hold on to the refresh token bits it

received on the first flow and keep using it until expiration.

1.	 Refresh Token Redemption Request

The first leg of the grant takes the form of a typical token endpoint

request analogous to the code redemption request described earlier

in the chapter.

Examining the request, you’ll encounter the following parameters:

•	 The usual client_id

•	 The client_secret. This is a confidential client, so requests to

the token endpoint require the client app to identify itself.

•	 The new refresh_token parameter, which carries

the refresh token bits received earlier.

•	 The grant_type. As mentioned earlier, every request to the

token endpoint must specify the grant the client intends to

use. In this case, the parameter value is refresh_token.

•	 The redirect_uri parameter, included for the same security

reasons specified in the code redemption flow description.

OAuth2 and OpenID Connect: The Professional Guide 73

There are various scenarios in which the authorization server does

include a new refresh token at every refresh token grant. The most

notable case is in the context of a security measure called

token rotation.

Token rotation guarantees that whenever you use a refresh token,

the bits of that particular refresh token will no longer work for

any future redemption attempts. Every use of a refresh token

will cause the authorization server to invalidate it and issue a

new one, which will be returned alongside the refreshed access

token. Clients need to be ready to discard old refresh tokens

and expect to store new ones at every renewal operation.

Any attempt to use an old refresh token will cause the authorization

server to conclude that the request originator stole it. That might

trigger protective measures, such as invalidating all the other tokens

created in the same authenticated session in case the leak indicates a

compromised application. Note that this measure might be overkill for

confidential clients, where use from legitimate clients is enforced by

requiring applications to use their client_secret when redeeming

refresh tokens. However, it is extremely useful for public clients,

where apps can redeem refresh tokens without exhibiting any app

credentials. More details about this will be discussed in the next

chapter on native and mobile clients.

3.	 Calling the API

The new access token will be used exactly in the same way as

the old one: all the considerations about calling API according

to the OAuth 2.0 Bearer Token Usage specification apply.

Some Considerations on Refresh Tokens

The fact that a client requests a refresh token by including the scope

offline_access signals to the authorization server that the resulting refresh

token’s lifetime will be decoupled from the lifetime of the authenticated

user session within which the grant was performed. In other words,

whether or not a user is signed in to an application via the front channel

doesn't really matter with respect to whether the same application can

redeem a refresh token.

OAuth2 and OpenID Connect: The Professional Guide 74

Also, the fact that the app can still use a valid refresh token doesn't say

anything about whether there’s an active sign-in session for the user

that helped obtain that refresh token in the first place. The two things are

completely separated.

The scenario that offline_access is meant to support is the one

I described at the beginning of the chapter, where a user wants to

schedule a tweet to be published at a future time regardless of whether

the user will be signed in at that time or otherwise. In more general terms,

it addresses the case in which an application might need to obtain a

valid access token to invoke an API even if no user is present to tend

to interaction requests. One common mistake developers make is to

interpret the ability of an application backend to redeem a refresh token

as proof that the user still has a session. Per the above explanation, this

is a dangerous mistake that can lead to resurrecting already expired

or terminated sessions via sign-out, making front-channel session

management ineffective.

When developing applications that need to invoke APIs even without an

active user session, the app clearly needs to persist refresh tokens so

that they are available independently of the presence of an interactive

session. Even for cases in which API calls are scoped to the interactive

session lifetime, tokens need to be saved somewhere other than in

memory if you want to spare users from going through token acquisition

flows in case the webserver memory recycles. Of course, persisting

refresh tokens (and tokens in general) requires caution. It’s important to

make sure that tokens are stored per user to prevent the possibility of a

user ending up accessing and using the refresh tokens associated with

another user. That's just the same basic hygiene required to enforce

session separation, but when it comes to tokens, following best practices

is all the more critical given the high impact of identity mix-up and the

complications that derive from persisting user data beyond the interactive

session lifetime.

To close the topic of refresh tokens for this chapter, here’s a last

recommendation. Even if you know the expiration time associated with

a refresh token, you should still not rely on that in your code. There are

many reasons for which a refresh token might stop working, regardless

of its projected expiration. For example, a user could revoke consent,

immediately invalidating refresh tokens issued on the basis of previous

consent. Another example: a resource server might change policy and

OAuth2 and OpenID Connect: The Professional Guide 75

Sidebar: Access Tokens vs. ID Tokens

You now had the opportunity to see both access tokens and ID tokens in

action. Just as important, you learned about the reasons for which both

artifacts have been introduced by OAuth 2.0 and OpenID Connect in the

first place. It is worth stepping back for a moment and summarizing the

differences between the two token types, as confusion about when to

use what is one of the most common challenges you’ll encounter as an

identity practitioner.

Access Tokens Recap

Access tokens are artifacts meant to enable a client application to access

a resource, typically on behalf of a resource owner, bestowing the client

application with delegated authorization. As discussed, there is no token

format mandated by OAuth 2.0.

Earlier, we discussed the implications of the common topology where the

authorization server and resource server are co-located. This topology

allows them to access shared memory and makes using a format for

access tokens unnecessary.

Conversely, consider an authorization server separated from the resource

servers, as with identity as a service offering like Auth0, where the same

authorization server is shared by multiple resource servers owned by

different companies. This scenario can really benefit from agreeing on a

format and using it to validate incoming tokens, even if the protocol doesn’t

offer anything out of the box. The use of JWT as a format for access tokens

is so common that it led me to drive a standardization effort to define an

interoperable profile for it.

At the cost of being pedantic, it should be stressed that, as a client app

establish that, from that moment on, it will only accept access tokens

obtained via multi-factor authentication. This renders any refresh token

obtained with a single-factor session unable to get viable access tokens

and forces the client to reobtain a new refresh token via multi-factor

authentication. Again, all this may happen regardless of the declared

expiration of the original refresh token. For all those reasons, it is prudent

to develop client code assuming that a refresh token might stop working

at any time, and embed appropriate error management and remediation

logic upfront.

OAuth2 and OpenID Connect: The Professional Guide 76

developer, you should never write code that inspects the access token

content. The fact that, in some cases, you might know that a specific

token format is being used doesn’t change this. The reasons why it’s not

a good idea are more about the contracts between the client, resource,

and authorization server. In fact, it will often happen that you have a

chance to look inside an access token, and the situation might change

at any time. The format used in an access token is a matter agreed upon

by the resource server and the authorization server, and the details can

change at any time at their discretion without informing the client. Any

code predicated on assumptions about the access token content will

break as soon as those assumptions no longer hold, and on occasions

without any remediation. Think of information being removed or the

content being encrypted so that no entity but the intended recipient of

the access token can inspect it. Although it is legitimate for a developer

to read whatever information is available during troubleshooting,

including the content of captured tokens, developing code that does

so routinely will very often result in downtimes and serious

production problems.

ID Tokens Recap

ID tokens are designed to support sign-in operations and, optionally,

make authentication information available to clients. They don’t contain

any delegated authorization information (though nothing prevents

implementers from extending the default claims set described in the

specifications with their own custom values). ID tokens come into

play during user sign-in, and clients can use them to learn about what

happened during the authentication flow. Whereas clients should really

not inspect access tokens, as discussed in detail just a few paragraphs

earlier, clients must look inside ID tokens - that’s part of the validation

step described in the Web Sign-In chapter and mandated by the OpenID

Connect core specification.

One of the most common points of confusion about ID tokens is whether

they can be used for calling APIs. The short answer is that they shouldn’t.

Let’s invest a few moments to understand why people attempt that and

why it’s generally not a good idea.

ID tokens are designed to support sign-in operations. The client app

OAuth2 and OpenID Connect: The Professional Guide 77

is simultaneously the requestor and the recipient of the ID token: once

the client has received the token, it has reached its intended destination

and isn’t meant to travel any farther. All the client needs to do with it is

validate it and extract user attributes when they are present. Both are

operations that can be done locally, thanks to the fact that ID tokens

have a fixed format, and the OpenID Connect specification details how

to perform validation. The ultimate proof that the ID token shouldn’t leave

the client app lies in the aud claim, formalizing that the client app is the

intended recipient by carrying its client_id value. We have discussed all

this in Chapter 3, Anatomy of an ID Token.

Nonetheless, there are real-world situations in which client apps

use ID tokens to invoke APIs. Often, that is due to designers not fully

understanding the underlying protocols, and in particular, the role of

the audience claim. For them, a JWT is a JWT, and an ID token is often

easier to obtain as it doesn’t require registering APIs, defining scopes,

and adapting validation techniques to each specific authorization server

requirements. For example, some will not use JWT as the format for

access tokens and will require supporting introspection calls. Some

others might not be designed to protect third-party APIs at all; hence, API

registration and access token issuance and validation features are not

offered, but ID tokens are still issued for sign-in purposes.

In general, using ID tokens to invoke API has issues. The main problem

goes to the heart of why we have audiences in the first place. An API

receiving an ID token can only verify that the token was issued for that

particular client: there’s nothing in the token saying that it was issued with

the intent to call this particular API. Besides the practical issue of being

unable to insert ad-hoc claims for that particular API, there are serious

security concerns: a leaked ID token can now be used not just to access

the client, but also to invoke this API and all the other APIs following the

same strategy.

Whereas properly scoped tokens would contain the blast radius of a leak

event (an access token scoped to API A can only be used with A), many

APIs accepting an ID token means that they would all be compromised at

once. This also makes it really hard to maintain separation between APIs:

if both A and B accept ID tokens, that means that when the client calls A,

A can turn around and use the same token it received from the client to

OAuth2 and OpenID Connect: The Professional Guide 78

invoke B. Although that might be acceptable at times, in the general case,

this should never happen as a side effect.

Lastly, I will mention that the use of ID tokens for calling APIs cannot be

secured by sender constraint, as the protocols supporting it won’t provide

any mechanism to associate the ID token to a channel between the client

and the API.

For the sake of exhaustiveness, I want to acknowledge a particular

situation where using ID tokens to call an API might not be disastrous,

though it’s never as good as using access tokens. Consider the case in

which the client app and the API in itself happen to be the same logical

application. That’s the scenario commonly described as a “firs- party

app”, where both ends have the same owner and are tightly coupled to

implement a given solution. Think of a social network API and its client

app, for example. In this case, the solution won’t strictly require delegation,

the incoming token will likely be expected to identify the user, and the

tokens issued to that client won’t be accepted by any API other than the

first-party one (if you exclude cases where individual app owners decide

to accept them anyway, which are outside the control of the first-party

solution developer anyway).

From the end-user perspective, the client+API ensemble constituting

the solution is a logical whole - my experience of using my Twitter

account through the Twitter app doesn’t usually require any special

consent where the APIs are explicitly called out. In that case, one could

argue that the component of the app requesting the token and the

component implementing APIs are, in fact, the same entity, which could

be represented by the same identifier - hence, here’s the crucial step,

targeted by a token with the same audience… just like an ID token.

Once, in front of a beer, one of the authors of the OpenID Connect

specification told me that an ID token is just an access token with

specialized semantics. That said, it’s still generally not worth it to ever use

ID tokens for calling APIs. Although narrowly defined first-party scenarios

do exist, those would still be better off when implemented with access

tokens (think about sender constraint limitations mentioned above) and

the risk of overreaching and using the ID token in ways that expose you to

serious security risks is just too great. I mentioned this particular case here

because you are likely to encounter that approach in the wild if you work

OAuth2 and OpenID Connect: The Professional Guide 79

ID Tokens and the Back Channel

OpenID Connect offers multiple different ways of signing in. The one

we studied in the preceding chapter leverages the front channel. It

relies on the Implicit flow (that is, issuing an ID Token directly from

the authorization endpoint) plus form post (transmitting the token to

backend-hosted logic, as it is the norm for redirect-based apps). That

flow just happens to have the least number of moving parts, as it doesn’t

require the client app to obtain, manage, and use a client secret. The

flow has more or less the same security characteristics as traditional

protocols such as SAML or WS-Federation, which are still widely used in

mission-critical, high-value scenarios.

The Authorization Code grant we just studied in this chapter for calling

the API can and is commonly used for performing sign-in operations - by

obtaining ID tokens following the same steps we studied for requesting

an access token. Say you are in a scenario in which, for some reason,

you don't want to disclose the bits of the ID token to the user’s browser.

Using the Authorization Code grant, you can make everything take place

on the server side. You can just perform an Authorization Code grant in

the same way we did to get a token to call the API: you just ask for an ID

token as well. Note, that’s exactly what we did in our API calling scenario

by including the openid scope in the initial request. All we need to do to

make that operation count as sign-in is validate that ID token and create

a front channel session based on its content.

The notable difference from the front channel is that, given that the

client obtains the ID token from a direct HTTPS connection with the

token endpoint, there is no uncertainty about the source from which the

ID token bits came from. The client knows for certain that the ID token

comes directly from the authorization server, with no intermediaries that

could have tampered with the content in transit. With origin and integrity

verified, there is no need to validate the ID token’s signature. Think about

in this space long enough, and I wanted to empower you to understand the

nuances and point of view of the people following that approach: however,

the best practice remains using access tokens for calling APIs. If you need

JWT access tokens, use the aforementioned JWT profile for OAuth 2.0

access tokens.

OAuth2 and OpenID Connect: The Professional Guide 80

it: if you were to validate the signature, you’d use the key you retrieved

from the discovery document. And why do you trust that it is the right

key? Because you retrieved the discovery endpoint over an HTTPS direct

channel! The same assumptions hold for the ID token retrieval from a

direct connection with the token endpoint, which is why the client can

skip the signature verification.

What’s very, very important to understand is that not having to verify

the signature does NOT mean that the client is allowed to skip token

validation! The client is still meant to validate audience, issuer, expiration

times, and all the other checks that the OpenID Connect specification

describes for the ID Token validation. The signature is only one of the

many checks a recipient should perform to validate incoming tokens,

even in the front channel case.

However, keep in mind that while having a direct HTTPS connection with

the token endpoint assures you of the token’s origin, it does not ensure

that the token you receive is the one you requested. An authorization

code injection may have occurred between the initial request and

the exchange of the authorization code with the authorization server,

and your application has no way of realizing it. This is why OAuth 2.1

recommends using PKCE with confidential clients, too.

Obtaining an ID token via the Authorization Code grant is technically

more secure than receiving it through the front channel. However, this

technique is more onerous, as it requires the client to obtain, protect and

use an application credential - that has a management cost, associated

risks (like forgetting a secret in source control), performance, and

availability challenges (extra server calls). If your application only needs

to sign-in users and doesn’t have particular constraints about having

tokens transit through the browser, the front channel technique works

fine - as demonstrated by many years of successful SAML deployments

using similar techniques to protect high-value scenarios. If you are indeed

in a situation that calls for higher security or already performing API

calls requiring the authorization code flow anyway, you might consider

implementing sign-in via backchannel as described in this section.

The UserInfo Endpoint

A client requesting an ID token without specifying the profile and email

scope values will receive a skeleton token stating that user X

OAuth2 and OpenID Connect: The Professional Guide 81

(as expressed by an opaque identifier, usually) successfully authenticated

with issuer Y. The token also specifies the time and perhaps the

authentication modes, and no other info - in particular, no user attributes.

There might be multiple reasons for which a client might opt for such

barebone ID token content. For example, a client might want such a

token to use an easy to set up front channel sign-in flow while avoiding

disclosure of personally identifiable information (PII) to the browser.

Alternatively, clients might go that route simply to reduce the size of

transferred data on a network that doesn't have a lot of bandwidth or on

a metered connection where bigger ID tokens might result in the user

getting charged more for data use.

The good news is that clients can opt to work with barebone ID tokens

and still gain access to user attributes when necessary. OpenID Connect

introduced a new API endpoint, called UserInfo endpoint, which can

be used for retrieving information about the user by presenting an

appropriate access token - following the same OAuth 2.0 bearer token API

calling technique studied earlier in this chapter. Whenever the client needs

to know something about the user, whether it didn’t save the initial ID

token or received a barebone one, it reaches out to the UserInfo endpoint

using a previously obtained access token. It will receive what substantially

is the content that the client would have gotten in an ID token requested

with profile and email scopes.

The first chapter described the evolution that led from OAuth 2.0 to

OpenID Connect. A key passage was about a particular way of abusing

OAuth for simulating sign-in, where the ability to successfully call an

API with an access token was considered proof enough for the client

to consider a user signed in. That had several problems: access tokens

could not be tied to a user in particular (very important if you are trying to

authenticate, that is, to sign-in), could not be proven to have been issued

as part of a sign-in operation for that app in particular, and could not be

standardized given that every provider protected API of different shape

(Facebook Graph, Twitter API, etc.).

The UserInfo endpoint resolves the first and third problems. The UserInfo

response does provide information about the user who obtained the

access token used to secure the call to begin with - and since it’s

standard, generic SDKs can be built to work against it. That makes

it possible for a client to implement pure OAuth 2.0 to retrieve user

information in a standardized fashion.

OAuth2 and OpenID Connect: The Professional Guide 82

It is very important to realize that, however, successfully calling the

UserInfo endpoint is NOT equivalent to validating ID tokens and alone

CANNOT be used to implement sign-in, it does NOT count as sign-in

verification. Calling the UserInfo endpoint only proves that the

corresponding access token is valid and associated with the user

identity whose attributes are returned: it does NOT prove that the

access token was issued for that particular client. OpenID Connect sign-in

operations ALWAYS require validating an ID token, although, as we have

seen in some circumstances, the signature check can be skipped from

the validation checklist.

Another thing to keep in account when considering using the UserInfo

endpoint from a confidential client is that all the discussions about the

burden of using a secret apply here, as that’s part of obtaining an

access token.

After all that preamble, let’s take a look at how an actual call to the

UserInfo endpoint takes place. As usual, we are going to explain each step

- please refer to the numbered messages in the diagram in Figure 4.5.

OAuth2 and OpenID Connect: The Professional Guide 83

Figure 4.5

OAuth2 and OpenID Connect: The Professional Guide 84

2.	 UserInfo Response

The response returned by the UserInfo endpoint contains pretty

much the same list of claims carried by an ID token obtained via

a request that includes the profile scope.

1.	 UserInfo Request

The scenario in the diagram assumes that the client has already

obtained a suitable access token to call the UserInfo endpoint.

Invoking the UserInfo endpoint is simply an HTTP GET request,

attaching said access token in an authorization header.

You might notice that in this particular network trace, the access token

value looks different from all the other tokens shown in the diagrams

so far. Whereas token values in earlier diagrams were always clipped

for presentation purposes, and their shape suggested the classic

JWT encoding, the bits on display here are the entirety of the access

token and don’t appear to follow any known pattern. That's because

calling the UserInfo endpoint is precisely a scenario in which opaque,

formatless tokens make sense. The UserInfo endpoint is co-located

with the authorization server; there is no need for cross-boundaries

communication. The entity that issued the access token in the first

place is the same entity responsible for validating it during the UserInfo

API call. That means that the two tasks can access the exact same

memory space. In concrete terms, this means that the access token

intended to access the UserInfo API doesn't need to be encoded

in any particular format. It can literally be the identifier of a row in a

database created at issuance time and can now be looked up at API

invocation time or any other technique relying on shared memory.

We cannot afford this luxury when the API being invoked is managed

by a third party and hosted elsewhere. In this scenario, the parties

involved are forced to rely on token validation based on formats,

introspection, and, in general, techniques meant to accommodate

the lack of shared memory between the entity issuing the token

and the entity consuming it.

OAuth2 and OpenID Connect: The Professional Guide 85

The Hybrid Grant

The Hybrid grant is, as the name suggests, a mix of multiple flows into

one. It combines a sign-in operation (getting an ID token from the front

channel) and obtaining an access token for invoking an API from the client

backend (by requesting and redeeming an authorization code). That saves

network round trips, consolidates prompts and consent requests, and is, in

general, a very efficient way of performing a sign-in operation while getting

ready to invoke API at the same time. No diagram is shown for the hybrid

grant, as you can easily piece it together yourself by combining the web

sign-in flow diagram in the preceding chapter and the Authorization Code

flow shown here. OpenID Connect is unique in this ability to mix and match

sign-in and calling APIs and having entities playing both roles: a “resource”,

as in something being accessed as part of the sign-in access, and a client,

consuming other resources such as API. The fact that the app in OpenID

Connect is always called a client, emphasizing the latter role and omitting

the former, is a nod to its

OAuth 2.0 origins (and to the fact that “resource” in OAuth 2.0 is

reserved for APIs).

The Hybrid grant is a really powerful tool that is commonly used in

applications. In fact, today, it's pretty rare that an app will forever either

only require sign-in or only call APIs. It's usually a continuum, and the

availability of this grant makes it easy to add one functionality or the

other by simply modifying either the Implicit plus Form Post grant or the

Authorization Code grant.

Client Credentials Grant

In the last section of the chapter dedicated to invoking API, we will study

the Client Credentials grant, a flow defined by OAuth 2 for cases where

a client needs to get access tokens using its own programmatic identity,

rather than doing so on behalf of a user. Unlike the grants we examined so

far, the Client Credentials grant has no public client variant - it can only be

performed by a confidential client.

All the flows examined so far for API are designed to grant clients

delegated access to resources, that is to say, to enable clients to “borrow”

some of the user’s privileges when accessing resources.

OAuth2 and OpenID Connect: The Professional Guide 86

There are a number of situations in which clients need to operate as

themselves rather than on behalf of a user. These are scenarios in which

the application has an identity and direct resource privileges in itself. That

class of scenarios doesn’t require a user to be signed in or otherwise

present. Even if a user happens to be signed in at that time of access, their

privileges might not be the ones the client needs to exercise. A classic

example of that scenario occurs when an application needs to perform an

operation for which the currently signed-in user has no privilege. Imagine,

for example, a Continuous Integration (CI) web app in which the final step

of a build process is taking the binaries of a compiled product and saving

them in a particular share that no user has access to.

One way to work around the problem would be to open the floodgates

and give every user permission to access that share. That would preserve

the CI’s ability to call the share in delegated access mode. However, the

risk for abuse would be very high: users might choose to exercise their

privileges on that file share even outside of the CI process.

An alternative would be to give privileges for file share access to the

application itself. In turn, the application can feature logic that determines

which users should be able to write to the share. So, it can use its own

write privileges to perform writing operations only for the appropriate user

sessions and only within the limits of what the CI logic requires. Said in

another way, by granting the application itself the necessary privileges to

access a resource, the responsibility of determining who can do what is

transferred from the authorization server to the application itself, which

becomes the gatekeeper for the resource.

One common way of referring to the aforementioned pattern is to say that

the application and the downstream APIs it accesses are defined as a

trusted subsystem.

To use a real-world analogy, consider how a classic amusement park

handles visitors’ access. At the entrance, a visitor pays for a ticket and

is given a bracelet or equivalent visible sign that the individual paid for

access. This sign does not need to bear any indication of the wearer’s

identity. Once the guest is in, they can enjoy every ride without any further

access control check other than the bracelet, broadcasting their right to

be on the premises.

OAuth2 and OpenID Connect: The Professional Guide 87

Similarly, once a user signs in with the CI web app, all subsequent calls

to the downstream API will be performed as the web app itself, just in

virtue of the fact that the user successfully signed in. In a way, you can

think of this as a resurgence of the concept of perimeter. However, the big

difference with traditional network perimeter is that the boundaries here

are mostly logical (API’s willingness to accept tokens issued to the CI app

client) rather than physical (actual network boundaries).

This class of patterns is pretty common in the context of microservices,

where a gateway validates the caller’s identity. Once that check has been

successfully performed, all subsequent calls from the gateway can be

performed carrying tokens identifying the calling app rather than the user.

The user information might still be required, but it doesn’t strictly need to

travel in an issued token.

As is the case with every confidential client flow, the critical point here

is in putting particular care into provisioning client credentials and

maintaining them, for example, by ensuring that no entity other than the

application has access to its credentials. Another critical aspect of the

scenario, not explicitly covered by the standards but of vital importance,

is to carefully choose the privileges assigned to the application and the

application logic exercising them. The least privilege principle remains a

key best practice in this scenario.

Let's take a look at how the client credentials grant actually works on the

wire. Please refer to Figure 4.6.

OAuth2 and OpenID Connect: The Professional Guide 88

Figure 4.6

OAuth2 and OpenID Connect: The Professional Guide 89

1.	 Access Token Request

The client application requests a token by contacting the token

endpoint directly, similarly to what we have observed in the

server-side segments of all the grants we have studied so far.

In the sample scenario we have been discussing so far, the call is

performed during a user session - however, that is entirely arbitrary.

Remember that the Client Credentials grant only relies on the client’s

own identity rather than requesting delegated authorization from

a user. So, from the OAuth 2.0 standpoint, the flow described here

might just as well occur in a command-line tool, a long-running

process, or, in general, any kind of application executed in a context

where distribution and protection of client credentials are possible.

The request is a customary HTTP POST, carrying the well-known

client_id, client_secret, and grant_type (this time, set to

client_credentials)

Observing the body of the POST message, one notable

difference from all the grants encountered so far is that the

message for the token endpoint doesn’t contain any artifact

besides the client_secret. In contrast, the Authorization Code

grant and the Refresh Token grant all included some other

entity to redeem. Once again, this shows why the other flows

are conceivable with public clients as well, whereas the Client

Credential grant isn’t possible without, well, client credentials.

Here, it’s opportune to stress that client credentials and the

Client Credentials grant are two separate, distinct concepts.

Client ID and client secret are the client credentials assigned

to a confidential client application and are used to identify the

client app in every grant whenever communication with the

token endpoint occurs. The Client Credential grant is a grant

that happens to require only the client credentials and no other

artifact to be performed. It’s easy to get confused when using the

terms loosely: whenever you hear someone mentioning “client

credentials”, it’s useful to be clear on whether they are talking

about the grant or just about the client ID and client secret.

One last observation on the request message: the audience

parameter must indicate to the authorization server what resource

the client requests access to. This information is necessary for

OAuth2 and OpenID Connect: The Professional Guide 90

2.	 Token Response

The token endpoint response is entirely unsurprising. It carries back

the requested access token, just as described for other grants.

Of course, there is no id_token, given that the grant didn’t entail

user identity in any capacity.

Notably absent is the refresh token, too. In this scenario, it would

simply serve no purpose. The refresh token is meant to allow a client

app to obtain a new access token to substitute an expired one

without bugging the user with an extra prompt. However, there is

no need to ask anything from a user here, as the client credentials

are available to the client app at any time to request a new token.

Important note

The mechanism shouldn't be abused. Once a client requests

and obtains an access token, it should keep it around

(stored with all the safety measures the task requires) for

the duration of its useful lifetime and use it whenever it

needs to call an API. Discarding still-valid access tokens and

requesting a new access token from the authorization server

every time can be a costly anti-pattern at all levels:

•	 Security (every time credentials are sent on the wire,

there's an opportunity for something to go wrong).

•	 Performance (network calls).

•	 Availability (possibility of being throttled, transient

network failures).

•	 Money (various providers charge per issued token).

authorization servers that can protect multiple source servers;

hence, there’s no default resource the authorization server

can refer to. As mentioned in our earlier discussions about

the audience parameter, the standard way of signaling that

information to the authorization server is through the resource

parameter defined in the resource indicators specification. At

the time of writing, Auth0 doesn’t support resource indicators.

OAuth2 and OpenID Connect: The Professional Guide 91

Note that, in this particular case, Auth0 uses scope to represent what

the client can do. From what we said earlier about scopes, this is a

bit controversial. Let's say that scopes normally restrain the set of

privileges that the client can use from the user’s privilege, and here,

there is no user. Even if it does not appear quite appropriate, that's

how Auth0 does it today. It just represents the privileges that have

been granted to the client application. There is no real security risk

because of this: if a resource owner would interpret the incoming

scopes as the delegated authorization concepts we discussed so

far, the power they’d confer to the caller would be less, not more.

However, it’s an exception that is important to be aware of.

3.	 Calling the API

As expected, the call to the API occurs as usual,

without any dependency on how the client obtained

the access token being used to protect that call.

This completes our journey to understanding how to leverage OAuth 2.0

and OpenID Connect to invoke APIs from a traditional web app and, in

general, any confidential client.

In the next chapter, we'll take a look at native clients: mobile clients and

pretty much any application that an end-user can directly operate… and

that isn’t a browser.

OAuth2 and OpenID Connect: The Professional Guide 92

Desktop and
Mobile Apps

It's finally time to touch on one of my favorite topics: how to secure

applications meant to run on your desktop or mobile devices.

Public Clients

However, before I do that, I have to introduce yet another actor in our play:

I want to spend some time describing what a public client is.

We have seen that a confidential client is defined as a client that has

credentials and can use those credentials to prove its own identity to

the authorization server regardless of the identity of a user. You guessed

it: a public client cannot do that. Typically, it's because it's just hard to

distribute credentials to, you know, public clients. And it's as hard as

keeping them secret.

So, for example, imagine a situation in which you are installing an

application from an application store on your mobile device. You are

downloading the bits of this application, which will live on your device.

There is no protocol as part of the application's distribution that also gives

you a key representing that particular instance of this app.

But even if we could get such a key, it would become a secret specific to

that app instance. If it's used to identify the client, like that client ID we

used on the server, now you'd have an attack surface that basically leaves

all the way to the pockets of a potential hacker.

As we said earlier, if you assign a credential to a website, I need to

compromise the server to try to steal that credential. In contrast, here,

the device is in my pockets. It's at my disposal and sometimes I can

share it with others. I can install multiple applications without doing an

accurate technical check. In other words, my device can be inadvertently

exposed to malicious attacks more than a server. So, a key representing

my particular instance of the app would be more than the client secret

associated with a client ID, and in this scenario, that would make no sense.

One interesting part is that we might not care all that much about

this limitation, mostly because when you're using such applications,

the highest order bit is the user. So, if I'm using Slack on my phone

and another colleague is using Slack on their phone, in the end, the

authorization decisions are based on the fact that it's Slack. Sure, Slack

might need a list of scopes, which have been granted. But the highest

order bit is really the user and what the privileges of the user are.

Chapter 5

OAuth2 and OpenID Connect: The Professional Guide 93

The best scenario is to have some mechanism for preventing people from

taking tokens and using them from a different device.In the absence of

such a mechanism, we can take into account the fact that we don't have

a secret and tune our authorization decisions accordingly.

One super important point here is that if a client ID occasionally looks

obscure, i.e., it's too far to be human-readable, it does not mean it's a

secret. It's not a secret at all. A client ID is public. You have to assume it's

public. As a matter of fact, every identifier or credential distributed to such

a client is public.

So, when you have a native application that is a public client, you have

to assume that anyone can grab that client ID and pretend to be your

application. That's by design; that's expected. So, you should never make

authorization decisions on the server side based on the ID of a native

client because that thing is just a hint. It's not really proof of anything at

all. It's super important!

Native Applications and the Browser

Now how do we do this? We have seen that when we use the

authorization server, OpenID Connect providers and similar, the typical

way we use for interacting is through web pages of some kind which

is super handy because we can change the UI at any time, and we can

inject multiple authentication factors. We don't need it to really cache

anything on the client. We don't need it to have a dedicated code on the

client for doing prompts and similar.

But here, we have native clients with code living on a device. So, how

can we interact with the authorization server? The trick is to open a little

window on the browser whenever we need to do authentication. So, even

if I'm a native client, I can always provide some kind of surface capable

of rendering HTML, and I can use that surface to drive all interactions

with the authorization endpoint. Once I'm done and receive the artifacts I

want - tokens, calls, and similar - then I can take over from my code, close

whatever I used as a browser, and just go ahead with my flow.

There are different ways of doing this. The traditional way apps did it

at first, and now no longer recommended and unsupported by some

authorization servers, is to use an embedded browser or an embedded

WebView. An embedded WebView is a native component, such as a

component of your operating system or your window management

OAuth2 and OpenID Connect: The Professional Guide 94

system, that you can place on the surface of your app, just like buttons,

labels, and similar, and this thing will render HTML.

Doing this has risks. One particular risk is that an application can control

everything that happens on its surface. So if it pops out a browser

window that lives inside the application, and the user enters credentials,

that application can record each and every keystroke, which is clearly

dangerous. Say you are using an application that needs access to

Facebook for user authentication. In my case, I'm a subscriber to the

"New York Times", and I associated my subscription with my Facebook

account. If Facebook's login page is embedded in a WebView, that app

can intercept my credentials and impersonate me in other contexts.

The other problem is that this embedded WebView is by design isolated

from whatever browser lives on the machine. As a result, you will get some

inconvenience in the user experience.

Consider the app to read the “New York Times” mentioned earlier:

whenever, for some reason, I'm not authenticated, I end up getting this

little window saying, "Authenticate to Facebook".

When this happens in an embedded WebView, it doesn't matter that

I have already signed in to the Facebook app; I have to sign in again. I

get prompted for my username and password because the WebView is

isolated from the device's cookie jar. That's extraordinarily annoying to the

point that very often, I just close this thing and forget about it and remain

ignorant because it's just a lot of work to have to enter this stuff.

Now, today’s mobile operating system providers supply the solution to this

problem: a programmatic way of invoking the system browser from your

applications. So, when a mobile app, such as an iOS or Android app, needs

to get a token from your authorization server, you can use a system call

that opens the system browser. The app switches the focus to a slice of

the system browser: a Safari view controller on iOS or a custom Chrome

tab on Android.

This is a view of the system browser with a single tab that has access

to all the values, including cookies, and that, above all, is not in the

application's memory space. It's the browser. At this point, the user can

enter credentials, do MFA, and take advantage of existing cookie jars

without leaking any of their credentials to the calling application. That's

really powerful and super handy.

OAuth2 and OpenID Connect: The Professional Guide 95

The thing is that it adds a bit of extra attack surface because like

when you have your embedded browser, the communication between

 the browser and your application all happens in the memory space of

your app.

So, say that you're doing the Authorization Code flow. I use the browser to

get the authorization code, and then I pass the code to my application. I

need to communicate the code from the browser to the app. That means

that if someone is in the middle, say another app, they might intercept

this code. Given that the app has no credentials - remember that this

is a public client - whoever intercepts that code might use it and obtain

tokens instead of me.

Meet the PKCE

To prevent someone from intercepting the authorization code while it’s

moving from the browser to my app, you can use a mechanism that

substantially ties the request of the code to a secret created by the app

on the fly.

The application must demonstrate knowledge of that secret at code

redemption time. As a result, if anyone steals the code in transit, they

will not be able to use it without knowledge of this secret. I'll show you in

detail what that means.

So, when you use the system browser, you should not just use the

Authorization Code flow but also add this mechanism to protect

communication of the code. This mechanism is called Proof Key of Code

Exchange (PKCE), which is pronounced “pixie”, and is defined as an

extension to the Authorization Code flow.

Desktop Applications and Browsers

Now, here is another controversial point. The best practices document

on using OAuth in mobile apps substantially says what I just told you: You

should use a system browser and protect communication between your

application and the system browser using PKCE.

That document also tells you that you should do the same on desktop

applications, i.e., applications running on your Windows, Mac, or Linux

machine. Frankly, that's just not practical. That's to say, if you try to do

the same for applications that run on the desktop, you might incur a few

issues when you call the system browser. For example, you don't know

OAuth2 and OpenID Connect: The Professional Guide 96

what browser is installed on the machine. Also, this browser might not

come up on top because you don't control the Z-order of the browser

window, or the user can have multiple browser windows open, or they

have only one window, but the application might run in a modal window.

Above all, if you really want to be compatible across multiple operating

systems, in order to bounce the communication back to your application,

you need to have a mini web server that runs locally on the machine. This

web server listens to your redirect URI, receives the authorization code,

and shoots it back to the app.

In other words, if your operating system does not have a mechanism

comparable to what we have on iOS and Android to directly involve the

system browser in the transaction, this makes the experience for the end-

user really tough. It also complicates the flow and makes security people

nervous because opening sockets on your machine is not fun.

In addition, when you are on a device with no browser whatsoever, you

can't use this flow because it's all predicated on having a browser's

availability - whether embedded or a system browser.

So, if you are developing a command-line application, you can only use

this flow if you target a machine with a browser. Another grant - the Device

Authorization grant - allows you to use a browser on a different device and

close the cycle. But I won't go into the details here.

The Authorization Code Grant with PKCE

Let's look at how these things take place following the diagram shown in

Figure 5.2. In this scenario, I have an API that I want to invoke. There is my

usual authorization server with its good old authorization endpoint, token

endpoint, and discovery endpoint.

On the client side, there is a lot of new stuff. We have our native application

with the usual SDK for implementing OAuth and a cache for saving tokens.

The system browser is a different app running within the same device.

Now, let's go through the flow for our application to get a token for calling

the API following the numbered steps.

OAuth2 and OpenID Connect: The Professional Guide 97

1.	 Authorization Request

In the case of native clients, I can't first hit the resource and then

be redirected to the authorization endpoint because my app

renders the UI. I don't rely on the server to redirect me to the app

with the authorization request. So, I need to first do whatever

steps are necessary to get my token and then call the service,

which is why the diagram of this flow does not start with a line

to the resource but with a line to the authorization server.

The application uses the operating system API to invoke the

system browser and make it talk to the authorization endpoint.

Here is the request sent to the authorization server:

Actually, we are doing an Authorization Code grant, so you shouldn't

be surprised to see the content of this request, at least for the

most part.

The first parameter is the audience. We have seen what the

audience represents, i.e., the particular resource we want to access.

We have seen that it's specific to Auth0 and that an equivalent

extension to OAuth 2.0 exists, although currently not supported.

We have the response_type parameter with the value code.

We don't specify the response mode, so we know that we'll get

 it on the query string.

Then we added our list of scopes for the same API that we were

calling earlier: openid, profile, read:appointments.

We also ask for offline_access.

In the case of native clients, the refresh token represents, in some

ways, your session because it's the main artifact you have under

Figure 5.1

OAuth2 and OpenID Connect: The Professional Guide 98

control and grants you the ability to get new tokens. So, when you

sign out of a native client app, you also dispose of the refresh token.

The redirect_uri brings the first new thing: instead of having

HTTPS, it has id102. This id102 string is just a protocol handle

that we invented when we provisioned this application on the

operating system. This protocol handle represents our app. It tells

the operating system that whenever it sees someone trying to

follow a link that starts with id102, it should activate our app.

This is a way of ensuring that once we get the authorization

code back, it goes to our app rather than the browser.

Finally, we have the code_challenge parameters. I mentioned

the code challenge earlier when I introduced the PKCE

mechanism. The application provides this code to the

authorization server, which will tie the authorization code to

this challenge. We'll see how this comes together shortly.

The code_challenge_method is just the implementation

details of the algorithm used to generate the challenge.

OAuth2 and OpenID Connect: The Professional Guide 99

Figure 5.2

OAuth2 and OpenID Connect: The Professional Guide 100

2.	 Authorization Response

So now you'll have all the usual back-and-forth steps you expect to

complete the authentication process, including the consent step and

whatever MFA might come into play. What's important from a protocol

perspective is that we get back our usual response, in which you can

see the 302 HTTP status code on the location that we specified.

This is our redirect URI, and we are getting an authorization code,

exactly what we asked for. We also have the usual set-cookie as a

result of successful authentication.

3.	 Redirect to the Application

Now comes the original part, when the browser executes

the 302 redirection. Since the protocol handle is id102, this is

actually a communication within the device. The browser gives

back control to the application passing the code. In this step,

even if someone is in the middle and steals the code, it doesn't

matter because they can't use it. I'll show you why shortly.

4.	 Exchange the Authorization Code

Now that we have the authorization code in our application, we

can turn around and finally go to the token endpoint. It's a classic

redemption flow with the only caveat that we don't provide a

secret. Remember that a public client does not have a secret.

It's the usual POST to the token endpoint. We have the audience

parameter and the client_id. We don't have a secret but have the

redirect_uri parameter, which, again, we specify for security purposes.

As you can see, it's still the one with the id102 protocol handle.

Figure 5.3

OAuth2 and OpenID Connect: The Professional Guide 101

The grant_type is authorization_code, and we provide the

authorization code as the last parameter in the URL.

A new element here is the code_verifier, which proves to

the authorization server that our application is still the same

requester of the authorization code. Anyone who stole the

token while it was passing from the system browser to the app

would not be able to produce this code. That's pretty handy.

5.	 Get the Tokens

As a response, we get back our usual access token, refresh

token, ID token, the list of consented scopes, the expires_in

value - because we can't look inside the access token - and the

token_type: all ordinary administration. Pretty straightforward.

6.	 Call the API

Now, our application has the tokens that allow it to work as

expected. It has the ID token with the user claims and the access

token to call the API in the same way we learned in Chapter 4.

The Problem with Refresh Tokens

If our native application receives a refresh token, it will be using it in the

same way as confidential clients. However, unlike confidential clients,

our application doesn't provide a secret because it doesn't have any. Of

course, this is a problem because refresh tokens from public clients can

just be used as-is. So those are little magic things that will keep minting

tokens without any need for doing any excess stuff.

Before I go too deep into this, let me show you how the Refresh Token

grant works in this case. Say that I want to get a new access token. I send

the following message to the token endpoint:

Figure 5.4

OAuth2 and OpenID Connect: The Professional Guide 102

There is nothing notable here. It's exactly the same stuff that we had

earlier, with the difference that we don't have a secret. So here, there is

no code, no PKCE. It's just the same redemption of a refresh token but

without a secret.

This is clearly a problem, and in fact, lots of people are very nervous about

it, although it's the mainstream. That's what everyone does. So, as an

industry, we are looking to order solutions that do not necessarily entail

creating a confidential client on the native devices. It's more about finding

ways to bind the tokens to the channels used when receiving them.

Token Binding

There have been a couple of efforts in the industry. One is called Token

Binding, and it's a set of specifications used to extend the HTTPS stack

and browsers' ability to surface properties of HTTP stacks that can be

embedded in tokens.

When you use tokens, the authorization server and the resource server

can actually verify that the tokens are being used in the same channel

they were requested for. If this doesn't happen, that basically means that

someone stole that token and they are trying to use it from elsewhere. So

you can prevent this from happening by refusing to serve the request.

This was a good idea, but it required many planets to align. And the

planets didn't align: Apple didn't announce support for this; Chrome had

support for it, but then Google announced it would stop supporting Token

Binding. In the end, the specification was retired.

Mutual TLS Authentication

Another specification is the alternative to the Token Binding flow: Mutual

TLS Client Authentication. This specification has the great advantage of

using capabilities that are already present on browsers and operating

systems, such as client certificates.

An authorization server can require the application to use a client

certificate to authenticate and get the tokens. This authentication occurs

at the network (TLS) level. Then, the same certificate can be required

when you use the obtained tokens. As a result, if you take one of those

tokens and try to use it from a device that doesn't have that certificate,

you won't be able to.

OAuth2 and OpenID Connect: The Professional Guide 103

Application Level Demonstration of Proof of Possession (DPoP)

Given that Token Binding did not become a generally available mechanism,

the OAuth 2.0 Demonstrating Proof of Possession (DPoP), now RFC 9449,

was introduced. Given the application level constraints, this specification

allows clients capable of generating non-extractable asymmetric keys

to demonstrate their proof of possession, which in turn allows the

authorization server to bind tokens to them. Similarly to Mutual TLS, the

tokens bound with DPoP cannot be used unless also having access to

the keys they’re bound to. This mechanism is not as strong as Mutual TLS

but does not come with deployment hardships and browser UX hurdles

stemming from TLS Certificate system popups that can plague Mutual

TLS setups.

A Final Note

A final thing I want to mention about refresh tokens in the context of native

clients is to reinforce what I said earlier. The refresh tokens are the artifact

that tracks your ability to get tokens. They help you give the user a smooth

session experience without interruptions and you typically have to follow all

the session management steps to also ensure security. For example, when

you want to terminate a session, you typically want to delete the refresh

tokens from your cache as well.

The Resource Owner Grant

Let's talk about another controversial grant you might encounter when you

want to create native applications: the Resource Owner Password grant.

This is pretty much what you can think of: a grant that allows you to take

a user's username and password and programmatically post them to the

authorization server to get a token. Crude but effective.

The Bad Part

In the context of delegated authorization, the direct usage of credentials

is dangerous. It doesn't give you any of the expressive power you normally

have with all the mechanisms that we visited so far. In general, it just

encourages the user to do the wrong thing. It trains users to enter their

credentials in interfaces other than the ones that own those credentials.

Typically, people want to do this when they want to have their own UI

instead of a web page.

OAuth2 and OpenID Connect: The Professional Guide 104

But in general, whenever you trade with raw credentials, especially in

the native application space, we use an external browser instead of an

embedded browser. Every time you use raw credentials, you put yourself

in potential jeopardy. In fact, the Resource Owner Password grant is

deprecated in the upcoming OAuth 2.1 specification.

Apart from the security aspect, here is a partial list of shortcomings when

you directly use a username and password:

•	 You cannot prompt for consent

So, any resource gated to user consent cannot be used unless you

take prior steps to register with consent. This is bad both from the

mechanics and the optics: the user is not aware of what's going on or

how those credentials will be used.

•	 You cannot do multi-factor authentication

unless you embed the capability of doing so in your client application.

That's what happened years ago before we introduced the use of a

browser in the context of authentication. I assure you, it wasn't fun

at all. Whenever you want to change even the tiniest thing, you have

to redistribute your code to all your clients, some of which might only

occasionally be connected. So you'll have people who call that up for

the first time and discover it no longer works for years. It's really bad.

•	 You can't do step-up authentication

If you have different resources that require different levels of

authentication, you can't really do that. You can only send a username

and password at login time.

•	 You can't use multiple identity providers

Consider when, during the authentication ceremony, you get prompted

with a list of identity providers from which you can choose. So maybe

there is a button "Sign-in with Facebook" and a button "Sign-in with

Google" or a field for entering your corporate email that will redirect

you to your corporate identity provider. Your application can't do this if

you are using the Resource Owner Password grant. Even if there was

a way for you to expand or contract this list, there is no way for you to

connect to the providers that don't allow you to programmatically send

credentials, which is the case for most of the serious ones.

OAuth2 and OpenID Connect: The Professional Guide 105

•	 Finally, there is no single sign-on. If I have a cookie somewhere that

says I'm already authenticated with Facebook, and I click a little button

that says, "Sign-in with Facebook", I'll just be bounced back and forth.

I will take advantage of the fact that I already have a session-tracking

cookie and will not have to enter any credentials.

As you know, having native fields for usernames and passwords is very

bad in the OAuth and OIDC context. However, as an Identity professional,

you will face many arguments in favor of the Resource Owner Password

flow and against other browser-based flows.

You must expect the non-initiated to ask for the Password flow often and

with emphasis, mainly because it's simple. They might feel overwhelmed

by all these million parts, browsers popping out, redirects, and so on.

Simplicity is a tempting aspect of this flow.

In addition, you can often hear concerns about control over the user

experience. Luckily, in Auth0, we don't have this problem because

developers have control over the user experience of the login page.

People might have concerns about performance because of redirects.

They might think about redirects and say, "Wow, it's going to be a hit in

performance". Usually, a good idea is to actually test and show people that

this is not the case. It's normally pretty straightforward.

But there is at least one case in which, in my career, I never managed to

find a way to avoid this flow: in pure legacy scenarios.

Imagine that you have an application that already gathers usernames and

passwords, and you cannot touch its code. Assume that changing the

code for the authentication part is very difficult. That codebase may be

old; maybe the person owning the code is no longer with the company.

Or think of scenarios where you have a script with a connection string. If

the connection string only has a username and password, and you should

use this script as is, then you need to bridge some of the gap.

So, for pure legacy scenarios and cases where there is a plan for moving

forward and moving off of sheer username and password, I usually tend

not to complain too much if people ask me for a review for that scenario.

But it's the only scenario. For all the other scenarios, I will always insist on

using some finesse because this flow is just a problem waiting to happen.

OAuth2 and OpenID Connect: The Professional Guide 106

The Flow Description

Now, after all those dire warnings, I will show you how the Resource Owner

Password flow works anyway so that if you have to do this, you know what

to deal with. Following the diagram in Figure 5.5, we have a scenario with

an application and an API. The diagram uses the icon for the desktop

app because, as I said, this flow is only remotely acceptable for legacy

applications, and you cannot have legacy applications on the phone since

the phone is just too new.

1.	 Send the user credentials

As I mentioned, you have some mechanism for gathering

usernames and passwords, probably some old-fashioned

mechanism. Then you'll just turn around and send those credentials

to the token endpoint, and here is how the message looks:

Figure 5.5

We have the usual client_id and audience parameters. There is the

scope requested by the app and the grant_type with its value

set to simply "password". Then, there is the user's username and

password. Remember, we are calling the token endpoint.

2.	 Get the response

As a response, the app gets the usual data: the access

token, the expires_in value, and the token_type. That's it.

3.	 Call the API

Of course, I can grab the token and use it to call

the API. So, it's just your basic normal flow.

OAuth2 and OpenID Connect: The Professional Guide 107

Figure 5.6

OAuth2 and OpenID Connect: The Professional Guide 108

Other Grants for Native Apps

There are other grants somehow related to native applications that I'm not

covering in this book. However, they deserve at least a mention.

The Device Authorization Grant

One of these grants is the Device Authorization grant. It applies to

scenarios involving devices like smart TVs, media consoles, or other

IoT devices. These are devices with a limited display and no browser.

A server in a server farm is another example where this grant can be

applied. Typically, you have a CLI that runs on a server with no graphical

capabilities, but you still want to call APIs. You learned that in a delegated

authorization scenario, you need a browser. How can you authenticate and

authorize an application that runs in an environment without a browser?

For this purpose, the Device Authorization flow uses a trick. It shows

you a code in the text-based interface and instructs you to pull out a

different device with a browser and navigate to a given address. Once

there, enter that code on the page loaded in your browser. Once you do

this, you'll be driven through the classic experience you need to do for

authentication: MFA, consent, and anything else the authorization server

deems appropriate.

The client running on the text-only device will constantly poll the

authorization server. As soon as you give consent, this polling will be

successful, and the application will receive the tokens it needs. It's really

straightforward and super handy.

The Token Exchange Grant

The second flow I'd like to mention is the Token Exchange grant. This

grant allows you to exchange a token for another. In a nutshell, consider a

scenario where a client calls an API, and this API needs to turn around and

call another API, carrying forth the identity of the original caller.

The first API can use the incoming access token as a grant to exchange it

for an access token to call the other API.

OAuth2 and OpenID Connect: The Professional Guide 109

Extension Grants

The Token Exchange grant is actually a specific implementation of the

extension grant mechanism provided by the OAuth 2.0 specification.

This mechanism allows you to define a custom grant when the existing

standard grants do not apply to a specific scenario.

Another example of an extension grant type is the SAML Profile for OAuth

2.0. This grant is similar to the Token Exchange grant: the application

already has a SAML token obtained using a legacy scenario and wants

to turn it into an OAuth 2.0 access token. While in the case of the Token

Exchange grant, you remain in the same OAuth context, the SAML profile

grant enables interoperability between different authorization contexts.

These are the grants that you might experience in the context of native

clients. However, you can also use them for confidential clients, especially

the Token Exchange grant.

So that's it for native clients, i.e., desktop and mobile clients. Next, we'll

explore the world of Single-Page Applications.

OAuth2 and OpenID Connect: The Professional Guide 110

Single Page
Applications

What are Single Page Applications or SPAs? I am sure that most of you

know what we are talking about, but let's try to better describe this type of

web application.

The Nature of Single Page Applications

You use information-dense web-based UIs like Gmail or Outlook Web

Access and similar. These are web pages that present a lot of information

at the same time. The natural interaction that the user has with this kind

of application requires updating just parts of the interface. If you would

be implementing that interaction model using classic postback, you'd be

doing a lot of useless work.

Imagine a typical layout with a list of messages on the left and a panel

showing the content of a selected message on the right. Whenever I

click a different message, all I want is for the selection to move to where I

clicked and for the content of the preview panel to update itself.

That's it.

If I were using a classic postback-based web application, I'd go back to

the server and ask for the entire page again: the list of messages, all the

visual elements around it, and icons. Sure, I can do caching, and I have

tricks that can make things better, but that would be a lot of traffic and

also pretty bad performance.

In most cases, all I do with a Single Page Application is get a single page

from the server at the beginning. This page contains the basic visual

elements and, together with that, a lot of JavaScript, which can reach out

to the server and ask only for the data. JavaScript takes this data and uses

it to reflect changes in the UI. It programmatically injects the new data so

that it gets displayed. So I don't have to get an entire page every time, just

the needed part. That's super handy. Without that, we would not have the

modern web experiences that we enjoy today.

Security Challenges of Single Page Applications

From a security perspective, this is an interesting conundrum. It's a web

page that lives inside the browser. It's subject to all the classic attacks

to which something inside a browser is subject. Since it runs inside

a browser, it's isolated from the device in itself. At the same time, the

interaction I just described is largely based on the client reaching out and

calling an API.

Chapter 6

OAuth2 and OpenID Connect: The Professional Guide 111

Sounds familiar? Yes. That's pretty much the same stuff we have seen

with a native client. Now we have this interesting challenge: How do we

secure this thing? How do we deal with identity in this case?

We typically treat this type of application somewhat as a native client. It

gets tokens and uses them to call the protected API. However, we'll see

how this approach opens up some challenges that are not present in the

native client case.

Where we keep the APIs makes a huge difference. If the web API is in

the same domain from where we are getting the single page of the

application, then you can think of securing the traffic in whatever way we

have done in the past for websites. So cookies are viable, but the moment

you need to start making API calls outside of your domain, then cookies

are no longer viable because they are tied to a domain. Your browser

can't just attach cookies to JavaScript calls to other domains. So, the

token-based approach is the most generic, the one you can use in every

situation. It's also the one with the most moving parts and, consequently,

the most brittle. So we'll see what that means in terms of trade-offs.

Single Page Applications and the Implicit Grant

In the early days of OAuth, the traditional way to secure Single Page

Applications was through the Implicit Grant. Now, you have heard the

word "implicit" earlier in the context of signing in for web applications,

specifically in the particular style of the Implicit flow with Form Post.

From the OAuth point of view, a grant is implicit when you are getting a

token directly from the authorization endpoint instead of having to trade

something with the token endpoint. That's the formal definition of implicit.

Interestingly, when you talk about implicit, the most salient scenario that

people will think of, like the classic use, the default meaning in literature, is

what I'm going to explain right now in relation to Single Page Applications,

that is to say, using the Implicit grant and delivering the tokens in a URI

fragment (the part that comes after the pound sign (#) symbol). This

scenario is fraught with issues, but other scenarios are perfectly fine,

such as the one in which we use the Form Post and follow all of the

necessary ID token validation steps.

The Implicit Grant used for Single Page apps gives the entire Implicit

Grant family a bad name. In fact, the bad name is only well deserved in

OAuth2 and OpenID Connect: The Professional Guide 112

the context of Single Page apps, whereas all the things we did earlier for

the web sign-on on the front channel are perfectly fine, assuming the

application is only getting an ID token and validating it properly.

So don't be worried, and be prepared to explain every time you use the

Implicit Grant with Form Post that it's not that Implicit.

Let me give you a bit more concrete indications about what I mean by a

bad name. As with any Implicit Grant, we use web page redirects to ask

and obtain tokens directly from the authorization endpoint. In the case

of the Implicit Grant with Form Post, the token travels in the body of the

page. In the case of Implicit Grant with Fragment, the token is returned as a

fragment element in the redirect URL.

So, having the token in the body of the page has slightly fewer security

risks than placing it in the URL. The thing is that although no expert in

the identity space ever liked this flow, it was the only game in town, since

browsers could not support cross-domain POST requests at the time. So

pretty much all the Single Page Applications used the Implicit flow and the

fragment approach. We'll see that things changed pretty fast.

The complications here are, to some extent, intrinsic to the fact that we

live inside a browser, i.e., an open platform, and the more open a platform

is, the bigger the attack surface. There are all sorts of ways in which things

can go wrong. For example, if you save your tokens in your local storage,

in the case of a cross-site scripting attack that dumps your entire local

storage content, your tokens are compromised. If you receive the tokens

within your URL, this URL will end up in the browser history but also in the

referral headers. So, there are more ways of leaking those tokens.

To mitigate the effect of a leaked token, we can reduce its validity time.

This entails the need to renew it, but using an artifact that's powerful as

a refresh token within the browser, as we do for native clients, can also

be a problem. A native client living on a local resource can have some

degree of protection, but we cannot afford to have it within a browser.

So, it is not advisable to use refresh tokens within the browser unless you

do token rotation.

In conclusion, the Implicit flow has a number of complications, which

ultimately led the OAuth working group to suggest that we abandon it and

do something else.

OAuth2 and OpenID Connect: The Professional Guide 113

SPAs and the Authorization Code with PKCE Flow

As I mentioned, the OAuth working group found that the risks we

have when using the Implicit Grant to get access tokens outweigh its

convenience. The alternatives to this flow rely on features that weren't

available across the board when the Implicit flow was first devised, such

as Cross-Origin Resource Sharing (CORS), for example.

The idea is that we can actually use the exact same flow that I

described for native clients for Single Page Applications as well. In this

case, you use JavaScript to implement the Authorization Code flow with

PKCE. Take a look at Figure 6.1, which shows the exact same flow of a

native application.

As usual, you use the browser to get the authorization code from the

authorization endpoint. Once you have this code, you can use JavaScript

to hit the token endpoint, and then you will get an access token from that

channel. That channel will not expose the access token to the browser

history and will not expose it in headers. So, it's way easier to protect than

all the mess you must do when you use redirects to obtain tokens directly

in the URI.

Note that here we can use the classic HTTPS scheme instead of the

custom protocol handle we used for native applications.

This flow can also use refresh tokens as long as you use one of the

mechanisms I suggested earlier to protect refresh tokens.

One is the refresh token rotation: when you use a refresh token, it's no

longer valid. You get a new refresh token to use from that moment on.

This mechanism is deemed enough to protect refresh tokens in the

browser. The alternative mechanism is to use a standard constraint

mechanism like DPoP, that I described at the end of the chapter about

native clients.

OAuth2 and OpenID Connect: The Professional Guide 114

Figure 6.1

OAuth2 and OpenID Connect: The Professional Guide 115

SPAs with a Backend

We use tokens to secure Single Page Applications. This will allow us to call

APIs no matter where the APIs live, whether it's our backend or elsewhere.

We might have no backend at all and call APIs exposed by others or by

ourselves but on a different domain, such as in a serverless environment.

However, having a backend of your own is pretty common. For example,

if you're serving your SPA from some kind of active page technology like

Node.js or ASP.NET, then you have a backend.

Let’s explore how we can take advantage of having a backend available to

our SPA.

SPA and API on the same domain

If you expose your API for the exclusive use of your presentation layer in

JavaScript, then technically, nothing prevents you from using the same

technique we use for web sign-on. From a browser perspective, it doesn't

matter whether the thing you are trying to access on your web server is

a page meant to be seen by a human or if it's an API endpoint used to

retrieve data. It's just an HTTP verb hitting a certain domain. If a cookie

for the server's domain exists on the browser, it will just attach it and

send it along with the request. On the backend, if a middleware sits in

front of those routes, it also doesn't care whether the request is trying to

access a page or an API endpoint. As a result, as long as we are in that

particular scenario, the backend does the same stuff I described for the

web sign-on at the very beginning. It does that when the SPA is requested

the very first time, too. From that moment on, you can just use cookies to

protect your API calls. The same middleware that triggered this sign-in on

the first page will enforce the presence of a cookie, and you'll use it for

authenticating.

Having the API in the same domain as the SPA allows me to simplify

things. I'll probably do the Implicit flow with Form Post to get an ID token

and exchange the token for a cookie. Alternatively, if I want to do server-

side flows, I can do the Authorization Code flow and redeem the code

for an ID token. All the techniques we described for web sign-on can be

applied in this context.

I only have two challenges to think of in this scenario.

Consider that the authentication flow relies on redirects. Say that your

OAuth2 and OpenID Connect: The Professional Guide 116

cookie expires at a certain point, and you are making an HTTP request

from your SPA. You will get back a 302 HTTP status code because, from

the middleware perspective, you are trying to access this page and are

not authenticated. So, the middleware will send you to the authorization

endpoint. But an HTTP request from a SPA doesn't really know what to

do with a 302 status code. You need an error management logic that

intercepts this 302 status code and shows the user some affordance, like,

"Click here to reauthenticate."

I don't recommend automatically redirecting the user because if they

are in the middle of filling out a form and you ship them away, you are

not offering a good user experience. You could show a popup window,

but popups are controversial because sometimes they are blocked. So,

in general, my advice is to show a little toaster that says you've got to

re-authenticate.

The other challenge is that your JavaScript-based application will want

to access the user information sooner or later. To do so, you expect your

JavaScript to be able to go somewhere and find out the user's first name,

email, etc. All stuff that you would normally get if you'd get the ID token.

But in this scenario, the ID token was received by your backend, and your

SPA works with cookies. Cookies are purposefully opaque to the client, so

you cannot extract information from there.

You need to add a route to your API that allows the JavaScript application

to query the tokens' content and, in general, obtain the user information

that the JavaScript layer requires.

The Token-Mediating Backend Pattern

Having a backend for our SPA allows us to do all the flows we have seen

for calling an API from a web page. For example, as a confidential client,

your backend can obtain tokens using the Authorization Code flow. Can

we leverage this scenario to call third-party APIs, i.e., APIs that require an

access token? The answer is yes, you can do it. One way to achieve this is

to use the Token-Mediating Backend pattern.

You have your JavaScript application that wants to call an API and your

backend. Your users have an interactive web flow, which will lead to

performing the classic Authorization Code flow, redeeming the code, and

obtaining an access token and refresh token. Then you can just take that

OAuth2 and OpenID Connect: The Professional Guide 117

access token and send it back to your JavaScript app. Your SPA can use

that token to call APIs from JavaScript.

As in the previous case, we are not relying on any part of the OAuth

flow happening on the client. The client doesn't really have any code for

obtaining tokens.

This approach leverages the security profile of a confidential client - the

backend - to get tokens from the authorization server. This relieves your

SPA from implementing the authorization flow with all the potential issues.

However, this comes at the cost of a significant complication on the server

side, which, in addition to obtaining the tokens, must also take care of

making the access token available to the client.

Notice that only the access token is sent back to the SPA. The refresh

token is kept on the backend and associated with the user’s session.

When the API rejects the access token, the SPA contacts the backend to

request a new access token. Then the backend uses the refresh token

associated with the current user to request a new access token and send

it back to the SPA. In other words, the SPA will never have to directly deal

with refresh tokens.

By delegating obtaining tokens to the backend, you reduce the attack

surface of the SPA. However, the JS application still remains exposed

to attacks that allow an attacker to steal the access token and call the

remote API. In this regard, following best practices to mitigate these

risks is advisable, such as avoiding storing tokens locally in the browser.

For more details on the pattern and its security considerations, see the

OAuth 2.0 specs.

The Backend for Frontend Pattern

There is another way to take advantage of the backend's potential and

lighten a SPA's security burden: delegating the responsibility of interacting

with the authorization server and managing the tokens entirely to the

backend. The pattern we are going to explore is known as Backend for

Frontend (BFF) and is essentially based on attributing the role of the

intermediary to the backend both towards the authorization server and

third-party APIs.

The backend takes care of interacting with the authorization server as

a confidential client: it redirects the user to the authorization endpoint

OAuth2 and OpenID Connect: The Professional Guide 118

for authentication, obtains the authorization code, exchanges it for ID,

access, and refresh tokens, and behaves as a normal confidential client.

As in the previous cases, the backend tracks the user's authenticated

session with a cookie, but unlike the Token-Mediating Backend, it does

not forward the tokens to the JavaScript application. It stores them on

the server and exposes some endpoints with which the SPA can interact

for all its needs. For example, it exposes an endpoint that provides user

profile data, which the backend extracts from the ID token. Furthermore,

the backend acts as a proxy between the SPA and the API. All SPA calls

directed to the API pass through the backend, which exposes one or

more endpoints for this purpose. When the backend receives a request

to these endpoints, it checks that it contains the session cookie and

forwards the request to the API after including the access token. Once

the response is received from the API, the backend forwards it to the

SPA, and that's it.

This pattern offers the security of a confidential client to a public client

like the SPA. The JavaScript application never touches the tokens, so

there is no risk of them being stolen at the SPA level. As the specs say,

“Because of the nature of the BFF architecture pattern, it offers strong

security guarantees. Using a BFF also ensures that the application's

attack surface does not increase by using OAuth. The only viable attack

pattern is hijacking the client application in the user's browser, a problem

inherent to web applications.”

The price to pay for improving the security of the SPA with this

architecture is the increased complexity of implementing the proxy

mechanism between the JavaScript application calls and the remote

API. This, among other things, affects call performance, which must,

therefore, be taken into account when considering adopting this pattern.

To learn more about the threats, attack consequences, security

considerations, and best practices for SPAs, you can check out the

OAuth 2.0 for Browser-Based Applications document.

OAuth2 and OpenID Connect: The Professional Guide 119

Conclusion We have reached the end of this book, but this is not the end of the

journey for an aspiring Identity professional. The topics covered in this

book are just the foundation of OAuth 2.0 and OpenID Connect-based

Identity.

We have not covered several topics that are part of the OAuth

framework. We have simply mentioned some, such as the Device

Authorization and the Token Exchange grant or JWT Profile for Access

Tokens; we have described other concepts at a high level without

going into detail, as we did for DPoP and MTLS; and we haven't even

mentioned other topics, such as Dynamic Client Registration, Token

Revocation, and many other extensions.

Furthermore, recently, we have seen a demand for ever greater security,

especially in areas such as finance, insurance, healthcare, and utilities.

In these areas, security and privacy are of fundamental importance. For

this reason, the OAuth and OIDC community has finalized a series of

extensions that strengthen these protocols for use in critical scenarios.

Part of these efforts feed into the FAPI specifications.

However, beyond the mere concepts explained here, I hope you got the

core spirit of OAuth and OpenID Connect, the motivation behind their

birth, the reason why things are how they are, and the motivation for

their evolution to fulfill the identity security needs of the industry. With

this foundation, I hope you can design and implement more robust

applications and choose the most appropriate solution for the needs of

your architectural scenario.

These materials and any recommendations within are not legal, privacy, security, compliance, or business advice. These materials

are intended for general informational purposes only and may not reflect the most current security, privacy, and legal developments

nor all relevant issues. You are responsible for obtaining legal, security, privacy, compliance, or business advice from your own lawyer

or other professional advisor and should not rely on the recommendations herein. Okta is not liable to you for any loss or damages

that may result from your implementation of any recommendations in these materials. Okta makes no representations, warranties,

or other assurances regarding the content of these materials. Information regarding Okta's contractual assurances to its customers

can be found at okta.com/agreements.

