() autho e
OAuth 2.0 and

OpenlD Connect:
The Professional Guide

by Vittorio Bertocci
curated by Andrea Chiarelli

»

OAuth2 and OpenlID Connect: The Professional Guide

C 0 nt e nt s 4 Preface
5 Introduction
6 Chapter 1 - Introduction to Digital Identity
9 From User Passwords in Every App...
11 ..to Directories

13 Cross-Domain SSO

18 The Password Sharing Anti-Pattern

20 Delegated Authorization: OAuth 2.0

24 Layering Sign In on Top of OAuth 2.0: OpenID Connect
28 AuthO: an Intermediary Keeping Complexity at Bay

30 Chapter 2 - OAuth 2.0 and OpenID Connect

32 OAuth 2.0 Roles

34 OAuth 2.0 Grants and OIDC Flows

35 Chapter 3 - Web Sign-In

35 Confidential Clients

37 The Implicit Grant with Form Post

37 A detailed walkthrough

44 Anatomy of an ID Token

47 Principles of Token Validation

50 Metadata and Discovery

53 Chapter 4 - Calling an API from a Web App

53 The Authorization Code Grant

64 Sidebar: Essential Authorization Concepts and Terminology
68 The Refresh Token Grant

75 Sidebar: Access Tokens vs. ID Tokens

OAuth2 and OpenlID Connect: The Professional Guide

79 ID Tokens and the Back Channel

80 The Userinfo Endpoint

85 The Hybrid Grant

85 Client Credentials Grant

92 Chapter 5 - Desktop and Mobile Apps

92 Public Clients

93 Native Applications and the Browser

95 Meet the PKCE

95 Desktop Applications and Browsers

96 The Authorization Code Grant with PKCE

101 The Problem with Refresh Tokens

103 The Resource Owner Grant

108 Other Grants for Native Apps

110 Chapter 6 - Single Page Applications

10 The Nature of Single Page Applications

10 Security Challenges of Single Page Applications
il Single Page Applications and the Implicit Grant
13 SPAs and the Authorization Code with PKCE Flow
115 SPAs with a Backend

19 Conclusion

Preface

OAuth2 and OpenlID Connect: The Professional Guide 4

I met Vittorio when | joined AuthO in 2019. | only knew him as an authoritative
expert in the field of Identity, and | knew very little about that topic. Usually, he
was in charge of onboarding training for the technical staff, but when | went to
Bellevue for my onboarding, another trainer was assigned. However, he came
to the office to greet me because he had learned an Italian was in the group of
new hires. A clear signal that he was more than just an Identity expert: he was
a person full of empathy.

I had the honor of working closely with Vittorio at the beginning of my career
at AuthO, partly for helping him with this book and partly for reviewing other
developer content my team and | created. This gave me the opportunity to
learn a lot, not only about the technical aspects of Identity but also about how
to explain complex concepts based on the specific audience. His style, rich

in metaphors and anecdotes (you will find several in this book), has always
fascinated me. His histrionic manner, his marked accent, and his all-Italian
gestures establish him in my imagination as a great storyteller.

We started this book project at the end of 2019 and have published it
incrementally in two editions. Vittorio had already drawn up the roadmap
for the book and shared diagrams and notes with me, but his innumerable
commitments led him to postpone its completion.

His untimely death in October 2023 shocked me, as well as the entire
community of Identity professionals. Several times, | received requests for
information from developers about the book's completion. Therefore, it
seemed right to me not to disappoint readers and at the same time honor
Vittorio's memory by completing the book according to the original roadmap
and based on his notes. | tried as much as possible to maintain his style, even
if it was unique and unrepeatable. Since this project started, some things have
changed in the meantime, so | had to update some references, even in the
already published part. In this work of adaptation, updating, and revision, the
help of Aaron Parecki and Filip Skokan was invaluable, and my heartfelt thanks
go to them.

One last note before leaving you to read the book. This is not a technical
manual about OAuth 2.0 and OpenlID Connect. This book will not give you
detailed guidelines on how to use OAuth 2.0 and OpenlID Connect in your
applications. Or rather, you will learn this too, but more than anything else,

this guide will explain to you the reason for the small details of these protocols,
why we arrived at them, and how we arrived at them.

Understanding the reason for the technical choices and, therefore, the history
behind them will help you better understand OAuth 2.0 and OpenID Connect
and gain a professional knowledge of them. That said, | hope you will enjoy
reading this book!

Andrea Chiarelli

Introduction

OAuth2 and OpenlID Connect: The Professional Guide 5

This book will help you to make sense of OAuth, OpenID Connect, and
the many moving parts that come together to make authentication and
delegated authorization happen.

You will discover how authentication and authorization requirements
changed in past years and how today’s standard protocols evolved and
augmented their ancestors to meet those challenges - problems and
solutions locked in an ever-escalating arm’s race.

You will learn both the whys and the hows of OAuth 2.0 and OpenID
Connect. You will learn what parts of the protocol are appropriate to use
for each of the classic scenarios and app types (Sign-on for traditional
web apps, Single Page Apps, calling API from desktop, mobile, and web
apps, and so on). We will examine every exchange and parameter in detail -
putting everything in context and always striving to see the reasons behind
every implementation choice within the larger picture.

After reading this book, you will have a clear understanding of the classic
problems in authentication and delegated authorization, the modern
tools that open protocols offer to solve those problems, and a working
knowledge of OAuth 2.0 and OpenlID Connect. All that will allow you to
make informed design decisions - and even to know your way through
troubleshooting and network traces.

Chapter1

Introduction to
Digital Identity

OAuth2 and OpenlID Connect: The Professional Guide 6

In this chapter, you will be able to grasp some of the essentials of identity,
both in terms of concepts and the jargon that we like to use in this context.
And you'll have a good feeling of the problems, the classic dragons that we
want to slay in the identity space, which also happens to be the things that
AuthO by Okta can do for customers.

Without further ado, what is the deal with identity? Why is everyone always

saying, "Oh, this is complicated." Why? Just look at the following picture. It is
trivially simple: | have just two bodies in here and your basic physics course.
It would be one of the easy problems:

@ o

resource

Figure 1.1

| have a resource of some kind, and | have a user — an entity of some kind
that wants to access that resource in some capacity. It's just two things
doing one action. Why is this so complicated?

Well, for one, there's the fact that this is mission-critical.

When something goes wrong in this scenario, it goes catastrophically
wrong. And so, like every mission-critical scenario, of course, it deserves our
respect and our attention, and our preparation. There is a lot of energy that
goes into preventing this catastrophic scenario from coming true. But in this
specific domain of development, the thing that makes this complex is the
Cartesian product of all the factors that come into play to determine what
you have to do to have a viable solution. Consider the following factors:

¢ Resource types
Just think of all the types of resources you can have. Just a few
years ago, if you’d walk into a bank, you'd have a host, they’d have
some central database, and that's it. Today, conversely, pretty much
everything is accessible programmatically. So you have the API
economy, you have serverless — all those buzzwords actually point to
different ways of exposing resources and, of course, websites, apps,
and all the things you use in your daily life. Whenever you interact with a
computer system, there is a kind of resource that you have to connect
to. And, from the point of view of a developer, implementing that
connection is actually a lot of work.

OAuth2 and OpenlID Connect: The Professional Guide 7

e Development stacks

There are minor differences between development stacks that translate
into big differences in the code you have to write for implementing
access to a resource and the way in which you interact with it. This is
one level of complexity.

¢ |dentities sources

The other level of complexity is the sheer magnitude of the sources of
identities that you can use today.

Think of all the ways in which your own identity gets expressed
online. You can be a member of a social network, an employee of one
company, a citizen of a country. And all of those identities somewhat
get expressed in a database somewhere, and that somewhere
determines how you pull this information out.

You connect to Facebook in a certain way. You connect to Active
Directory in a different way. You get recognized when you're paying
your taxes to your country in yet another way. So, again, we encounter
another factor of complexity: if you want to extract identity from these
repositories, you have to find a way of doing it according to each
repository’s requirements and characteristics.

¢ Client types

Finally, there are many more complexity factors, but | just want to
mention another one: the incredible richness with which we can
consume information today. Think of all the possible clients you can
use: from your mobile phone and applications to websites, to your
watch. You can literally use anything you want to access the data.

And again, these compounds in terms of complexity with the kinds

of resources you want to access, the places from where you are
extracting information. So, this picture might look simple, but it's all but.

Now, what can Okta do for you to make this a bit more manageable? We
offer many different things, but the most salient component of our offering
is AuthO. It is a service that you can use for outsourcing most of the
authentication functions that you need to have in your solutions - so that
you don't have to be exposed to that complexity. In particular, we offer:

* Ways of abstracting away the details of how you connect to multiple
sources of identities. Every identity provider will have a different style
of doing the identity transactions, and we abstract all of that away
from you.

OAuth2 and OpenlID Connect: The Professional Guide

* A way of dealing with the user-management lifecycle. We have user
representations and features for dealing with the lifecycle of users
and similar.

¢ A very large number of SDKs and samples, which help you to cross
the last mile so that when you're using a particular development
stack, you can actually use components to connect to AuthO in a way
that is aligned with the idiom that you're using in that context.

* A degree of customization ability that is absolutely unprecedented
in the industry. There is no other service at this point that offers the
same freedom you have with AuthO to customize your experience.

Now, when you need to connect your application to AuthO, you need
to do something to tell us, "AuthO, please do authentication". And that
something in AuthO is implemented using open standards.

Open standards are agreements, wide consensus agreements that

have been crafted by consortiums of different actors in the industry. We
identity professionals decided to work on open standards when we came
to the realization that everyone - users, customers, and vendors - would
have been better off if we had enshrined in common standards, common
messages, common protocols, some of the transactions that we know
needed to occur when you're doing authentication, and similar. What
happened back then is that we went to semi-expensive hotels around
the world, met with our peers across the industry, and argued about how
applications should present themselves when offering services in the
context of an identity transaction. We discussed similar considerations
for identity providers. What kind of messages should be exchanged?

We literally argued message details down to the semicolon. That's how
fun standards authoring is, but it's all worth it: now that we have open
standards and all vendors have implemented the open standards, you, as
the customer, can choose which vendor you want to use without worries
about being locked into a particular technology or vendor. Above all, you
can plan to introduce different technologies afterward, without worrying
about incompatibilities.

Of course, this is mostly theory: a bit like those simplified school
problems disregarding friction or gravity of the moon influencing tides.
In reality, there are always little details that you need to iron out. But
largely, if you worked in our industry for the last couple of decades,
you know that we are so much better off now that we have those open
standards we can rely on.

OAuth2 and OpenlID Connect: The Professional Guide

In identity management, you're going to get in touch with many protocols,
many of them probably not even invented yet. The ones that are a daily
occurrence nowadays are:

e OpenlD Connect, which is used for signing in.

e OAuth 2.0, which is the basis of OpenID Connect and it is a delegation
protocol designed to help you access third party APIs.

e JSON Web Token or JWT, which is a standard token format. Most of
the tokens you'll be working with are in this format.

e SAML, which is somewhat a legacy (but still very much alive) protocol
that is used for doing single sign-on across domains for browsers.
SAML also defines a standard token format, which has been very
popular in the past and is still very much in use today.

From User Passwords in Every App...

Let’s spend the next few minutes going through a time-lapse-
accelerated-whirlwind tour of how authentication technologies evolved.
My hope is that by going back to basics and revisiting this somewhat
simplified timeline, I'll have the opportunity to show you why things are the
way they are today. In doing so, I'll also have the opportunity to introduce
the right terms at the right time. By being exposed to new terminology

at the correct time, that is to say, when a given term first arose, you

will understand what the corresponding concepts mean in the most
general terms. Contrast that with the narrower interpretations of a term’s
meaning youd end up with if you were exposed to it only in the context
of solving a specific problem. You might end up thinking that the problem
you are solving at the moment is the only thing the concept is good for,
missing the big picture and potentially stumbling in all sorts of future
misunderstandings. We won’t let that happen!

Let's go back to the absolute basics and think about the scenario |
described earlier in Figure 1.1 - the scenario in which | have one resource of
some kind, let's say a web application, and a user, and we want to connect
the two. Now, what is identity in this context?

We won't get bogged down with philosophy and similar. [dentity here

can be defined in a very operational, very precise fashion. We call digital
identity the set of attributes that define a particular user in the context of a
function delivered by a particular application.

OAuth2 and OpenlID Connect: The Professional Guide 10

What does it mean? That means that if | am a bookseller, the relevant
information | need about a user is largely their credit card number, their
shipping address, and the last ten books they bought. That's their digital
identity in that context. If | am the tax department, then the digital identity
of a user is, again, a physical address, an identifier (here in the USA is the
Social Security number), and any other information that is relevant to the
motion of extracting money from the citizen. If | am a service that does DNA
sequencing, the identity of my user is the username that they use

for signing in, their email address for notifications, and potentially their
entire genome.

You can see how, for all the various functionalities we want to achieve, we
actually have a completely or nearly completely different set of attributes.
These might correspond to the same physical person or not. It doesn't
matter. From the point of view of designing our systems, that's what the
digital identity is. So, you could say that the digital identity of this user is this
set of attributes we can place in the application’s store. Now, the problem of
identity becomes: when do | bring those particular attributes into context?
The oldest trick in the world is to have the resource and the user agree on
something, such as a shared secret of some sort. So, when the user comes
back to the site and presents that secret or demonstrates knowledge

of that secret, the website will say, “Okay, | know who you are. You’re

the same user | saw yesterday”. Here is your set of attributes, welcome
back. | authenticated the user. In summary, that means grabbing a set of
credentials, sending it over, and assuming that those credentials were
saved previously in a database. If they match, the user is authenticated.
This scenario is summarized in the following picture:

O = 3 y| | 2] [2

browser credentials user credentials
attributes

app user store

Figure 1.2

OAuth2 and OpenlID Connect: The Professional Guide 1

Now, you hear a lot of bad things about username and password... and they
are all true. That's unfortunate, but it's true. However, it is an extraordinarily
simple schema, and as such, it is very, very, very resilient.

Even if we have more advanced technologies, which do more or less

the same job, passwords are still very popular. | predict that this year,

like every year, someone will say that this is the year in which passwords
will die. But | think that passwords will still be around for some time. My
favorite metaphor for this is what happens in the natural world. Humans
are allegedly the pinnacle of evolution. However, there are still plenty of
jellyfish in the sea. They are so simple, and sure, we are more advanced,
but | am ready to bet that there are more individual jellyfish than there are
humans. The fact that their body plan is simple doesn't mean that it is not
successful. You'll see, as we go through this history, that passwords are
somewhat building blocks on which more advanced protocols layer on
top of. Again, I'm not discounting the efforts of eliminating passwords and
using something better, but I'm just trying to set expectations that it's still
going to take some time.

...to Directories

Let's make things a bit more interesting. Imagine the scenario in which
we have one user and one application. Now, extend this scenario to the
situation in which this user is an employee of some company. There is a
collection of applications being used by this particular user in the context
of the company’s business. Most applications are all part of what the user
does in the context of their employment. Imagine that one application is
for expense notes, the other is for accounting, the other is for warehouse
management. Anything you can think of. A few years ago, what happened
was that we had a bunch of apps on a computer. Then, we had someone
showing up with a coaxial cable, installing token ring networks, and
placing all these computers in the network. But that alone didn't make the
environment, and in particular the applications, automatically network-
ready. What happened is that you'd have exactly the situation - the big
thing here - in which you'd have a user accessing different independent
apps that knew nothing about each other and that replicated all the
functionality that could have been easily centralized. In particular, every
user had different usernames and passwords - or | should say different
usernames, because, of course, people reuse their passwords. Every time
users went to a new app, they had to enter their credentials.

O =

browser

OAuth2 and OpenlID Connect: The Professional Guide 12

And whenever a user had to leave the company, willingly or not, the
administrator had to go on a pilgrimage on all these various apps, run

after the user’s entries in there, and deprovision them by hand, which, of
course, is a tedious and error-prone flow. It's difficult. You often hear horror
stories of disgruntled employees using procurement systems to buy large
amounts of items just to get back at their former bosses and being able to
do so because their credentials in the procurement system weren’t

timely revoked.

That wasn't a great situation, to say the least.

What happened is that the industry responded by introducing a new entity,
which we call the directory. The directory is still extremely popular. It is a
software component, a service, which centralizes a lot of the functionalities
that you see in Figure 1.3.

L

credentials

L

user credentials

attributes 7. 7:'1:"'""-'::.—7., Q

directory

Figure 1.3

Basically, the directory centralized credentials and attributes and made it
redundant for applications to implement their own identity management
logic. At this point, users would simply sign in with their own central
directory, and from that moment onward, they'd have Single Sign-On
access to all the other applications. The application developers didn't

OAuth2 and OpenlID Connect: The Professional Guide

actually have to code anything for identity to achieve that result. In fact,

13

now that the network infrastructure itself provided the identity information,

administrators could now take advantage of this centralized place to deal
with the user lifecycle. It can be said that the introduction of the directory

is what truly created identity administrators as a category of professionals.

The ubiquitous availability of directories created an ecosystem of tooling
that helps people run operations, identities, and similar. So, a fantastic
improvement - which was predicated on the perimeter. In order for all this
to work as intended, you had to have all the actors within that perimeter.
The perimeter was often the office building itself, with users actually
walking in the building, sitting in front of a particular physical device,

and having direct “line of sight” with this cathedral in the center of the
enterprise: the directory, a central place knowing everything

about everyone.

Cross-Domain SSO

Of course, we know from current business practices that this approach
doesn't scale. It works well when you are within one company, but
there are so many business processes that require having more than
one company.

Think of a classic supplier or reseller. Any of those relationships requires
spanning multiple organizations. And so what happens is that when you
have a user in one organization that needs to access a different resource
in a different organization, you have a problem. In fact, this user does not
exist in the resource side directory.

The first way the industry tried to give a solution to this problem was to
introduce what we call shadow accounts, which means provisioning the
user to the resource side directory. This is completely unsustainable, as
it presents the same problems we mentioned earlier at a different scale
when every application handled identity explicitly. Let's say that we have
a user whose lifecycle is managed in one place, their own home directory,
but that has been provisioned as an entry in the resource side directory
as well. When the user is deprovisioned from their home directory, then
there might be a trail of user accounts provisioned in other directories
(such as the resource side directory in our scenario) that are still around
and that need to be manually deprovisioned. That's, of course, a big

problem because the deprovisioning isn’t likely to happen timely or, like any

OAuth2 and OpenlID Connect: The Professional Guide 14

changes in general, is harder to reflect in distributed systems that are not
centrally managed. Plus, imagine the complexity of having this company,
which may be a reseller for many other companies, but needs to somewhat
duplicate the work that its customer companies are already doing in their
own directories for managing their own users. It's just not sustainable.

So, what happened was that, just like it's classic in computer science,

we solved this problem by adding a level of abstraction. We took the
capabilities we have seen for the local directory case, and we just
abstracted it away. We provided the same transactions, but we described
them in a way that is not dependent on network infrastructure. For example,
Active Directory, and directories in general, rely on an authentication
protocol called Kerberos, which is very much integrated with a network
layer, hence has specific network hardware requirements. Whereas, of
course, in this case of scenarios spanning multiple companies, we have
to cross the chasm of the public Internet and cannot afford to impose any
requirements as requests will traverse unknown network hardware.

What happened was that the big guys of that time, Sun, IBM, and others, sat
at one table and came up with this protocol called SAML, which stands for
Security Assertion Markup Language. In a nutshell, the protocol described a
transaction in which a user can sign in in one place and then show proof of
signing in in another place and gain access. Here’s how it works. We need
something that facades my actual resource with some software capable of
talking with that protocol, which in this particular case is going to be what
we call a middleware: a component that stands between your application
and the caller, intercepting traffic and executing logic before the requests
reach the actual application. Similar protocol capabilities would be exposed
on the identity provider side. In the topology shown in Figure 1.3, we have
the machine already fulfilling the local directory duties (what we call the
domain controller in the directory jargon). We just teach that machine to
speak a different language, SAML, which can be considered somewhat

of a trading language that we can use for communication outside the
company’s perimeter.

In order to close this transaction, what happens is that we need to introduce
another concept: trust. Think of the scenario we were describing earlier,

the one within one single directory: in it, every application and every user
implicitly believes and trusts the domain controller. The network software
itself, whenever you need to authenticate, will send you back to the domain

OAuth2 and OpenlID Connect: The Professional Guide

controller, and the domain controller will do its authentication. It is just
implicit, it's as natural as the air you're breathing because there is only one
place that can perform authentication duties in the entire network.

Now, look at this particular scenario:

o5

browser

— @ Company 2

SAML

T
|
|| 0o

Company 1

Figure 1.4

The application within the Company 2 perimeter can be accessed by any
of its business partners: there is now a choice about from where we want
to get users’ identities, and there is no longer an obvious default users’
source. We say that a resource trusts an identity provider or an authority
when that resource is willing to believe what the authority says about its
users. If the authority says, “This user is one of my users and successfully

authenticated five minutes ago”, then the resource will believe it. That's all
trust means.

When you set up your middleware in front of your application, you typically
configure it with the coordinates of the identity providers that you trust.
How does that come into play when you actually make a transaction? Let's
see how this works in an actual flow by describing in detail each numbered
step shown in the following figure:

OAuth2 and OpenlID Connect: The Professional Guide 16

browser

o =9

O

web app

Company 2

T
|
|| 0o

Company 1

Figure 1.5

In the first leg of the diagram, the user points the browser to the
application and attempts to GET a page (1). The middleware in front of the
application intercepts the request, sees that the user is not authenticated,
and turns the request into an authentication request to the identity provider
(IdP), as it is configured as one of the trusted IdPs (2).

In concrete terms, the middleware will craft some kind of message,
probably a URL with specific query string parameters, and will redirect
the browser against one particular endpoint associated with the identity
provider (3).

In this particular scenario, the target endpoint belongs to a local identity
provider. You can see that the call to the IdP authentication endpoint is
occurring within the boundaries of the enterprise. That means that that

call will be authenticated using Kerberos, like any other call on the local
network. You can already see these layering of protocols, one on top of the
other. Thanks to the use of Kerberos and the fact that the user is already
authenticated with the local directory, the user will not have to enter any
credentials during this call.

OAuth2 and OpenlID Connect: The Professional Guide 17

Next, the identity provider establishes that the user is already correctly
authenticated and determines that the resource is one of the resources
that have been recorded and approved. Because of those positive checks,
the IdP issues what we call a security token (4) to the user. A security
token is an artifact, a bunch of bits, used to carry tangible proof that the
user has successfully authenticated. Security tokens are digitally signed.
What does it mean? A digital signature is something that protects bits from
tampering. Let's say that someone modifies any of those bits in transit:
when the intended recipient tries to check the signature, it will find that the
signature does not compute. The recipient will know for sure that those
bits have been modified in transit.

This property is useful for two reasons. One reason is that given that

we use public-key cryptography, we expect that the private key used to
perform the signature is only accessible by the intended origin of this
token. No one else in the universe can perform with that signature, but that
particular party. Remember what we just said about trust: that property
can be used as proof that a token is coming from a specific entity, and

in particular, whether it is a trusted one. The second reason is that given
that the token content cannot be modified in transit without breaking the
signature, | can use tokens as a mechanism to provide the digital identity
of a user on the fly. Instead of having to negotiate in advance the
acquisition of the attributes that define the user (the user identity,
according to our definition), as an application, | can receive those attributes
just in time, together with the token. This might be the first and the last
time that this particular user accesses this application, but thanks to the
fact that there is trust between the two organizations, | didn't need to do
any pre-provisioning steps.

The attributes that travel inside tokens are called claims. A claim is simply
an attribute packaged in a context that allows the recipient to decide
whether to believe that the user indeed possesses that attribute. Think
about what happens when boarding a plane. If | present my passport to
the gate agents, they will be able to compare my name (as asserted by the
passport) with the name printed on my boarding pass and decide to let me
go through. The gate agents will reach that conclusion because they trust
the government, the entity that issued my passport. If I'd pull out a post-it
with my name jolted down with my scrawny chicken legs handwriting and
present it to the gate agents in lieu of the passport, I'm probably not going

OAuth2 and OpenlID Connect: The Professional Guide 18

to board the plane - in fact, I'm likely going to be in trouble. The medium
truly is the message in this case. The token really does carry the potential
to decide whether you trust that particular information or not. Attributes
inside tokens become claims. It is an important difference.

Once the identity provider issues a SAML token, it typically returns it to the
browser inside an HTML form, together with some JavaScript that triggers
as soon as the page is loaded - POSTing the token to the application,
where it will be intercepted by the middleware (5). The middleware looks
at the token, establishes whether it's coming from a trusted source,
establishes whether the signature hasn't been broken, etc,, etc., and if it's
happy with all that, it emits what we call a session cookie (6). The session
cookie represents the fact that successful authentication occurred. By
setting a cookie to represent the session, the application will be spared
from having to do the token dance again for every subsequent request.
The session cookie is simply used to enable the application to consider
the user authenticated every time the application receives a postback.

This is how SAML solved the particular problem of cross-domain single
sign-on. We'll see that this pattern of exchanging a token for a cookie will
also occur with OpenlD Connect.

The Password Sharing Anti-Pattern

All this happened in the business world, but the consumer world also
didn't stay still from the identity perspective. One thing that happened
was that, as we got more and more of our lives online, we found ourselves
more and more often with the need to access resources that we handle in
a certain application... from a different application.

Let me make a very concrete example. | guess that many of you have
LinkedIn, and many of you also have Gmail. Imagine the following scenario.
Say that a user is currently already signed in to LinkedIn in whatever way
they want. The mechanics of how they got signed in to LinkedIn are not
the point in this scenario. Say that LinkedIn wants to suggest you invite all
of your Gmail contacts to become part of your LinkedIn network.

Gmail username and password?

OAuth2 and OpenlID Connect: The Professional Guide 19

We are using Linkedln and Gmail only because
they are familiar names with familiar use cases,
but we are in no way implying that they are really

implemented in this way nor that they played any
direct role in authoring this book.

Now, how was LinkedIn used to do this? I'm using LinkedIn as an example
here, but it's basically the behavior of any similar service you can think of

before the rise of delegated authorization. Let’s take a look at this flow by
following the steps in the following figure:

O
o= =

browser

&

O ..Wwhatever

LinkedIn asked
LinkedIn ® for, without
‘ restrictions

Q.

= &
o —

Gmail

Figure 1.6

LinkedIn would actually ask you for your Gmail username and password,
which are normally stored and validated by Gmail (1). You provide
LinkedIn with your Gmail credentials (2), and then LinkedIn would use
them to actually access the Gmail APIs used by the Gmail app itself for
programmatic access to its own service (3). This would achieve what
LinkedIn wants, which is to call the APIs in Gmail for listing your contacts
(4) and sending emails on your behalf.

OAuth2 and OpenlID Connect: The Professional Guide 20

What is the problem with this scenario? Many problems, but two, in
particular, are impossible to ignore.

The first problem is that granting access to your credentials to any entity
that is not the custodian of those credentials is always a bad idea. That is
mostly because those different entities will not have as much skin in the
game as the entity that is actually the original place for those credentials.
If LinkedIn does not apply due diligence and save those credentials in an
insecure place... sure, they'd get bad PR, but it will not be the catastrophe
that it would be for Gmail, for which the user access is now impacted. For
example, Gmail users will need to change passwords, creating a situation
where they are highly likely to defect or at least to experience lower
satisfaction with the service.

Here’s the second bad thing. Although LinkedIn’s intent with this
transaction was good (it is mutually beneficial both for me as a user

and for LinkedIn as a service to expand my network), the way in which
they have implemented the function gives them way too much power.
LinkedIn can actually use this username and password to do whatever
they want with my Gmail. They can read my emails, they can delete emails
selectively, they can send other emails, they can do everything they want
beyond the scenario originally intended - and that's clearly not good.

Delegated Authorization: OAuth 2.0

In response to the challenges outlined at the end of the preceding
section, the industry came up with a way of working around the problem
of giving too much power to applications.

OAuth 2.0' was designed precisely to implement the delegated access
scenario described earlier, but without the bad properties that we
identified as part of the brute force approach. The defining feature

of the OAuth 2.0 approach lies in the introduction of a new entity, the
authorization server, which explicitly handles operations related to
delegated authorization. | won't go too much into the details right now
because I'm going to bore you to death about it later in this book.

[1] The first incarnation of OAuth was OAuth 1.0, a protocol that resolved the delegated access scenario
but had several limitations and complications. The industry quickly came up with an evolution, named
OAuth 2.0, which solved those problems and completely supplanted OAuthi for all intents and purposes.
For that reason, in this text we only discuss OAuth 2.0.

OAuth2 and OpenlID Connect: The Professional Guide 21

Suffice it to say here that the authorization server has two endpoints:

* The authorization endpoint, designed to deal with the interaction with
the end-user. It's designed to allow the user to express whether they
want a certain service to access their resources in a certain fashion.
The authorization endpoint handles the interactive components of the
delegated authorization transaction.

* The token endpoint, which is designed to deal with software-to-
software communication and takes care of actually executing on
the intent that the user expressed in terms of permission, consent,
delegation, and similar concepts. More details later on.

Please note that in the following discussion, we assume that the user is
already signed in to LinkedIn even before the described scenario plays
out. We don’t care how the sign-in occurred in this context; we just
assume it did. OAuth 2.0, as you will hear over and over again, is not a
sign-in protocol.

Let’s say that, as part of their LinkedIn session, the user gets to a point
in which LinkedIn wants to gain access to Gmail APl on their behalf, as
described in the last section for the analogous scenario.

In the OAuth 2.0 approach, that means that LinkedIn will cause the

user to go to Gmail and grant permission to LinkedIn to see their contacts
and send mail on their behalf. Let’s follow this new flow by taking a look
at this figure:

302 to Gmail's authorization server ...only what was consented by the user

| = m— 1 =
<AUTHZ CODE> -
—
LinkedIn : <AUTHZ CODE>
6 it O
A —

Access Access
Creéé’ﬁﬁab Token Token
&
pu— Iio
<AUTHZ CODE> = »
3 — [—) 6 AP
authorization
server T
K D
o &

Gmail

Figure 1.7

OAuth2 and OpenlID Connect: The Professional Guide 22

LinkedIn follows the OAuth 2.0 specification to craft an authorization
request and redirect the user’s browser to Gmail’s authorization server
and, in particular, the authorization endpoint (1).

The authorization endpoint is used by Gmail to prompt the user (2)

for credentials if they are not currently authenticated with the Gmail
web application.

This is all within the natural order of things. In fact, it's Gmail asking a
Gmail user for Gmail credentials. So, no foul playing here; everything is
fine. As soon as the user is authenticated, the Gmail authorization server
will prompt the end-user, saying something along the lines of, "Hey, | have
this known client, LinkedlIn, that needs to access my own APIs using your
privileges. In particular, they want to see your contacts, and they want to
send emails on your behalf. Are you okay with it?"

Once the user says okay, presumably, the authorization server emits an
authorization code (3). An authorization code is just an opaque string
that constitutes a reminder for the authorization server of the fact that the
user granted consent for those permissions for that particular client. The
authorization code is returned to LinkedIn via browser (4). From now on,
the rest of the transaction occurs on the server side.

Please note: before any of the described transactions could occur,
LinkedIn had to go to the authorization server and register itself as a
known client. As part of the client registration operation, LinkedIn received
an identifier (called client id) and, most importantly, a client secret. The
client id and client secret will be used to prove LinkedIn’s identity as an
application in requests sent to Gmail’s authorization server, in particular to
its token endpoint.

The remainder of the diagram explanation will give you an example of how
this occurs. Now that it has obtained an authorization code, LinkedIn will
reach out to the token endpoint of the authorization server (5) and present
with its own credentials (client id and client secret) and the authorization
code, substantially saying, "Hey, this user consented for this, and I'm
LinkedIn. Can | please get access to the resource | want?"

As an outcome of this, the authorization server will emit a new kind of
token, which we call an access token (6). The access token is an artifact
used to grant LinkedIn the ability to access the Gmail APIs (7) on the user’s
behalf, only within the scope of the permissions that the user

consented to (8).

OAuth2 and OpenlID Connect: The Professional Guide 23

This solves the excessive permissions problem described in The
Password Sharing Anti-Pattern section. In fact, as long as LinkedIn

accesses the Gmail APIs only by attempting operations the user
consented to, the requests to the API will succeed. As soon as LinkedIn
tries to do something different from the consented operations, like, for
example, deleting emails, the endpoint will deny LinkedIn access because
the access token accompanying the API call is scoped down to the
permissions the user consented to (in our example, read contacts and
send emails). Scope is the keyword that we use here to represent the
permissions a client requested on behalf of the user. This mechanism
effectively solved the problem of excessive permissions, providing a way
to express and enforce delegated authorization.

What we have described so far is the canonical OAuth 2.0 use case, the
one for which the protocol was originally designed. In practice, however,
OAuth 2.0 is used all over the place, and it incurs all sorts of abuses,
that is, in ways in which OAuth 2.0 wasn't designed to be used. Be on
the lookout for those problematic scenarios: every time you hear that
some solution uses OAuth 2.0, please think of the canonical use case as
described here first. OAuth 2.0 supports many other scenarios, and we
will discuss most of them in this book. However, the core intent is as we
expressed in the use case we described in this section. Thinking about
whether a solution is using OAuth 2.0 in line with the intent expressed
here or delving from it significantly is a useful mental tool to verify whether
you are dealing with a canonical scenario or need to brace for non-
standard approaches.

0=

OAuth2 and OpenlID Connect: The Professional Guide 24

Layering Sign In on Top of OAuth 2.0: OpenID Connect

Let me give you a demonstration of one particularly commmon type of
OAuth 2.0 abuse. As OAuth 2.0 and delegated authorization scenarios
started gaining traction, many application developers decided that they
wanted to do more than just call APIs. They wanted it to achieve in the
consumer space what we achieved with SAML. They wanted to allow
users to sign in to their apps, reusing accounts living in a completely
different system. Instantiating this new requirement in the scenario we’ve
been discussing, LinkedIn might like users with a Gmail account to be
able to use it to sign in to LinkedIn directly, without the need to create a
LinkedIn account. In other words, LinkedIn would just want users to be
able to sign up on LinkedIn by reusing their Gmail accounts.

This is a sound proposition because, in many cases, people typically
aren't crazy about creating new accounts, new passwords, and similar. So,
making it possible to reuse accounts is not a bad idea in itself.

However, OAuth 2.0 was not designed to implement sign-in operations.
Most providers only exposed OAuth 2.0 as a way of supporting delegated
authorization for their API. They did not expose any proper sign-in
mechanism as it wasn’t the scenario they were after. That didn’t deter
application developers, who simply piggybacked on OAuth 2.0 flows

to achieve some kind of poor man's signing in. Imagine the delegated
authorization scenario described for the canonical OAuth 2.0 flow and
imagine it taking place with the user not being previously signed in to
LinkedIn. The following picture describes this flow:

...succesful API call

@

o— o

Linkedin Y \Q/

authorization
server

O

Gmail

Figure 1.8

OAuth2 and OpenlID Connect: The Professional Guide 25

LinkedIn can perform the dance to gain access to Gmail APls without
having any authenticated user signed in yet (1). As soon as LinkedIn
successfully accesses Gmail APIs (2), it might reason, “Okay, this proves
that the person interacting with my app has a legitimate account in
Gmail”. So LinkedIn might be satisfied by that and consider this user
authenticated, which in practice could be implemented by creating and
saving a session cookie (3), as we did during sign-in flows early on when
we discussed the SAML approach.

This would be a good time to remind you that we
are using LinkedIn and Gmail only because they are
familiar names with familiar use cases, but we are

in no way implying that they are really implemented

in this way.

This pattern for implementing sign-in is still a common practice today. A
lot of people do this. It's usually not a good idea, mainly because access
tokens are opaque to the clients requesting them, which makes many
important details impossible to verify. For example, the fact that an access
token can be used to successfully call an APl doesn't really say anything
about whether that access token was issued for your client or for some
other application. Someone could have legitimately obtained that access
token via another application (in our scenario, not as LinkedIn, but as
some other app) and then somehow managed to inject the token into the
request. If LinkedIn just uses that token for calling the APl and it reasons,
“Okay, as long as | can use this token to call the API without getting an
error, I'll consider the current user authenticated”, then LinkedIn would be
fooled in creating an authenticated session.

Another consequence of access tokens being opaque to clients is that an
attacker could get a token from a user and somehow inject it into the sign-
up operation for a completely different user. Once again, LinkedIn wouldn't
know better because unless the API being called returns information that
can be used to identify the calling user, the sheer fact that the API call
succeeds will not provide any information the client can use to determine
that an identity swap occurred.

O=

OAuth2 and OpenlID Connect: The Professional Guide 26

The attacks I'm describing are called the Confused Deputy attack, and
they are a classic shortcoming of piggybacking sign-in operations on top
of OAuth 2.0.

Even more aggravating: with this approach, there is no way to standardize
the OAuth 2.0-based sign-in flow. In our model scenario, the last mile is

a successful call to Gmail APIs. If | want to apply the same pattern with
Facebook, the last mile would be a successful call to the Facebook Graph
APls, which are dramatically different from the Gmail API. That makes it
impossible to enshrine this pattern in a single SDK that can be used to
implement sign-in with every provider across the industry, even if they all
correctly support OAuth 2.0.

This is where the main players in the industry once again came together
and decided to introduce a new specification called OpenID Connect,
which formalizes how to layer signing in on top of OAuth 2.0. I'll go into
painstakingly fine details about that effort in the rest of the book, but in
a nutshell, the central point of the approach is the introduction of a new
artifact, which we call the ID token. The ID token can be issued by an
authorization server via all the flows OAuth 2.0 defines. OpenID Connect
describes how applications can, instead of asking for an access token
(or alongside access token requests), ask for an ID token. The following
picture summarizes one of such flows:

= 0 O

@

G— o ? ID Token Access Token
. <AUTHZ CODE>
LinkedIn —
App
Credentials

g o

authorization
server

O

Gmail

Figure 1.9

OAuth2 and OpenlID Connect: The Professional Guide 27

An ID token is a token meant to be consumed by the client itself, as
opposed to being used by the client for accessing a resource. The
characteristic of the ID token is that it has a fixed format that clients

can parse and validate. Using a known format and the fact that the
token is issued for the client itself means that when a client requests
and obtains an ID token, the client can inspect and validate it - just like
web apps secured via SAML inspect and validate SAML tokens. It also
means the ability to extract identity information from it, once again, just
like we learned that it's a common practice with SAML. Those properties
are what make it possible to achieve proper signing-in using OAuth 2.0.
The news introduced by OpenlD Connect didn't stop there: the new
specification introduced new ways of requesting tokens, including one
in which the ID token can be presented to the client directly via the front
channel, between the browser and the application. That makes it possible
to implement sign-in very easily, just like we have learned in the SAML
case, without having to use secrets and a backside integration flow as
the canonical OAuth 2.0 API invocation pattern required.

What we have seen in this chapter can be thought of as a rough timeline
for the sequence of events that culminated with the creation of OpenID
Connect. In the next chapters, we will expand on the high-level flows
described here, going deep into the details of the protocol.

OAuth2 and OpenlID Connect: The Professional Guide 28

AuthO: an Intermediary Keeping Complexity at Bay

What's the role of AuthO in all this? You can think of AuthO as an
intermediary that has all the capabilities in terms of protocols to talk to
pretty much any application that supports the protocols you support,
such as OAuth 2.0, OpenID Connect, SAML, WS Federation.

25

Social OAuth2 OAuth2

0%

SAML

-:
= .=

WS-Fed

authorization
server

B] ¢

OIDC web app

9
dashboard

Figure 1.10

You can simply integrate your application with AuthO, which, in a
nutshell, is a super authorization server, using any of the standard
protocol flows we described in this chapter. From that moment on,
AuthO can take over the authentication function. When it’s time to
authenticate, your app can redirect users to AuthO and, in turn, AuthO
will talk to the different identity providers you want to integrate with,

in each case using whatever protocol each identity provider requires.
If the identity providers of choice use one of the open protocols |
mentioned, the integration AuthO needs to perform is very easy. But if
they are using any proprietary approach, for the application developer,
it doesn't matter. Once the app redirects to AuthO, AuthO takes care of
the integration details. For you, it's just a matter of flipping a switch and
saying, “l want to talk with this particular identity provider” - the result,
mediated by AuthO, will always come in the format determined by the
open protocol you chose to use for integrating with AuthO. In concrete,

OAuth2 and OpenlID Connect: The Professional Guide 29

that's what we meant earlier when we stated that AuthO abstracts
away the problem from you.

In addition, AuthO offers a way of managing the lifecycle of a user.
AuthO maintains its own user store; it integrates with external user
stores and exposes various operations you can perform to manage
users. For example, you can have multiple accounts sourced from
various identity providers that accrue to the same account in AuthO and
your app. You can normalize the set of claims you receive from different
identity providers so that your application doesn't have to contain any
identity provider-specific logic.

We also provide ways of injecting your own code at authentication time
SO you can easily execute custom logic, such as subscription, billing, or
any functionality that just makes sense in your scenario to occur at the
same time as authentication.

You have full control over the experience your users will go through,

as AuthO allows you to customize every aspect of the authentication
UX. AuthO makes it very easy for you to use the set of features, mostly
by providing a dashboard with a very simple point-and-click interface.
You can also use AuthO’s management APIs to achieve programmatic
access to everything the dashboard does and more.

That's it for Identity 101. It was a pretty quick whirlwind tour of the last
15 to 20 years of evolution in the world of digital identity. In the next
chapters, we'll spend a bit more time sweating the details.

Chapter 2

OAuth 2.0
and OpenlD
Connect

OAuth2 and OpenlID Connect: The Professional Guide 30

Let's dig a bit deeper and specifically turn our attention to OAuth and
OpenlD Connect (OIDC) as protocols.

Have you ever read any of the specifications of those protocols? | am

an old hand at this: | was working in this space when there were still
CORBA, WS-Trust, and various other old man's protocols. In the past,
identity protocols tended to be extraordinarily complicated: they were
XML-based and exhibited high-assurance features that made them

hard to understand and implement. For example, the cryptography they
used supported what was called message-based security - granting the
ability to achieve secure communications even on plain HTTP. It was an
interesting property, but it came at the cost of really intricate message
formatting rules that made implementation costs prohibitive for everyone
but the biggest industry players.

Now, the new crop of protocols - OAuth, OpenID Connect, and similar -
are based on simple HTTP and JSON - a reasonably simple format - and
they heavily rely on the fact that everything occurs on secure channels.
This simple assumption enormously simplifies things: together with other
simplifications and cuts, this makes the new protocols more approachable
and at least readable.

However, we are not exactly talking about Harry Potter. Plowing through
eighty-six pages of intensely technical language, such as the ones
constituting the OpenlD Connect Core specification, is a pretty big
endeavor, even for committed professionals. If you work in the identity
space, you'll find yourself referring to the specifications in detalil, over

and over again, with a lawyer-like focus, on each and every single word

- those documents are dense with meaning. You can also see that the
specifications have a pretty high cyclomatic complexity. That's to say,
there are multiple links that provide context, and usually, there is not a lot
of redundancy. If there is a link pointing to another specification defining

a concept used in the current document, you've got to follow the link

and actually learn about that concept before you can make any further
progress. There's really a very large number of such specifications, even if
you limit the scope to just one or two hops from the OpenID Connect and
OAuth 2.0 core specs. All the specifications you see in the constellation

of OAuth, OpenID, JWT, JWS, and similar are the core, describing the

most fundamental aspects that come into play when handling the main
scenarios those specifications are meant to address. An entire ring of best
practices or new capabilities is not shown here. The complete picture is, in
fact, much larger.

OAuth2 and OpenlID Connect: The Professional Guide

OAuth2 Threat Model 0Auth2 Token Bearer Usage OAuth2 Core OAuth2 MRTEP JWT 35 pages JWS 67 pages JWK 47 pages
71 pages 76 pages 8 pages
Openld Connect DCR =

17 pages JWA 78
pages
Openld Connect Discovery OAHEAFREM Sipages

OpenlID Connect Core
17 pages

86 pages

- OpenlID Connect Session
13 pages

OpenlID Connect BC Logout
9 pages

OpenlD Connect FC Logout
7 pages

Figure 21

The main reason | am showing you this is to dispel the notion, which a

lot of people really like to believe, that adding identity capabilities to one
application is just a matter of reading the spec. If you want to do modern
identity, just read the OAuth 2.0 and OpenlD Connect specifications, and
you'll be fine. Of course, the reality is quite different. If that were true, then
not many people would be doing modern authentication nowadays.

In fact, reading all these things is our job as identity professionals - as the
ones who build identity services, SDKs, quick starts, samples, and guides
that developers can use to get their job done without necessarily having

to be bogged down in the fine-grained details of the underlying protocols.

That said, given that the book you are reading is meant to be read by
aspiring identity professionals, the fine-grained details of the protocol
are among the things we want to learn about - and what you'll find in
abundance in the rest of the text.

However, | dislike the classic academic approach, which is so common
in other learning material about identity. There, you just get the lecture
and a laundry list of the concepts listed in these various specifications -

31

OAuth2 and OpenlID Connect: The Professional Guide 32

college style - and are expected to figure out on your own how they apply
to your scenarios. The messages, artifacts, and practices defined in those
specifications are all there for specific reasons. Typically, it is for addressing
use cases and scenarios. Their language is such that it's not usually
presented in a scenario-based approach, as it would not be economical in
a specification to do so. That's a great approach for formal descriptions and
keeping ambiguity to a minimum, but not great for actually understanding
how to apply things in concrete.

I'm going to turn things around, and actually, apart from giving you some
basic definitions, | want to operate at the scenario level. | want you to
understand why things are the way they are and how they are applied in
particular solutions rather than just asking you to study for a test. In the
process, we will eventually end up covering all the main actors and all the
main elements in the specifications. Simply, we will not be following the
traditional order in which those artifacts are listed in the specs themselves.
We'll just follow the order dictated by the jobs to be done

that we want to tackle.

OAuth 2.0 Roles

Let's start with the few definitions | mentioned we need before starting our
scenario-based journey through the specifications. OAuth 2.0 and OpenlID
Connect define a number of primitives required for describing what's going
on during identity transactions.

In particular, OAuth 2.0 introduces several canonical roles that different
actors can play in the context of an identity transaction. As OpenID Connect
is built on OAuth 2.0, it inherits those roles as well:

* The first one is the resource owner. The resource owner is, quite simply,
the user. Think of the LinkedIn and Gmail scenario in the preceding
chapter: the resource LinkedIn wants to access is the user's Gmail
inbox; hence the user in the scenario is the resource owner.

* Then we have the resource server, which is the guardian of the
resource, the gatekeeper that you need to clear in order to obtain
access. It typically is an API. In our model scenario, the resource server
is whatever protects the API that LinkedIn calls for enumerating contacts
and sending emails with Gmail on behalf of the resource owner.

OAuth2 and OpenlID Connect: The Professional Guide 33

e Then, there is the client, probably the most salient entity for developers.
From the OAuth 2.0 perspective, the client is the application that needs
to obtain access to the resource. In our example, that would be the
LinkedIn web application.

For OAuth 2.0, which is a delegated authorization protocol and a
resource access protocol, every application is modeled as a client.
However, we'll see that when we start layering things on top of
OAuth 2.0, and for example, we'll use OpenID Connect for signing in,
very often what, according to the spec jargon, is called the client will,
in fact, be the resource that we want to access. In that sentence,

| use “resource” not in the OAuth sense but in the general English
language sense of the word. You can see how naming “client” the
resource you want to get access to might be confusing!

Now that you have seen in Chapter 1 how OpenID Connect was
built on top of OAuth 2.0 scenarios, you know why. That's because
in OpenID Connect, signing in means requesting an ID token, which
is a special semantic access token meant to be consumed by the
requestor itself, rather than for accessing an external resource. Your
application is both the client (because it requests the IDtoken) and
the resource itself (because it consumes it instead of using it for

calling an API), but the term we end up using for describing the app

in protocol terms is just client. That can be confusing for the non-
initiated, but that's the way it is. | will often highlight this discrepancy
throughout the book.

¢ Finally, we have the authorization server, which, as defined in
Chapter 1, Introduction to Digital Identity, is the collection of endpoints

used for driving the delegated authentication scenarios described there
(and many more).

The authorization server exposes the authorization endpoint, which is

the place where users go for anything that entails interactivity. Practically
speaking, the authorization endpoint serves back web pages. It's not always
literally the case, as we'll see in the chapter about SPA, but the cases in
which we don't show a Ul on the authorization point are an exception.

The authorization server also features a token endpoint, which apps
typically speak to programmatically, performing the operation that actually
retrieves tokens.

OAuth2 and OpenlID Connect: The Professional Guide 34

Authorization and token endpoints are defined in OAuth 2.0 Core.

OpenlD Connect augments those with the discovery endpoint. This is a
standard endpoint that advertises, in a machine-consumable format, the
capabilities of the authorization server. For example, it will list information

like the addresses of the two endpoints | just described. Another essential
information the discovery endpoint provides is the key that OIDC clients
should use for validating tokens issued by this particular authorization server,
and so on, and so forth.

OAuth 2.0 Grants and OIDC Flows

The most complicated things in the context of OAuth 2.0 and OpenlID
Connect are usually what we call grants. In a nutshell, grants are just

the set of steps a client uses to obtain some kind of credential from the
authorization server, for the purpose of accessing a resource. As simple

as that. OAuth 2.0 defines a large number of grants because each of them
makes the best of the ability of a different client type to connect to the
authorization server in their own ways, according to its peculiar security
guarantees. Grants also serve the purpose of addressing different scenarios,
such as scenarios where access is performed on behalf of the user vs. via
privileges assigned to the client itself and many more.

[won't go into details of the various grants here because we are going to
pretty much look at all of them inside out through this book. Suffice it to say
at this point that there is a core set of grants originally defined by OAuth 2.0:
Authorization Code, Implicit, Resource Owner Credentials, Client Credentials,
and Refresh Token. OpenlID Connect introduces a new one, the Hybrid,
which combines two particular OAuth 2.0 grants into one single flow.

In addition to the grants defined by the core OAuth 2.0 and OpenID Connect
specifications, the OAuth 2.0 working group at IETF and the OpenID
Foundation continuously produce independent extensions devised to
address scenarios not originally contemplated by the core specs, or deemed
too specific for inclusion. The ability to add new specifications to extend and
specialize the core spec is a powerful mechanism that helps the community
receive the guidance it needs to address new scenarios as they arise.

The book will examine every essential grant in detail, with a particular
emphasis on the scenarios for which a specific grant is most appropriate,
the reasons behind the main features characterizing every grant, and the
most important factors that need to be taken into account when choosing
to solve a scenario with a specific grant.

Chapter 3

OAuth 2.0
and OpenlD
Connect

OAuth2 and OpenlID Connect: The Professional Guide

Starting with this chapter, we are going to dive deeper into concrete
scenarios. Let's begin with the most commmon one: Web Sign-In.

Confidential Clients

Before | actually get into its mechanics, | have to introduce at high level
a couple of artifacts and terminology that we use in the context of
OAuth 2.0 in OpenlID Connect. In particular, | want to talk to you about
client types.

A confidential client in OAuth 2.0 is a client that has the ability to
prove its own application programmatic identity. It's any application to
which the authorization server can assign a credential of some type
that allows the app to prove its identity as a registered client during any
request to the authorization server.

This typically happens with any singleton app. Think of a website that
is running on a certain set of machines. Even if executing on a cluster,
it's one logical entity running there. When | provision my client by
registering it at the authorization server, | have a clear identity for it. |
have URLs that determine where this client lives, and | have a flow for
getting whatever secret we want to agree upon, which | can save and
protect locally.

Allegedly, if the application runs on a server, the server administrator
is the only person who can access that secret. Contrast all of this with
applications that, for example, run on your device: those apps are all
but a singleton. Every phone will have a different instance of Slack,

for example. When you download the application from the application
store, there is no easy way to get a unique key representing that
particular instance of a client.

You certainly cannot embed such a key in the code because it would
be de-compiled in a second, and you'd be in trouble. Also, the device
is always available in the pockets of the people using it. It is outside
of your control, so there is no way for you to protect the key for an
extended period of time. A motivated hacker has an infinite time to
actually dig into the device, as opposed to a server that must first be
breached before it can reveal its secrets.

35

OAuth2 and OpenlID Connect: The Professional Guide 36

In summary, confidential clients are clients for which it's appropriate to
assign a secret. The classic scenario is websites that run with a server
But you can also think of an loT scenario in which you want to identify the
device itself rather than its user.

Another scenario involves long-running processes.

For example, consider a continuous integration system that uses your
Jenkins, compiles your product overnight, runs tests, and similar long-
running tasks. You'll likely want that daemon to run with its own identity,
as opposed to the identity of a user. In fact, if you use the identity of a
user and then the user leaves the company, everything may grind to a
halt, and no one knows why. This happens because people very often
forget that a particular user identity was used for running these scripts.
So, assigning its own identity to the daemon is a better option.

One subtlety here is that even if an application is a confidential client,
not every single grant that the application does will require using a client
credential. It is a capability that the application has, but it doesn't have
to exercise it every time. There will be, in fact, scenarios like the one that
we are about to explore, in which there is no need to use keys. Typically,
the key is used to prove your identity as a client when you're asking for a
token to access a different resource. Instead, we'll see that in the case of
Web Sign-In, you are the resource.

OAuth2 and OpenlID Connect: The Professional Guide 37

The Implicit Grant with Form Post

The grant we're going to use here is the Implicit grant with Form Post.

It is kind of a mouthful, but, unfortunately, that's the way the protocol
defines it. This is something that wasn't possible before OpenID Connect.
It is the easiest way to achieve Web Sign-In using OpenID Connect, and
it is really similar to SAML. In fact, it basically follows the same steps

that I've described when | demonstrated the first SAML flow in the first
chapter, Introduction to Digital Identity.

This grant constitutes the basis of something that only OpenlID Connect
can do, that is, combining signing in to a website with granting that
website delegated permission to access an API. What we are going to do
now is to study half of that transaction. We'll only look at the sign-in part.
When we will talk about APIs, we'll look at the other half. Those two halves
can be combined so that the user experience is truly streamlined. Also, in
terms of design, combining sign-in and API invocation capabilities makes
it possible for an application to play multiple roles. This is a really powerful
scenario that wasn't possible before OpenlD Connect.

Given that we're using the front channel, we don't need to use the
application credentials. There are security implications here and there,
but, as just said, it is just like SAML.

Setting this thing up from a developer’s perspective is a thing of beauty.
You just install your middleware in front of your application. Then, you

use your configuration to point it to the discovery endpoint, as we
mentioned in Chapter 2, OpenlD Connect and OAuth, and just specify the

identifier assigned as a client when you registered your application. In the
authorization server, you need to specify the address where you want to
get tokens back to the app, and you’re done.

A detailed walkthrough

Let's see in detail how the Implicit grant with form_post works. Take a look
at the scenario shown in Figure 3.1:

38

| Guide

lonal

The Profess

OAuth2 and OpenlID Connect

ddegem »as 2dlO

.@ <TWiy/> —

<Apog/>gzL+asol swooram <Apog>
<pE3L/ ><pEaY><TUWIY>
<Twly adAloopi>
L' L/dLIH eez (8)

—@——— paivs101d/

6@)b=bTs TEIUSP [==046rAW[") ZArha=Teiusp :a1300D @

L L/dLIH pejselcsd/or-yosbu- 1gezaeps//:sdidy 139 (L)

<d/><e/>poi1oalosd/<, paioalosds, =4aly

e> 01 ButjosJipay ‘punoq<ds

Atuodily I/=yjed :Bp[’°]b=61s Teiuap ‘Aruodily

t/=yaed ==pusr|c |dumzArAs=TRIUSp 1ST400)-18G

uoT18007
L L/dLIH zee (9)

il

o HE—@-| YOLTdpTZu[" * JAEYOBLOL™ T -NOZMI0490rAALEOX0AGZY
3034 L LdWITMBU DS TDAZME[* * 1rAa 6rS[" J¥Xa@BrAa=uaxo1 pt [____==-J
— 1] []éi@zTa0yine/wod guine JassoT4//:sdily [Ja.alay
PApODUSTIN-WI0) -MMM-X/UOTIBOTTdde :adA]-juaiuoy \T
Wod* guyIne J1assoT4//:sd11y 1uthbtig
0T %04BU" LBAZIEPE :3ISOH
L*L/dLIH %oeqTTed/0T yolbu- Lgszaepg//:sdily 1S0d (S)
PPE86P49ELE60940=00U0LR
TTewspZ%STTI04dpZ%pTUado=adoasy
@ H0RqTTRI4Z%O0T " H046U" 186Z9ePETAIZRVELSdIIY=TIN 105, TpaIR
1s0d”w.lo =apou~asuodsaiguanol “pr=adA1-asuodsalg
8HIIXIUHHOZEHAOIN18YHD [HIZISINZ=PT JUST[D¢E
3ZTA0YINE/WOD " GYINE” 13SSOT4//15d11Y 1UOTIED07
L L/dLIH zaE ()
_ L"L/dLIH paioaload/oT xouBu- 1gzaeps//isdily 139 (L) __
<TWwiys
<Apoq/>
<WJ0Y />
</, ¥OLTdpTZ[" "] TmBu-D4TD9Z("~]Z33wasNmenria- 6rsbd| " - |xeards,=antea
LU%01 7 pT, =aweu ,uappty,=adAl Indut>
<, qoeqITeo/otT Hodbu' |gezeeps/ /i sdily, =uotioe 1sod, =poylaw waods>
<, ()atwgns- [g]swioy jusunoop: ydTiosene =peoTuc Lpogs
<peay/><a[3T1/>wio4 STYL ITUGNS<ITITI><peay>
<TuY>
P 24noas 'ATU0dIIH IO Z8:25:6L BLAZ d9S fZ ‘nyl=sauTdx3 !/=yied '07[" " [VERS=@YINE :3TH00D-}as

uonezuoyine

d3
uonezioyne

Aienoosip

ayoeo-ou :ewbedd »g=»oayo-a4d ‘g=x29yo-3s0d '21EPITERASJ-ISNW ‘SUIBD-OU ‘B403S-OU ‘@3EATJd [04IU0D-3LDED
LPLOJ6LIBESSPREPLEY pTIsanba.-gyine-x

8-4LN=19s1eyd ! TuaY/1xa1 :adA1-1us1u00

8°Z/dLiH eez (¥)

L7 L/dLLH PPBB6P49BLE6024I=00uU0UY

Trewsgz%e t4oidpggpiuado=adoosy

}0ROTTEISZ%OT " HOIBU " L86ZIBPBITHITRYERSAILY=TIN"105.TpaIg

1sodwioj=apow~asuodsalguanol pr=adA1-asuodsaiy
BWIAXIUHNOZBHAOIWI8VHO [HIZ1SONZ=PT ™ IUSTTILBZTIOYINE /WOD " PyYIne” 1assoT4//:sd3qy
139 (g)

Figure 3.1

the identifier of the app
atthe AS

what artifact(s) | want

where | want to receive
the results back

OAuth2 and OpenlID Connect: The Professional Guide 39

We have a user with a browser, a web application protected by a
middleware implementing OpenlID Connect, and an authorization server.

You might notice that in this authorization server, I'm showing only the
authorization and discovery endpoints. | don't show the token endpoint
because we don't use it in this particular flow.

The idea is that, as soon as this web application comes alive, the
middleware will reach out to the discovery endpoint and learn
everything it needs about the authorization server. In particular, it will
get the authorization endpoint’s address and the key to be used for
checking signatures. We’ll show how all those steps occur in detail
later (see Metadata and Discovery section). For now, we’ll focus on the

authentication phase properly.

Let's see how the access plays out by describing each numbered step.

1. Request Protected Route on Web App
In the first step, the browser reaches out to the application
to get one particular route, which happens to be protected
and hence not accessible by anonymous requests.

2. Authorization Request Redirect
The middleware intercepts this call and emits an authorization request
for the authorization server in response. The HT TP response has an
HTTP 302 status code, i.e,, it's a redirect. It has several parameters
meant to communicate all the information necessary to perform
the required authentication operation to the authorization server.

the authorization
endpoint

| &response_type=id_token&response_mode=form_post

(2) 302 HTTP/1.1 \
Location: https://flosser.auth@.com/authorize
?client_id=ZuGSLz6H]jGRA8LMtopHBzcKHhCXFtMk8

how | want the
artifacts returned

&redirect uri=https%3A%2F%2F8dae2981.ngrok.io%2Fcallback
&scope=openid%2@profile%28email
&nonce=cfec997a6d98edd

why | want the artifacts
(what content, capabilities)

Figure 3.2

OAuth2 and OpenlID Connect: The Professional Guide 40

It’s really important to understand the anatomy of this message since all
the other messages we'll see will be derivatives of this. Here, we're going
to touch on all the most relevant parameters.

e Authorization endpoint
The first element is the authorization endpoint. That's the address
where we expect the authorization endpoint functionality to be for
the authorization server.

e ClientID
This client_id parameter is the identifier of your application at the
authorization server. The authorization server has a bundle of
configuration settings associated with your app, and it will bring those
up in focus when it receives this particular client ID.

e Response type
The response_type parameter indicates the artifact that | want. In this
particular case, | want to sign in, so I need an ID token. Consequently,
the value of the response_type parameter will be id_token. | can ask
for a wide variety of artifacts, including combinations of artifacts; we'll
see those combinations in detail.

¢ Response mode
Response mode is how | want these artifacts to be returned to me.
| have all the choices that HTTP affords me. | can get things in the
query string, but this is usually a bad idea because artifacts end up
in the browser history. | can get the artifacts in a fragment, which is
still part of the URL but not transmitted to a server. | can get them as
a form post (form_post), which is what we are using here. In this case,
we just want to make sure that we post the token to our client. This
way, we don't place stuff in the query string, which, as mentioned,
is generally a bad practice from the security perspective. The use of
a POST also allows us to have large tokens. In fact, if you place stuff
anywhere but in a form post, you might run into size limitations.

e Redirect URI
The redirect_uri parameter has a very important role. It represents
the address in my application where | expect tokens and artifacts to
be returned. | need to specify this because the tokens we use in this
context are what we call bearer tokens. Bearer tokens are tokens
that can be used just by owning them. In other words, | can use
them directly without needing to do anything else, as other types
of tokens might require. For example, other types of tokens may
require me also to know a key and use it at the same time. But bearer
tokens don't. You will hear much more about bearer tokens in the

OAuth2 and OpenlID Connect: The Professional Guide 41

token validation section (see Principles of Token Validation). So, it is

imperative that | use only HTTPS so that no intermediary can interject
itself and intercept traffic.

Also, it is very important that | specify the exact address | want the
response to be sent back to. If | don’t and, for example, instead of
doing a strict match with the provided address, | allow callers to
attach further parameters, | put communication security at risk. What
might happen - and it did happen in the past - is that there might be
flaws in the development stack I'm using that will cause my request to
be redirected elsewhere. That would mean shipping my bearer tokens
to malicious actors, and that’s all they’d need to impersonate me.
OAuth 2.0 and OpenlID Connect are strict about this: the redirect URI
you specify in the request must be an exact match of what you want.

e Scope
The scope parameter represents the reason I'm asking for the
artifacts. In the example above, | specified openid, profile, and email,
which are scopes that cause the authorization server to issue an ID
token with a particular layout. It's somewhat redundant with the earlier
response type, but I'm also asking for enriching this ID token with the
user’s profile and email information, if present.
In short, with the scope, | am specifying the reason | want the
artifacts | am requesting. We will see that, when we use APIs, we ask
for particular delegated permissions we want to acquire.

e Nonce
The nonce parameter is mostly a trick for preventing token injection.
At request time, | generate a unique identifier and save it somewhere
(like in a cookie). This identifier is sent to the authorization server, and
eventually, the ID token that | receive back will have a claim containing
the same identifier. At that point, I'll be able to compare that claim with
the identifier | saved, and I'll be confident that the token | received
is the one | requested. If | receive a token with a different (or no)
identifier, | have to conclude that the response has been forged and
the token injected.

It is worth mentioning that | specified form_post as the value for
response_mode because the default response mode of the ID token would
be different (it would have been fragment); hence | had to override it explicitly.
The following table shows the default response mode for each response
type defined by OAuth 2.0 and OpenID Connect. If | omit response_mode in
the request, the authorization server will apply its default value:

OAuth2 and OpenlID Connect: The Professional Guide

response_type default response_mode

code query

token fragment

id_token fragment (query disallowed)
none query

code token fragment (query disallowed)
code id_token fragment (query disallowed)
id_token token fragment (query disallowed)
code id_token token fragment (query disallowed)

Note that the upcoming OAuth 2.1 specification will deprecate the

token response type, so all the response types containing token will be
deprecated as well.

3. Authorization Request
The next step for the browser is to honor the 302 redirection and
actually perform a GET, hitting the authorization endpoint with all the
parameters | just described.
From now on, the authorization server does whatever it deems
necessary to authenticate a user and prompt for consent. How
this occurs isn't specified by OAuth 2.0 or OpenID Connect. The
mechanics of user authentication, credentials gathering, and the
like are a completely private matter of the authorization server as
long as the eventual response is in the standard's format. You can
have multi-factor authentication, multiple pages, or one single page.
It doesn't matter as long as you come out with a standard result.

OAuth2 and OpenlID Connect: The Professional Guide 43

4. Authorization Response
Once everything works out, you get an HTTP response with a 200
status code. This means that you have successfully authenticated with
the authorization server. The authorization server will set a cookie that
represents your session with it. So, if you need to hit the authorization
endpoint again later on, you will not have to enter credentials to signin
explicitly. You might have to give more consent, for example, but you
shouldn't have to re-enter credentials.
The other important part to note here is the ID token we requested.
It is being returned as a parameter in the form post we are getting.
You can see in the body of the HTML being returned that the
JavaScript onload event is wired up to submit a form automatically.

5. Send the Token to the Application
As soon as the page returned by the authorization server gets
rendered, it will post the form to our application. This means that the
requested ID token has finally been sent to my web application.

6. Token Validation and Web App Session Creation
What happens now is pretty much the same thing that we studied
earlier in the web sign-on scenario in the first chapter, Introduction
to Digital Identity. The application receives the ID token and decides

whether or not it likes it according to all the various trust rules and
what it has learned from the discovery endpoint. If it likes it, the app
will emit an HTTP 302 response with its own cookie. Thanks to that
cookie representing an authenticated session with my app, | will
not need to get the ID token again as long as the cookie is valid.
With the cookie creation, the app emits an HTTP 302 response,
redirecting the browser to the original route it requested.

7. Request Protected Route with Authorization
As the browser honors the redirect, we end up where we started:
we request a protected route, but this time, we present a
session cookie with it.
If you compare the original request with this redirect, you will discover
that it is exactly the same request but with a cookie coming along.

OAuth2 and OpenlID Connect: The Professional Guide

8. Access the Protected Route
Finally, after this long back-and-forth, we can get our response: an
HTTP 200 response with a page in the body.
From now on, every subsequent request to the application will carry
the session cookie, proving that an authenticated session is in place.

Anatomy of an ID Token

As we said earlier, the ID token is an artifact that proves that successful
authentication occurred. We have two ways of requesting it: using a
response_type parameter with the id_token value and using a scope
parameter with the openid value.

The reason we have two mechanisms is that the authors of the
specifications wanted to be able to use OpenID Connect even if your
SDK was only based on OAuth 2.0. In fact, at the OAuth 2.0 time, there
was no ID token in the enumeration of a response type. Since scopes are
completely generic as a parameter, then the ability to use one particular
scope that would cause the authorization server to return an ID token
was a great way of being backward-compatible. Today, it's a great way of
getting confused, but now that you know, you no longer run this risk.

OpenlD Connect defines the ID token as a fixed format, the JSON Web
Token (JWT) format. The specification actually defines not just the format
but also the list of claims that must be present in an ID token. In addition,
it even tells you in normative terms what you need to do in order to
validate some of those claims. As we said, if | include a profile or email
value in the scopes of my request, | will cause the content of the ID token
to look different.

44

OAuth2 and OpenlID Connect: The Professional Guide 45

Just to get a feeling of it, here you can see what you would normally see on
the wire:

eyJBeXAi0iJKV1QilCJhbGci0iJSUZITNiIsImtpZCI6I1JgRXdPRVUXTURJA1Jr TXdRVFEBUVVSR1JUSTBOVEZETWtVMk4wWk JNamN6U1RZMVJFUXdPQSJ9
.eyJuaWNrbmFtZSI6Impvc2UrMTIzIiwibmFtZSI6Impvc2UrMTIZQGF1dGgwLmNvbSIsInBpY3R1cmUi0iJodHRwezovL3MuZ3JhdmFOYXIuY29tL2F2YXR
hci9mMzU4ANGUSMj g4ZDdjYWQyMTVmZ jQ2ZmE3ZTIOZThiYZz9zPTQ4MCZyPXBnJmQ9aHRAOCHMIMOEIMKY1MKZ jZG4uYXVOaDAuY29tJTJGYXZhdGFycyUyRmp
vLnBuZyIsInVwZGFOZWRfYXQi0iIyMDEALTASLTIBVDE50jUx0jMOLjQwOFoil CJ1bWFpbCI6Impvc2UrMTIZQGF1dGgwLmNvbSIsImVtYW1lsX3Z1cmlmaWV
kIjpmYWxzZSwiaXNzIjoiaHR@cHM6Ly9mbG9zc2VyLmF1dGgwlmNvbS8ilCJzdWIi0iJhdXRoMHw1YmETNTJKN]c@ONZE3YjIwZTUyZjU2Y2QilCJhdWQi0iJ
adUdTTHo2SGpHUKE4TE10b3BIQnpjSBhoQThGdETrOCIsImlhdCIEMTUZNZgx0DcyMiwiZXhwIjoxNTM30DUBNzIyLCJub25jZSI6ImNmZWMS0TdhNmZk0Tg
wZGQifQ. ngwlT3mv130rv1YYZ@2xYhhE-

QGTtf3M_gsJGPtKG5kqhEFWvWHstzWMJE6Z jAapHYitKQg8zDpEbqixaB6PEqz7b@9SwLeotZSUBGNTQHUSgC8cpXfMP1TkhyECERZ9y0x03TbVJDGToEJZ
eu
__To7BGA3v1vEn7XWHDB0z45Ht2xtk1ISfWAvXno_ahZMbLuf0JFkpJqtUvHMmd9hVy33uZXp_Z7Vggfk_LDD58XKaJJ8ZIWhPUr1RF114IPTNEmtmgSEWXz
ds6GYA-Ap50H2NWIKZe59eDgqi64GPhhjKOu8qSUAue60Qa7M_yw817sJA9yKHdg5mZ14piTCA

Figure 3.3

That’s what a JWT token normally looks like, with its Base64 encoded
components. If you go to jwt.io, which is a very handy utility offered
by AuthO, you can actually paste the bits of your ID token and see it
automatically decoded. The following picture shows an example of
such decoding:

® O ® B JSON Web Tokens - jutio x |+

< G @ jwtio i

Debugger Libraries rtroductio Geta T-sh Crafted by AuthO

Encoded PASTE ATOKEN HERE Decoded EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

eyJBeXAi0iJKV1QiLCJhbGei0iJIUZITNiIsImtp

ZCI6I1JgRXdPRVUXTURJA1JrTXdRVFEQUVVSR1JU { S —.
STBOVEZETWtVMk4wWk JNamN6U1RZMVJFUXdPQSJ9 alg': 'Hs256",
.eyJualiNrbmFtZSI6Impvc2UrMTIzIiwibmFtZST kd”

'RjEWOEUTMDIWRKMWQTQ4QURGRTIBNTFDMKUZNGZBMjcZRTY 1REQWOA"

6Impvc2UrMTIzQGF1dGgwLmNvbSIsInBpY3R1cmU
10iJodHRwczovL3MuZ3JhdmFOYXIuY29tL2F2YXR
hci9mMzU4NGUS5Mjg4ZDdj YWQyMTVMZ jQ2ZmE3ZTI
8ZThiYz9zPTQ4MCZyPXBnJmQ9aHRBcGQIMBE IMmY
1MkZjZG4uYXVOaDAuY29tJTJGYXZhdGFycyUyRmp
vLnBuZyIsInVwZGFOZWRTYXQi0iIyMDE4LTASLTI
BVDE503jUx0jMOL jQWOFoilCJ1bWFpbCI6Impvc2U
rMTIzQGF1dGgwLmNvbSIsImVtYW1lsX3Z1lcmlmaWyV
kIjpmYWxzZSwiaXNzIjoiaHRBcHM6LYImbGIzc2V
yLmF1dGgwLmNvbS8iLCJzdWIi0iJhdXRoMHw1YmE
TNTJKNjcBNzE3Y jIwZTUyZ jU2Y2QiLCJhdWQiOiJ
adUdTTHo2SGpHUKE4TE18b3BIQnpjS6hoQ1hGdE1
rOCIsImlhdCI6MTUZNZzgxODcyMiwiZXhwIjoxNTM
30DUBNzIyLCJub25jZSTI6ImNmZWM50TdhNmZKkOTg
wZ6QifQ.tZe10JxvB8IWVNSZWBGPMEBB4MSqPIS9-
AidWSH-KVKY

i

PAYLOAD: DATA
1
nickname": "jose+123",
name": "jose+123@auth@.com”,
ture”:

"https
4e8bc?
§=48B&r=p(

ravatar.com/avatar/f3584e9288d7cad215ff46fa7e2

httpd%3A%2f%2Fcdn. auth®.com%2Favatars%2Fjo.pn

"2018-89-24T19:51:34.4882",

e+123@authd.com”,

authe.com/",

authg|5ba 4717b2@e52f56cd

ZUuGSLZz6H]GRABLMtopHBZCKHhCXFTMKE",
": 1537818722,

"exp": 1537854722,

"nonce”: "cfec997a6fd98edd"

Figure 3.4

OAuth2 and OpenlID Connect: The Professional Guide 46

On the right side, you can see a header that describes the shape of this
specific JWT. In particular, by examining the header content, we find that
this token is in JWT format, what algorithm has been used for signing it,
and a reference to the key required to validate the signature, which in
this case corresponds to the key that we downloaded from the discovery
endpoint (more on that in a moment).

If you look at the payload, you’ll find that it contains the actual information
we expected to retrieve. Going into more details, we have:

e The issuer (iss), which is a string representing the source of the token.
It is the entity behind the authorization server - like the key, also found
via the discovery endpoint.

* The audience (aud), which represents the particular application the
token has been issued for. It is very important to check this claim. As
an app receives this token, the middleware used for validating it will
compare what was configured to be the app identifier (in the case
of sign-in and ID tokens, that will correspond to the client ID of the
app) with the audience claim. If there is a mismatch, that means that
someone stole a token from somewhere else and is trying to trick the
app into accepting it.

e The issued-at (iat) and expiration (exp) are coordinates used to
evaluate whether this token is still within its validity window or if,
being expired, it can no longer be accepted. During the API
discussion, we'll see that access tokens and ID tokens typically
have a limited validity time.

¢ All the other claims are pretty much identity information about the
user, which is present in the ID token only because | asked for profile
and email in the scope parameter.

OAuth2 and OpenlID Connect: The Professional Guide 47

Principles of Token Validation

We've been talking about validating tokens quite a lot, relying on the
intuition that it entails validating signatures and performing metadata
discovery. Let's explore the matter in more detail and have a more organic
discussion about what it means to validate tokens.

We have seen the function that tokens perform in a couple of scenarios.
We have seen signing in with SAML. We have seen access tokens for
calling APIs, and in particular, right now, we have seen how to use an ID
token to sign in. All those scenarios entail an entity, the resource, receiving
a token and making a decision about whether it entitles the caller to
perform whatever operation the caller is attempting. How does the
resource make that decision?

Subject Confirmation

Subject confirmation is a concept we inherit from SAML. In particular,
the subject confirmation method determines how a resource decides
whether a token has been used correctly.

e Bearer
Is the simplest. It is similar to finding 20 dollars on the floor. You pick
up the money, go wherever you want to use this money, use it, and
you're going to get the goods or services you are paying for. No
further questions will be asked because all it takes to use 20 dollars
is to own those 20 dollars and for them to change hands. That's the
substance of the bearer subject confirmation method. If you have the
bits of a token in your possession, you are entitled to use the token

¢ Proof of possession
Is something more advanced. In proof of possession, you have a
token containing a key of some kind in some encrypted section.
This encryption is specifically done for the intended recipient of
the token. The idea is that when a client obtains such a token, they
also receive a separate session key, the same key embedded in the
encrypted section of the token. When the client sends a message to
the intended recipient, it attaches the token as in the bearer case,
but it also uses this session key to do something - like signing part
of a message.

OAuth2 and OpenlID Connect: The Professional Guide 48

When the resource receives the token and the message, they will
validate the token in the usual way as we described for the bearer
method. Once that is done, they will extract the session key from
the portion that was encrypted for them. They'll use the session key
to validate the signature in the message. If the validation works, the
recipient will know for certain that the caller is the original requestor
that obtained the token in the first place. Otherwise, they would not
have been able to use the session key.

This mechanism is more secure than the bearer: an attacker
intercepting the message would be able to replay the token, but
without knowledge of the session key, they could not perform the
additional signature and provide proof of possession.

Until recently, almost no one used proof of possession in OAuth 2.0 or
OpenID Connect. But proof of possession is now coming back. A recent
specification, Demonstrating Proof of Possession (DPoP), shows how to
use the mechanism | just described in OAuth 2.0 and OpenlID Connect,
although it will take some time before it is widely adopted. So, to all intents
and purposes, you can think of Bearer tokens as being the law of the land.
There is another concept - the sender constraint - but I'll talk more about
it when we deal with native clients (Chapter 5, Desktop and Mobile Apps).

Format Driven Validation Checks

In OAuth 2.0, access tokens have no format. The standard doesn't specify
any format, mostly because originally, it was intended for a scenario where
the authorization server and the resource server are co-located and can
share memory.

Think, for example, of the scenario we described in the first chapter,
where Gmail is the resource server with its own APIs, and it's also the
authorization server.

In that particular scenario, those two entities can share memory. They
can have, for example, a shared database. So, when a client asks for an
access token, this access token can be just an opaque string that is the
primary key in a specific table where the authorization server has saved
the consent granted by the user to the client.

When the client makes a call to the resource server presenting this token,

the resource server grabs the token and just uses it to find the correct row
in the database and then the consented permissions. The resource server
uses that information to make an authorization decision.

OAuth2 and OpenlID Connect: The Professional Guide 49

This scenario complies with the spirit of the spec - and also the letter of the
spec - and we didn't need to mandate any specific format.

However, in the case of OpenID Connect, we did define a format for the ID
token. We expected the receiver actually to look inside a token and perform
validation steps. This typically happens when the resource and authorization
servers are not co-located and, hence, cannot use shared memory to
communicate. In those cases, you typically (but not always) rely on an
agreed-upon format.

Also, in the SAML case, we defined a format, a set of instructions on how to
encode a token.

In the case of format-driven validation checks, there are certain constraints
that apply pretty much to every format, and in particular, to JWT:

¢ Signature for integrity
Your token is signed, and we have seen the reasons we want to sign
a token: to be sure of the token’s origin and to prevent tampering in
transit. The token must provide some indication about the key and the
algorithm used so its recipient can check its signature.

¢ Infrastructural claims
Token formats typically include infrastructural claims, which provide
information the token recipient must validate to determine whether the
incoming token should be accepted. One notable example of those
claim types is the issuer, which is, to say, the identifier of the entity
that issued (and signed) the token, and that should correspond to
one of the issuers trusted by the intended recipient. Another common
infrastructural claim, the audience, says for whom a token is meant to.
You need the audience claim to have a way of validating that the token
is actually for a specific recipient. You also need expiration times claims:
tokens have typically restricted validity so that there is the opportunity to
revoke them.
Those are all claims that you would expect tokens to have and that the
middleware is typically on point to validate.

Alternative Validation Strategy: Introspection

There is a different way of validating tokens, which goes under the name of
introspection. With this approach, the resource receiving a token considers
it opaque. It may happen because it doesn’t have the capability to validate
the token. It should be rare in the JWT case because checking a JWT is
pretty trivial and can be done in any dev stack.

OAuth2 and OpenlID Connect: The Professional Guide 50

However, imagine that, for some reason, you cannot assume that incoming
tokens are in a format that you know how to validate. You can take the
incoming token and send it to the introspection endpoint, which is an
additional endpoint that authorization servers can expose. Given that

you connect to the introspection endpoint using HTTPS, you can actually
validate the identity of the server itself. You can be confident that you are
sending the token where it's meant to go, as opposed to a malicious site.
The authorization server examines the token, determines whether that
token is valid or not, and, if it is valid, sends down the same channel the
content of the token itself (e.g., claims).

In a nutshell, the resource server sends back tokens to the authorization
server saying, "Please tell me whether it's valid or not." The authorization
server can render a decision and send it back to the client, along with the
content of the token, so that the resource can peek inside.

Personally, I'm not crazy about introspection, mostly because it's brittle.
You need to have the authorization server up and available, and if your
application is very chatty, you might get throttled, for example. Also, with
this approach, you need to wait until you have one extra network round
trip before you can actually make an access control decision about the
resource you're calling. You might run out of outgoing HTTP connections,
which typically live in a pool. It's a lot of work.

Sometimes there are no alternatives. But in general, for AuthO, given that we
always use JWTs and public cryptography, it's usually better if you validate
your own token at your API.

Metadata and Discovery

Token validation middleware discovers the values expected in valid tokens
through the discovery endpoint. The middleware simply hits the URL
./well-known/openid-configuration, which is defined by OpenID Connect,
and retrieves validation information according to the specification.

The document published at this URL typically contains direct information
that we need to have, like the issuer value, the addresses of our
authorization endpoint, and similar. It also connects to a different file
containing the actual keys, which could be literally the bits of X.509 public
key certificates.

Let’s take a look at how middleware extracts validation information from the
discovery endpoint by following the numbered steps in Figure 3.5.

51

| Guide

lonal

The Profess

OAuth2 and OpenlID Connect

dde gam

el

Yds odio

LVOMDIYLALYZO L HAZENZMNO LNOLLYOUNDFOLOMRIMI AR LNIONI [y, & ,36%,
'l

10L/011IW,
1+ .osx,
‘Brs, : ,esn

Lol IbyTIx, o,

LSy, oA,

' YOMDIYLALEZO (WGZEBNZNHW INBT LYDUNDFD LOMKAEMTaWLNI0MI Y, © pTy,
LLAVDY. L9,
95zsy. : .Bre

}
1 ¢ .shay,

}
g-J1n=19sJeyd !uos[/uoTieotrdde :adfl-jusjuod L' L/dLIH @8z (¥

L*L/dLIH uosh syml/umouy-TTam /w03 " gyine J3ssord//:sdiay 139 (g)

L*L/dLIH uoTiednBriuos-pruado/usouy-TTam /uod gyine Jassory//isdiny 139 (1)

‘LITRWS

¢ aweuTuanth

LOJUTI8SN /WO gYINe 1355074/ /:sdiay, : | jutodpus ojurdasn,
‘[L38007324088TIUSTTD, C,0TSEQTIJ08STIUSTTO, | ¢ ,paidoddns spoyiaw yine autodpusuayol,
' U301 /YyIneo /wod " gyine - JasseT)//sd1ay, : ,utodpuaTuaxol,
‘[Lotrgnd,] @ ,p3rdoddnsTsadAiTioalqgns,
.ssauppe, ', suoyd, ' saTiTiuapr, ',IETPaiIeas0, ', 34nioTd, ' pITITISATTTEWS, {
fLBWRUNOTU, ' Sweu ATTwey, ‘ eweu uaath, ¢ sweu, ' sS3208TSUTTJ40, ‘,9TT40ad, ', pruado,
] ¢ .paisoddns~sadoas,,
*@N0ADJ /YINBO /WO gYINe " JasSOTY//15d13Y, : ,IuTodpuUI UOTIBIOAR,
LUS)037pT uay0} 3pod, _
', U9¥01TPT UaNol,
‘L UXOYTPT apoo,
‘LU0l 2poD,
', Uaqo1TpT,

] Lpalsoddns~sadAy"asuodsaa

‘I .asod wioy, ', juswbesy, ' Asanb, | .Ppa1loddns sapow asuodsad,
‘asTey @ ,palsoddnsTisiawesed Tan"isanbad,

* de1sThau fopTo/wod-gyine Jassol)//:sdyly, : utodpua~uotiesystbad,
* ebuaTTeyo/eIW/ W00 BYINE - J3SSOT4/ /5023y, ¢ uTedpus abuaTTeyo W,
*u0s [sHml fumouy-TTam" /woo - gyine- JassoT4//:sdily, :

‘. /Wo2"eYINe JassoTy//isdiay,

‘[95284, '.95ZSH. | @ .pa1soddnsTsaniea breTGutubrsTuaxolTpr,
'l
.ans, ‘,eamiatd, ‘' JequnuTsuoyd, ' sweuyoTu, °,Bweu, ' SST, ',S8TITIUSPT, ',1BT,
T ‘oaweuTATtwey, ‘ dxa, ' parjriaaTirews, ' [Tewa, ‘ jeTpajeaso, ' awrlTyine, ° pne_
] i .perJoddns-swiero,

' ,9ZTI0YINE/WOD " BYINE " I13SSOTS/ /18031y, ¢ ,IUTOOPUSTUOTIBZTIOYINE,,
}
g-Jan=1asJeys luosf/uotieoTTdde :adAl-Iuaiucy | L/dLLIH e8T (T)

lanles
uonezuoyine

d3
uoiezIoyINe

Kianoos|p

Figure 3.5

OAuth2 and OpenlID Connect: The Professional Guide 52

1.

2.

Request Configuration

At load time or even the first time you receive a message, the
middleware contacts the discovery endpoint.

That’s a simple matter of making an HTTP GET request to the
./well-known/openid-configuration endpoint of the authorization server.

Receive Configuration Document

What you get back is a big JSON document with all the values required
to validate incoming tokens.

For example, just to highlight some of these values, you have the
address of the authorization endpoint (authorization_endpoint), the
value of the issuer (issuer), which is the value that we are supposed

to validate against, a list of supported claims (claims_supported),

the supported response modes (response_modes_supported),

and a pointer to the file where all keys are kept (jwks_uri).

Request Keys
The next step is to actually make a GET request to
the address where the keys are published.

Receive Keys

The result of that request will be another file containing a collection
of keys with their respective supported algorithm (alg), their identifier
(kid), and the bits of the public key. The middleware programmatically
downloads all of that stuff and keeps it ready.

Those keys will occasionally roll because it's good practice

to change them. Your middleware will simply have to reach

out and re-download these keys when it happens.

Chapter 4

Calling an API
from a Web App

OAuth2 and OpenlID Connect: The Professional Guide 53

In this chapter, we move our attention to calling APIs. This is the
quintessential scenario addressed by OAuth 2.0: delegated access to APIs
is the main reason for OAuth’s existence.

Most of the discussion will focus on the canonical grant OAuth 2.0 offers
to address the delegated API access scenario, the Authorization Code
grant. We'll also take a look at other grants, such as the Hybrid flow and
the Client Credentials grant, which can be used to call APIs in slightly
different scenarios.

The Authorization Code Grant

At a high level, the way we typically invoke an API from a web application
is roughly the same way we’d call an API from any client flavor. Details will
differ, as we will see throughout the book.

Depending on the client’s flavor, we'll use different grants with different
properties. In particular, in this chapter, we want to focus on the scenarios
in which a web application calls an API from its server-side code. For

that purpose, we use the OAuth 2.0 Authorization Code grant. The
Authorization Code grant, Code grant from now on for brevity, empowers
one web application to access an API on behalf of a user and within the
boundaries of what the user granted consent for. This is the grant we
encountered when introducing OAuth 2.0 in Chapter 1.

In the section Layering Sign In on Top of OAuth 2.0: OpenID Connect

of Chapter 1, we've seen that some people tried to stretch this grant to
achieve sign-in, as opposed to invoking an API. In the same section, we
have seen how if you just use this grant to obtain and use access tokens
for signing in, things don’t work out that well. We have seen how OpenlID
Connect is layered on top of this grant to achieve sign-in the right way,
and we'll have more considerations about it in this chapter. At this point, |
just want to stress that what we are looking at in this chapter is aimed at
calling APIs and not at signing in.

OAuth2 and OpenlID Connect: The Professional Guide

Another important concept to grok upfront is that
the Code grant will only empower an application to
do up to as much as the user can already do and
no more. If anything, the application will usually end
up having fewer access rights. Users cannot use
the Code grant to grant applications access to the
resources the users themselves don't own or have
the rights to. When thinking about OAuth 2.0 and
the Code grant in particular, it's easy for people to
get confused. They observe that APIs grant access
to a call depending on the presence of scopes in
the token. That lends to the belief that the scopes
themselves are what grant the client the privileges
to access the resource. Actually, the scopes

select what privileges the user already has and is

delegating to the client.

| just want to stress that the Authorization Code
grant is a delegated flow. It allows clients to do
things on the user’s behalf, which means that

the user’s capabilities are a hard limit for what an
application can do on the user’s behalf. In other
words, a client obtaining a token via Code grant
cannot do more than the user can. If you need a
client to do more than the user can do, which is

a common scenario, then you need to switch to

a different flow in which permissions are granted
directly to the application that needs it, with no user
involvement. Clear as mud? Don’t worry. We'll revisit
those points later in the chapter.

54

OAuth2 and OpenlID Connect: The Professional Guide

In the last chapter, we explored how to perform web sign-in through
the front channel, which afforded us the luxury of implementing the
full scenario without any secrets. As you witnessed in the detailed
descriptions of flows and network traces, no secret came into play. In
the Authorization Code grant, however, using an application credential
such as a client secret is inevitable. Whenever the web app redeems
an authorization code, it needs to authenticate as a client to the
authorization server.

We will approach the delegated API invocation scenario differently
depending on whether one needs to access the APIs only while a user is
present and currently signed in to the application, or whether one needs
to acquire permanent access to the APIs and perform calls to these APIs
even when no user is present.

My favorite example is an application that can publish tweets at an
arbitrary time. Personally, | don't like to wake up early in the morning; |
really hate it. Nonetheless, it turns out that tweets get the best exposure
when they come out pretty early. The fact that I'm based on the West
Coast makes things even worse: if | have to publish tweets manually at
a time that should be considered morning in the entire North America,
I'd have to wake up really early. Luckily, there are applications | can use
for tweeting on my behalf at whatever time | schedule beforehand.
Those applications are a typical example of a client needing an access
token always available to call the Twitter APl on my behalf, regardless of
whether | am currently signed in an active session or am blissfully still
asleep. This is one of the classic scenarios, offline access, demonstrating
the need and intended usage of a very important artifact - the refresh
token. Once again, we’ll explore this scenario in detail in this chapter.

Without further ado, let's dive into the details of the Authorization Code
grant with the help of the diagram in Figure 4.1.

55

56

| Guide

lonal

The Profess

OAuth2 and OpenlID Connect

>

dde gam

Has
cYinvo

VS["]erke Jaieag :uoTiezToyine
[T7dLIH STUSWIUTodde/SIusTIed/ T8/ W00 195501F// 50130 139 (8)

nas
Jaueaq

[AL(e

——8-
L]

Idv

L*L/dLIH TUSUIUTCOdy3o0q/eaet: 1S0UTe00T// 0110 139 (1)

24 lEYOERQSZEGRAL=2ILOLR

A0BqTTBI4Z%BBAEYES I SOYTEIOT Z%ICHVERAIIY=T40" 05 Tp2Ig

Juauiutoddeygy,pes gz Tewsg T T404dazspTuado=adoosy

apoo=adiy~asuodsalg

TBHNHXXMY YT IS S 1 ZBUJBANDZGSTHHX=P T 1UST[0]

7% TR Z%W00 " 19SS 472 4Z%VERSAIIY=30UaTPNEE

SZTIOUINE/WOD PUINE JTasS0T1/ /75071 :uot1edon

ATUQdIIH ©/=Y3ed :SEOINHXDSHOXTWEIOHOTT22RUYOBSINArSAODHL8ZIA" 04 LEFOERASCEGRALYESS=A0UOU 1aT5000-125
ssadx3 :Ag-pasamog-x

L L/dLIH zBe (Z)

S}

L*L/dLIH TAS O0qHTTLTUWId=3P03 0eq1e3/6BAt 1504Te20T// 0130 139 (§) i <3000~

<3000>

[

30RqTTRY/00BE: ISOYTRIOT/ /:daay, @ ,Tun"102.Tpal
‘,@pooTuoTiezTIOyING, © ,adA)3ueab,

WZLQR (DOPagLrNI-MMY T HILSULBARS ZerdDY 1HPLUUAPIBDYO$E60.,

["T7dLIA USYOT/(INE0/Wo5 gyIne 1ss56T /7 sd17 1504 (9)

. "BHNHXXMY4QT DS 3ZRUJOAMDZGETHHX
'./1dejwoo" sessory// sdily, 1 sousTpne,

', GOVT16TIAMNA"Z0Y, @, epod,
* . UBIYZENXMX

1 ,184998TJUBTTD
LPTTIUITTD,

} JEIYES
uonezioyine

9} LEVOERQSZHSEAL=a0uUOUY
%0BqTTEI/@BBE: ISOYTRIOT // 1dIIY=T 1N 1081TpaR
Juawiutodde:peas TTews aTTi0Jd pruado=ndoosy
apoo=adAy asuodsaly
TSHNHOMY JTIVS 41ZUdBAMDZGE THHX =T JUaT 0%
J1de/wod" 1985074/ /: sdiIy=aouatpne
BZTJOYINE/WOD QUINE " JASSOT}

i

sdiy 139 (g)

{ <
aJeag adA1"uaxol,
mo[" serAs, o uaNoa TP,
‘goy9g @ ,UTssuTdxs,
e[lerke, 1 uayoiTssaooe,
} ©

L' L/dLIH 88z (£)

aunoag ATuQdalH ~ !/=uaed BINE[" JVE%S=AUINE :a1j000-185
TA2"9AGHTILTUAd=2P02¢Y2RqTTEI /BEBE 3SOYTEIOT/ /1 33y 1UOTIR00T
8°Z/d1LH zog (¥)

<3000>

Figure 4.1

OAuth2 and OpenlID Connect: The Professional Guide

The diagram depicts the usual actors we encountered in Chapter 2:

¢ On the far left, the user and their browser.

* The authorization server, on top. Note that this time, both the
authorization and the token endpoints are present in the picture, as
both will come into play.

* A web application roughly in the middle.
¢ The API the web app needs to call as part of our scenario.

Just like we did during the first explanation of the OAuth 2.0 flow in
Chapter 1, section Delegated Authorization: OAuth 2.0, we assume the

user has already signed in to the web application. We don't know how
that sign-in operation occurred, and we don't care in this context - the

APl invocation operation can be performed independently of the sign-in

(although we will later see, in the section on Hybrid flow, that there are

57

potential synergies there). Let’s examine the message sequence in detail.

1. Route Request
In our sample scenario, the user hits a web application route that
allows the user to book an appointment. Booking an appointment
requires accessing the booking API on behalf of the user, which
causes the web app to generate a request for delegated access.
Note, if you compare the equivalent step in the flow described in
Chapter 3, section The Implicit Grant with Form Post for the sign-in

operation, you will notice that the web app does not have a middleware

in front to intercept the route request. In this case, the route isn’t the

asset we want to protect: requesting that route just happens to be

the thing that triggers the need to acquire a token to call an API. The

logic necessary to generate the associated delegated authorization
request is, in fact, inside the app codebase itself (although it will
often be implemented by an SDK rather than from scratch).

2. Authorization Request

The application’s reaction to the request is somewhat familiar: a 302

HTTP status code response with a message for the authorization
server. However, you can see a number of differences with the
equivalent step 2 in section The Implicit Grant with form_post

of Chapter 3.

OAuth2 and OpenlID Connect: The Professional Guide 58

First, we are setting a cookie to track the nonce value
(see Chapter 3, section Authorization Request Redirect for more

details), as besides the access token needed for accessing the API,
we'll also be asking for an ID token. The ID token is useful in this flow,
knowing a bit more about the transaction, given that the access
token itself is opaque to the client. More details later in this chapter.

Next, in the captured trace message, we have the authorization
endpoint. Let’s ignore the audience parameter for a second. The
next entry is the client_id, which represents the client ID identifying
the web app at the authorization server.

The response_type for this particular grant is code. We want to
obtain a code from the authorization endpoint, which the web app
will later exchange via the token endpoint for an access token.

We don't need to specify the response mode because we are okay
with a default response mode, which in the case of code response
type is query - meaning that we expect the authorization server to
return the authorization code in a query string parameter.

Next, we find the scope parameter. This message includes all the
same scope values encountered earlier - openid, profile, and email -
indicating that we require an ID token alongside the code. This time,
however, we aren’t requesting an ID token for sign-in purposes; we
just want to have some information about who the resource owner
granting permission in this transaction is. Without an ID token, that

is to say, something the client itself can consume, we would have no
way to know. We'd just blindly get an access token and use it with no
indication about the identity of the user who obtained it.

The scope collection includes a scope value we haven’t
encountered yet, read:appointment. That scope value represents a
permission exposed by the APl we want to invoke; in other words,
one of the things that can be done when using that particular API
and can be gated by an authorization check. By presenting that
scope value in the authorization request, the client says to the
authorization server, “This web application wants to exercise the
read:appointment privilege on behalf of the user”. That's something
that the authorization server needs to know. It will determine
important details in the way the request is handled, such as the
content of the consent prompt presented to the user and the actual
outcome of granting the delegated permissions.

OAuth2 and OpenlID Connect: The Professional Guide 59

The next parameter represents the redirect URI, which you are already
familiar with. The last parameter in the captured message is the nonce,
a token injection prevention mechanism we encountered earlier

in the book.

Now that we covered every message parameter in detall, let’s revisit
the audience parameter. When requesting an access token for an API
protected by AuthO, a client is required to specify one extra parameter,
called audience, indicating the identity of the resource to which the
client is requesting access.

The core OAuth 2.0 specification does not contain any parameter
performing this function, mostly because there is an underlying
assumption (though not a requirement) that the resource server
and authorization server are co-located. This assumption makes it
unnecessary to identify which resource server the request refers to.
For a concrete example of this scenario, consider how Facebook
uses OAuth 2.0 for gating access to its Graph API. The Facebook
authorization server can only issue access tokens for the Facebook
Graph API; there is no other resource server in the picture. The only
latitude left to clients is to specify different scopes for that one
resource server, the Facebook Graph. Different scopes will express
different permissions and operations | intend to exercise, but they
will all refer to the same resource server, which doesn’t need to be
explicitly named in the authorization request. Similar considerations
hold for Google, Dropbox, and other popular services. Whenever
clients get tokens from those services, they are always calling the
provider’s own APls, whose identity results self-evident from the
context without requiring an identifier in the request.

When the solution includes a third-party authorization server, like in
the case of an AuthO customer leveraging the AuthO authorization
server to secure its own custom API, the topology allows the same
authorization server to gate access for a multitude of resources, which
can all live in different places. In that scenario, the client needs to be
able to specify which resource it intends to request access to.

There are multiple ways a message could be constructed to include
explicit references to a particular resource server. For example, an API
might embed a resource server identifier in individual scope strings
themselves. However, this approach has issues: scope strings could
get really long and hard to read. Also, including multiple scopes
referring to different resources in the same request might generate

OAuth2 and OpenlID Connect: The Professional Guide 60

ambiguity about which resources the resulting access token
could be used with.

Given those complications, AuthO and other identity vendors decided
to introduce a dedicated parameter for identifying resources. Azure AD,
for example, has a resource parameter whose semantics are equivalent
to AuthO’s audience.

Since those individual vendor decisions have been made, the IETF
OAuth 2.0 working group officially recognized the usefulness of

such primitives and issued a new specification, OAuth 2.0 Resource

Indicators. This specification extends OAuth 2.0 with a resource
parameter, which is, to all intent and purposes, equivalent to AuthO’s
audience. We plan to start accepting those standard parameters too in
a future update.

3. 302 Redirect Execution
Next, the browser executes the 302 HTTP status code redirection by
sending the message we examined toward the authorization endpoint.

4. Authorization Response
Upon receiving the authorization request, the authorization server
takes care of the interactive portion of the flow.
The authorization endpoint decides what's necessary for
authenticating the user, and goes through it. Then, it presents
them with a consent prompt saying, "Hey, client X wants to read
appointments on your behalf." When the user grants consent, the
authorization endpoint returns its response with the requested
authorization code in the query string, in accordance with the
response_type we asked for. Also, the response includes the usual
set-cookie command with which the authorization server records in
the browser that an authentication session has been established.

5. Providing the Authorization Code to the Web App
At this point, the browser simply executes the redirect that will dispatch
the authorization code to the web application. From this moment
on, the web application will continue the flow on the server side.

6. Redeeming the Authorization Code
The web application combines the authorization code with its own
client credentials and sends them in a message to the token endpoint.

the identifier of
the app at the AS

the app credentials
atthe AS

the artifact to redeem according
to the requierd grant

OAuth2 and OpenlID Connect: The Professional Guide

the token endpoint

POST https://flosser.auth®.com/oauth/token HTTP/1.1

N

“client_id"” : “xHGI52zgwY@nuxtfSQelaFAwxxHUM8_",

“client_secret” : “CgBf@AQBC[.SNIP.]D1ZMxWxk3ZA6bh",

“code” : "AgZ_tUwVI_gL1AGb", the grant | want the
"grant_type” : "authorization_code”,

“redirect_uri” : “htttp://localhost:3000/callback”, ASto perform

where the app received the artifact
to redeem

Figure 4.2

The message to the token endpoint is in the form of an
HTTP POST request where the app presents its client_id
and client_secret, the authorization code received from
the front channel, and a new parameter, the grant_type.
The message layout is shown, annotated, in Figure 4.2.

Every time an application talks to the token endpoint, it has to specify
the desired grant type, letting the authorization server know how

to interpret the request. In this particular case, the desired flow is
the authorization_code grant. That tells the authorization server to
search for an authorization code in the message, and to consider
the client ID and secret in the context of this specific grant. If, for
example, the request would have specified client_ credentials as the
grant type, a flow we’ll discuss later on, then the authorization server
would have ignored the authorization code, would have looked only
at the client ID and client secret and would have considered only
the identity of the client application itself rather than the consent
options of the resource owner implied by the authorization code.

In other words, the grant_type parameter is used to disambiguate
the flow the client expects the authorization server to perform.

The request also includes the audience for the reasons stated
earlier. In this particular case, audience is redundant. The
authorization code has been granted in the context of that audience,

61

OAuth2 and OpenlID Connect: The Professional Guide 62

and the authorization server knows it, hence there’s no need

to provide it again in this request. However, some extra clarity
can be beneficial: for example, this helps to interpret what this
request is for while examining a network trace without the need
to correlate it with the earlier messages that led to this point.

Finally, the message contains a redirect_uri parameter. In this phase,
the authorization server doesn’t really have any opportunity to
perform redirects, given that the client is talking to the authorization
server via a direct channel. Rather, the redirect_uri is used as a
security measure to prevent redirection URI manipulation - the
authorization server will verify that the redirect_uri presented here

is identical to the one provided during the authorization code
request leg of the flow, preventing an attacker from performing URI
replacement (see https://tools.ietf.org/html/rfc6749#section-10.6).

7. Receiving the Access Token in the Token Endpoint Response
Assuming that the request is accepted by the authorization server
and processed without issues, the grant concludes with a response
message carrying the artifact originally indicated by the
response_type in step 2 - Authorization Request, in this case, an

access token. Here’s a breakdown of the response message content:
¢ The requested access token.

e An ID token, in response to the presence of openid
in the list of requested scope values.

e The token type, which is always Bearer for the time
being - as discussed in the token validation section.

* The expires_in parameter, expressing the time through which
the access token should be considered valid. Although, at
times, the access token itself might contain that information
and happen to be in a format that can be inspected, access
tokens should always be treated as opaque by clients. As
such, expires_in needs to be provided as a parameter in the
response so the client can use that information (for example,
to decide how long an access token should be cached).

OAuth2 and OpenlID Connect: The Professional Guide 63

Important

Access tokens should always be assumed and treated as opaque
by client applications because their content and format are a private
matter between the authorization server and the resource server.
The terms of the agreement between the authorization server

and the resource server can change at any time: if the client app
contains code that relies on the ability to parse the access token
content, even minor changes will break that code - often

without recourse.

Imagine a case in which access tokens, initially sent in the clear,
start being encrypted so that only the intended resource recipient
can decrypt. Any client will lose access to the token’s content.
Client code relying on the ability to access the token content will
irremediably break. In summary, avoid logic in client applications that
inspects the content of access tokens. Examining a token’s content
in a network trace is perfectly fine for troubleshooting purposes,

as the information will be consumed via debugging tools without
generating code that can break in the future.

8. Using the Access Token to Call the API
Once the client obtains the requested access token, it can finally
invoke the API: all it needs to do is include the access token bits
in a classic REST call. In this particular example, the call is a GET,
but any REST invocation style is possible. The key feature in that
message is the Authorization HTTP header, which exhibits the Bearer
authentication scheme and carries the bits of the access token.

The OAuth 2.0 Bearer Token Usage specification, the document

describing how to use bearer tokens obtained through OAuth 2.0

for accessing resources, says that it's possible to place the token
elsewhere in the outgoing request, for example, in the body of a call
or even a request link, as a query parameter. Encountering clients that
send tokens in the body is very rare. The use of the query string for
sending access tokens is actively discouraged, as it has important
security downsides. Consider the case in which your client is running
in a browser: whenever a token is included in the query string, its

bits will end up in the browser history. Any attack that can dump the
browser history will also expose the token. Moreover, if the API call is

OAuth2 and OpenlID Connect: The Professional Guide 64

immediately followed by a redirect, the query string will be available to
the redirect destination host in the referral header: once again, that will
expose the token outside of the normal client-resource exchanges.

For those and other reasons, it is reasonable to expect that
the near totality of the API calls encountered in the wild that
rely on OAuth 2.0 will use the Authorization HTTP header.

Authorization Code Grant and PKCE

The latest OAuth 2.0 Security Best Current Practice (BCP) documents
suggest that every Authorization Code flow should leverage Proof Key for

Code Exchange (RFC 7636), an extension to the authorization code grant
meant to protect Authorization Code from being stolen in transit. PKCE was
originally devised for public clients, where it performs essential security
functions that we’ll describe in detail in the next chapter. We have chosen
to keep this section light and to defer introducing PKCE in the next chapter,
as you will be more familiar with the original grants, and it will be easier to
add PKCE as an incremental step. However, we wanted to point out the BCP
guidance already here so that if you read about it elsewhere, you’ll know
what it is all about.

Sidebar:
Essential Authorization Concepts and Terminology

OAuth 2.0 offers a delegated authorization framework. Unfortunately,
developers often disregard the “delegated” part and attempt to use OAuth
primitives and flows to solve pure authorization scenarios that the protocol
hasn’t been explicitly designed to address. The outcome is solutions

that might appear to work in toy scenarios, but fall short as soon as the
approach is applied in more realistic settings.

For that reason, it is a worthwhile investment to spend a few paragraphs
discussing essential concepts and terminology in authorization, spelling

out explicitly their relationship with OAuth - and in particular, what is part
of OAuth and what is instead a property of the underlying resources we

are exposing.

Permissions

Imagine that you want to expose programmatic access to an existing
resource. Depending on the nature of the resource, varying sets of
operations can be performed on or with it. In the context of a document

OAuth2 and OpenlID Connect: The Professional Guide 65

editing system, users will be able to see, read, comment on, or modify
documents. An API that facades a printer might expose the ability to

print in black and white or in color. Any kind of resource will have a set of
permissions that make sense for that particular resource and that can

be allowed or denied for a particular caller. A permission is just that, a
statement describing the type of things that can be done with a resource:
document:read, document:write, print:bw, print:color, mail:read, mail:send,
and so on.

Permissions describe intrinsic properties of resources, which exist
regardless of how those resources are exposed. OAuth 2.0 solutions might
surface them if they are useful in the context of a delegated authorization
scenario involving those resources. Still, in the general case, permissions
exist in their own right and will be used outside of OAuth as well.

Privileges

A privilege is an assigned permission: it declares that a particular principal
(say, John) can perform a certain operation on a given resource (say, calling
the printer API to print in full color).

As was the case for permissions, the concept of privilege exists
independently of OAuth (or any other higher-level protocol, for that matter).
For example, the framework necessary to describe privileges needs
primitives for principals (users and apps to whom permissions might be
assigned) that OAuth 2.0 does not define.

The existence of permissions and privileges applied to a set of resources
will influence the behavior of OAuth 2.0 solutions based on those
resources, but how that will happen is not described directly in the protocol
and messages defined in the OAuth 2.0 specification.

Scopes

Finally, we get to talk about an OAuth primitive. In the case in which a
resource needs to be exposed in the context of a delegated authorization
solution, the scope is the primitive that enables a client application to
request exercising a user’s privilege for a particular permission for a given
resource. The mechanism that the client uses for expressing this to the
authorization server is by including the scopes corresponding to the
permissions being requested in an authorization request. When used with
this semantic - that is, lists of permissions for a given resource - scopes
are used to define the subset of user privileges that a client application
wants to exercise on behalf of the user. Note that the scopes can be used

OAuth2 and OpenlID Connect: The Professional Guide 66

for other purposes: we have seen examples of that in the case of openid
(requesting the presence of an extra artifact, in that case, the ID token) or
profile, email (influencing returned content).

Effective Permissions

We are finally ready to piece together how all those concepts interact with
each other.

Consider a classic delegated authorization flow in which a client requests
the authorization server to access a resource. In particular, the client
specifies what permissions will be required for the operations it intends to
perform on the resource. Upon receiving the request and authenticating
the user, the authorization server will typically prompt the user to grant
the app delegated access to the corresponding permissions. The user
granting consent through that prompt is effectively saying, "Yes, I'm

okay with this particular client exercising on my behalf the privileges
being requested".

Say, for example, that the client implements an email solution, and the
permission it requests is mail.read. The scope requested is mail.read and
the access token being returned will include (by value or by reference,
depending on the format) mail.read.

Once the client obtains the access token, it will use it to call the APl and
request to read a list of email messages. Upon receiving and validating the
access token, the middleware protecting the API will verify that the scope
it carries includes mail.read, the permission required by the API to perform
the read operation requested and allow the request to move along.

But the authorization checks aren’t over yet! Imagine that the client
requests the list of emails from the inbox of a user different from the

user who granted consent and obtained the access token. Should the

API allow the request to succeed? Of course not! Scopes do not create
privileges where there are none. Scopes can grant a client a subset of

the privileges a resource owner has on a resource but can never add
privileges the resource owner didn’t have. The effective permissions are
the intersection of the privileges a resource owner has and the scopes
that have been granted to the client. The effective permissions represent
what a client can actually do, and that can be a subset of what’s declared
in the scopes. You always need to check at runtime whether the scopes
represent something the resource owner can actually do for the resource
being accessed.

OAuth2 and OpenlID Connect: The Professional Guide 67

Also, note that there is no guarantee that the privileges the resource
owner had at the moment of granting consent will be preserved forever.
Hence, even if your authorization server conflates scopes and privileges
(for example, by only allowing a user to consent if they possess the
corresponding privileges), nothing prevents some of those privileges from
being revoked at a later time. This makes it necessary for the API to check
rather than just relying on the scopes in the incoming access token. This is
one subtle point that is often misunderstood in the context of OAuth.

Note that OAuth can also be used for application-to-application flows,

in which no user is involved. The client obtains an access token for

a resource from the authorization server only through its own client
credentials, as opposed to requesting access on behalf of a resource
owner. You could say that in those scenarios, the client application itself is
the resource owner: there is no delegation, so there’s no need for scopes
to limit the privileges involved. We will study the corresponding OAuth

2.0 grant, the Client Credentials grant, in a later section of this chapter.

In this case, it's not completely clear how permissions are expressed,

as the core OAuth 2.0 specifications don’t provide any mechanism to
express assigned privileges (though there is a new specification, the JWT_
Profile for OAuth 2.0 Access Tokens, that does introduce some guidance

about that). Regardless of the implementation details of how those
privileges are expressed, this is a case in which privileges are actually
carried in the token. There might be other cases where the authorization
server includes user privileges, roles, group memberships, and other
authorization information in the access token. Those cases are all valid
and represent real, important scenarios. However, they aren’t described by
the specifications we are studying in this book, so we will not add further
details here.

Finally, consider that although scopes often map to permissions, that

is not always the case. Remember the openid scope? Its presence in

a request just causes an ID token to be included in the response from

the authorization server. Or think about the profile scope, which, when
added to a request, causes the ID token to include claims that wouldn’t
be present otherwise. So it's easy to map between permission and scope.
Scopes do correspond to permissions in many common cases, which
might erroneously create the belief that scopes and permissions are the
same concepts, but in fact, it’s important to remember that they aren’t.

OAuth2 and OpenlID Connect: The Professional Guide 68

The Refresh Token Grant

Let's now go back to grants. | mentioned this in passing earlier: tokens
typically have an expiration time. They have an expiration time because a
token caches a number of facts and user attributes, and those facts might
change after the token has been issued.

Also, the ability of a client to obtain a token at a given time doesn’t
guarantee that the same client will be able to get the same token in the
future. For example, the resource owner might visit the authorization
server and revoke consent for that client to obtain tokens with the scopes
previously granted. This makes the content of any previously issued tokens
obsolete as they no longer reflect the current situation.

The idea is that by endowing tokens with a short duration, we ensure that
the client cannot really use them (and hence, the information they cache)
for too long. Upon token expiration, clients will be forced to call back home
and repeat a request to obtain a new token. This new request creates the
opportunity for the authorization server to issue a new token containing
up-to-date information or refuse to issue a new token if conditions have
changed (e.g., the user account has been deleted from the system).

The shorter the token validity interval, the more up-to-date the issued
information will be. Solutions typically seek compromises that balance the
token's validity interval with performance and traffic considerations.

Of course, this brings another challenge: although we do want up-to-date
information, we don't want to give users a bad experience to achieve that.
The user should be blissfully unaware of all the low-level mechanisms
unfolding behind the scenes to achieve those updates. We need to
empower clients to renew tokens in a way that does not impact the user
experience. OAuth solved this by introducing a new artifact, the refresh
token, and associated grants, which are used to handle token renewals
without displaying prompts.

The first step in working with refresh tokens is to request one. The OAuth
2.0 core specification doesn’t define a mechanism to request refresh
tokens, leaving the decision to issue one to individual authorization servers.
However, OpenID Connect does define a mechanism to request refresh
tokens, and the result is that a large number of OAuth 2.0 authorization
servers adopt that mechanism as their main (or even only) way of
requesting refresh tokens.

Let’s revisit the authorization code grant examined in an earlier section and

add a few small changes, as shown in Figure 4.3.

69

| Guide

lonal

The Profess

OAuth2 and OpenlID Connect

>

vs[* -]erAe isieeg :uoTiezTioyine

[T7d1IA STUSUIUTodde/ STUSTIRd/ TAe/ 005" T9550T4/7 75471 139 (8)

»as
1a1eaq dv
ZuInvyo

8
J

(IR TR

Tde/woo" Jassor)/ /i sdily,

aouaTpne,

JonIes
uonezuoyine

€ L" L/dLIH TUSWIUTOddy000/ggeE " 1S0UTeoo /7 d110 139 (1) @
33 LEYIERQSTESBOL=2OUOUR
3as yoeqrTES 1soyTed0Ty d13y=Tn"3001TpaIg
dde gam 2YINY0 $59008 AUT[4408 7% UswiuToddey £apea Iggy] TeWagz%e T 140 dgzgpTuado=adoosy
8poo=2dA1~asuodsasg
o TEWNHXXMYAAT DS S 1 ZRUdBAMBZEEINHX=PT 1UT[0R
|-|-| mNWﬁumu_NuMEOU.LmmmOﬂL.u_NwmuNsb«\mspmnHHL\mucmHUjm«.‘
SZTIOUINE/WGS gUINe "I3sS0TS//TS0UTI] :uoT3eso T
— L ATuodaaH !/=yied !SEIIHHXDSHOXTWE.9HOTTE2EY49ASINArSAODILBZIA" 24 LEFIERSZ6SEA/VELS=90UOU 13T4000-135
ssaldx3 :Ag-palamod-x
L' L/dLIH Z8E (Z)
L* LALLM 39 ()| <3009~ °
® (
L}OBQTTRO/BBAE: ISOUTROOT// 1 d33Y,, : -3024Tpad,
!, 8pooTuotieztioyine, @ adAyiuesb,
*.aovTI67IAMM " Z0Y, © .epoo,
' UBOVZENXMX 04 LEPOERASZESRAL =300
WZLe[DopagLrN-Mmy THILSULBABS ™ ZErHDS THNPLUUAPIEDY04860 3OBqTTRI/@B0E: ISOYTRIOT// 1dIY=TUNT1081TpaIg
To,184098TIUSTTI, $S8008TBUTTJJ0 uawiutodde:pess TTews a1Tjo.d pruado=adoosg
<3000> . TBHNHXXMY A TIDS 43 ZRUJBAMDZGSTHHX, © ,PT IUaTTa, apod=adAy-asucdsaly

TBNHXMY ST DS S ZeUJAAMBZGS TWHX=P T 1UaT 9] ‘
/TdR/WOD" 18SS0T 4/ /1801 Y=20UaTpNEE [E—
@ZTJOYINe /WO pyine’ 1assoTy//:sd1Iy 139 ()

LABaeag, 1o adAyTuesol,
‘M3 Jeprhe, @ ueNolTpI,
‘eRpreg : ,UT sauTdxa,

* . N2Q9O6MBS "HOOVNI T1680L0SLPI ™ 9ZHASNOTHI AArUO [Z .,

SLU0ITYSIIYRL,
U401~ ss2028,,

“NS[T lerds,

+

L*L/dLIH eez (£)

uonezuoyne

aungag [ATupdilH ~ !/=yled BI3E[" ']VEXS=BUINE :ST3000-19S

<3009>

TAS™9dqHTILTUNId=5P02¢ {ORATTE/BBRE: 3SOYTRIOT//:dAaY 1uoTIEO0T
8°Z/dLIH zae (v)

Figure 4.3

OAuth2 and OpenlID Connect: The Professional Guide 70

The original message in step 3 carried the list of scope values the client

required to request an ID token with rich attributes content (openid, profile,
email) and the access level required for the operations the client intends to
perform (read:appointment). The message in step 3 in Figure 4.3 contains
an extra scope value, offline_access. This is a scope value defined in

the OpenlID Connect core specification: its presence in a request asks

an authorization server to include a refresh token in its token endpoint
response alongside all the other artifacts (in this case, an ID token and an
access token). In particular, the validity of that refresh token will extend
beyond the duration of the authentication session within which it has been
issued. Don’t worry if that’s not very clear for now. We’ll expand on what
that means later in this section.

If you observe step 7 in the diagram, you’ll see that, as expected, the
authorization server returns a refresh token along with the usual access
token and the ID token.

Now the client has a refresh token in its possession. Let's take a look at
how the client uses it, and in particular how the refresh token makes it
possible to get new access tokens without prompting the user again. The
entire flow occurs on the server side, as it entails the client (in this case,

a web app whose code runs on the server) connecting directly to the
token endpoint of the authorization server. The browser, used to send the
request and drive the interactive portions of the transaction, is now entirely
out of the picture. Follow the numbered steps in Figure 4.4.

71

| Guide

lonal

The Profess

OAuth2 and OpenlID Connect

1dv

Mas
Jaleaq

2yinyo

»as
Jaseaq
2UINV0o dde gem
s | 13
- =

BOI[" " JvX@@rde Jsieag tUOTIEZTIOINE
§7¢/dLIA Tde w00 Iass0 777 sUITY 139 (€

|

{

LJsiesg,:,adAy uasol,

‘@epos: Ut SaITdxSE,

,SS@00BTAUTTH40 siuawiutodde:peas [Tews arrjosd pruado,: adoos,
CLMULT T INATDALAL T Irkete [T Jrke, 1 U0l TpT,

‘., TH0Ls10443099492(NeS 1003 LKAV THWE 1 usnjo1 " ssa00e

}

L' L/dLLH ez (2)

H0Bq[BRITHARBEVESISOYTBA0TIZ%ITRVERIIY=TIN"2024TPaIR
U3 yseaged=adil 1uelby
V4ZNTUETZOAISSXAOPAIOLI™ U L1SUDZDObYIULOHS TZ=Uax0) " ysau 4o,
YGOVZENXMXHZLOR [DOP3Y LN -MMYTH I/ SULOARS ~ZBMYDITHNPLUUAPIEDV086)=151035 " 1USTT o]
TBHNHXXMY 0T D) 1ZRUdBAMBZGSTHHX=PT 1UST T2

L' L/dLLH US%03/YINeo/woo gyIne: J95s0T4//:5d13Y 1504 (L)

Jansas
ezuoyne

s

Figure 4.4

OAuth2 and OpenlID Connect: The Professional Guide 72

1. Refresh Token Redemption Request
The first leg of the grant takes the form of a typical token endpoint
request analogous to the code redemption request described earlier

in the chapter.
Examining the request, you’ll encounter the following parameters:

e The usual client_id

* The client_secret. This is a confidential client, so requests to
the token endpoint require the client app to identify itself.

* The new refresh_token parameter, which carries
the refresh token bits received earlier.

* The grant_type. As mentioned earlier, every request to the
token endpoint must specify the grant the client intends to
use. In this case, the parameter value is refresh_token.

* The redirect_uri parameter, included for the same security
reasons specified in the code redemption flow description.

2. Refresh Token Response
The authorization server response returns a new access token, a new
ID token (because the original request included openid), and the list of
scopes that were granted when the refresh token was obtained, in this
case, during the Authorization Code grant.
The authorization server returns the list of granted scopes because
the client might not really know what this particular refresh token
was originally granted with or if the conditions at the authorization
server have changed since its original issuance. Furthermore, the
client can request a certain list of scopes, but the authorization
server can always decide to return a subset of those scopes. In
that case, if the authorization server wouldn't return the list of
scopes that have been granted in the context of this particular
refresh token redemption, the client would have no way of knowing.
Even if it remembered the ones originally requested, there would
be no guarantee that such a list would be accurate. Remember
that the client is bound to consider the access token as opaque,
so it cannot simply look into the access token to find out.

In this particular case, the authorization server does not return
a new refresh token alongside the access and ID tokens.

The client is expected to hold on to the refresh token bits it
received on the first flow and keep using it until expiration.

OAuth2 and OpenlID Connect: The Professional Guide

There are various scenarios in which the authorization server does
include a new refresh token at every refresh token grant. The most
notable case is in the context of a security measure called

token rotation.

Token rotation guarantees that whenever you use a refresh token,
the bits of that particular refresh token will no longer work for

any future redemption attempts. Every use of a refresh token

will cause the authorization server to invalidate it and issue a

new one, which will be returned alongside the refreshed access
token. Clients need to be ready to discard old refresh tokens

and expect to store new ones at every renewal operation.

Any attempt to use an old refresh token will cause the authorization

server to conclude that the request originator stole it. That might

trigger protective measures, such as invalidating all the other tokens

73

created in the same authenticated session in case the leak indicates a

compromised application. Note that this measure might be overkill for

confidential clients, where use from legitimate clients is enforced by

requiring applications to use their client_secret when redeeming
refresh tokens. However, it is extremely useful for public clients,
where apps can redeem refresh tokens without exhibiting any app
credentials. More details about this will be discussed in the next
chapter on native and mobile clients.

3. Calling the API
The new access token will be used exactly in the same way as
the old one: all the considerations about calling APl according

to the OAuth 2.0 Bearer Token Usage specification apply.

Some Considerations on Refresh Tokens

The fact that a client requests a refresh token by including the scope

offline_access signals to the authorization server that the resulting refresh

token’s lifetime will be decoupled from the lifetime of the authenticated
user session within which the grant was performed. In other words,

whether or not a user is signed in to an application via the front channel

doesn't really matter with respect to whether the same application can
redeem a refresh token.

OAuth2 and OpenlID Connect: The Professional Guide 74

Also, the fact that the app can still use a valid refresh token doesn't say
anything about whether there’s an active sign-in session for the user
that helped obtain that refresh token in the first place. The two things are
completely separated.

The scenario that offline_access is meant to support is the one

| described at the beginning of the chapter, where a user wants to
schedule a tweet to be published at a future time regardless of whether
the user will be signed in at that time or otherwise. In more general terms,
it addresses the case in which an application might need to obtain a
valid access token to invoke an APl even if no user is present to tend

to interaction requests. One common mistake developers make is to
interpret the ability of an application backend to redeem a refresh token
as proof that the user still has a session. Per the above explanation, this
is a dangerous mistake that can lead to resurrecting already expired

or terminated sessions via sign-out, making front-channel session
management ineffective.

When developing applications that need to invoke APIs even without an
active user session, the app clearly needs to persist refresh tokens so
that they are available independently of the presence of an interactive
session. Even for cases in which API calls are scoped to the interactive
session lifetime, tokens need to be saved somewhere other than in
memory if you want to spare users from going through token acquisition
flows in case the webserver memory recycles. Of course, persisting
refresh tokens (and tokens in general) requires caution. It’s important to
make sure that tokens are stored per user to prevent the possibility of a
user ending up accessing and using the refresh tokens associated with
another user. That's just the same basic hygiene required to enforce
session separation, but when it comes to tokens, following best practices
is all the more critical given the high impact of identity mix-up and the
complications that derive from persisting user data beyond the interactive
session lifetime.

To close the topic of refresh tokens for this chapter, here’s a last
recommendation. Even if you know the expiration time associated with
a refresh token, you should still not rely on that in your code. There are
many reasons for which a refresh token might stop working, regardless
of its projected expiration. For example, a user could revoke consent,
immediately invalidating refresh tokens issued on the basis of previous
consent. Another example: a resource server might change policy and

OAuth2 and OpenlID Connect: The Professional Guide 75

establish that, from that moment on, it will only accept access tokens
obtained via multi-factor authentication. This renders any refresh token
obtained with a single-factor session unable to get viable access tokens
and forces the client to reobtain a new refresh token via multi-factor
authentication. Again, all this may happen regardless of the declared
expiration of the original refresh token. For all those reasons, it is prudent
to develop client code assuming that a refresh token might stop working
at any time, and embed appropriate error management and remediation
logic upfront.

Sidebar: Access Tokens vs. ID Tokens

You now had the opportunity to see both access tokens and ID tokens in
action. Just as important, you learned about the reasons for which both
artifacts have been introduced by OAuth 2.0 and OpenlID Connect in the
first place. It is worth stepping back for a moment and summarizing the
differences between the two token types, as confusion about when to
use what is one of the most common challenges you’ll encounter as an
identity practitioner.

Access Tokens Recap

Access tokens are artifacts meant to enable a client application to access
aresource, typically on behalf of a resource owner, bestowing the client
application with delegated authorization. As discussed, there is no token
format mandated by OAuth 2.0.

Earlier, we discussed the implications of the common topology where the
authorization server and resource server are co-located. This topology
allows them to access shared memory and makes using a format for
access tokens unnecessary.

Conversely, consider an authorization server separated from the resource
servers, as with identity as a service offering like AuthO, where the same
authorization server is shared by multiple resource servers owned by
different companies. This scenario can really benefit from agreeing on a
format and using it to validate incoming tokens, even if the protocol doesn’t
offer anything out of the box. The use of JWT as a format for access tokens
is so common that it led me to drive a standardization effort to define an
interoperable profile for it.

At the cost of being pedantic, it should be stressed that, as a client app

OAuth2 and OpenlID Connect: The Professional Guide

developer, you should never write code that inspects the access token
content. The fact that, in some cases, you might know that a specific
token format is being used doesn’t change this. The reasons why it’s not
a good idea are more about the contracts between the client, resource,
and authorization server. In fact, it will often happen that you have a
chance to look inside an access token, and the situation might change
at any time. The format used in an access token is a matter agreed upon
by the resource server and the authorization server, and the details can
change at any time at their discretion without informing the client. Any
code predicated on assumptions about the access token content will
break as soon as those assumptions no longer hold, and on occasions
without any remediation. Think of information being removed or the
content being encrypted so that no entity but the intended recipient of
the access token can inspect it. Although it is legitimate for a developer
to read whatever information is available during troubleshooting,
including the content of captured tokens, developing code that does

so routinely will very often result in downtimes and serious

production problems.

ID Tokens Recap

ID tokens are designed to support sign-in operations and, optionally,
make authentication information available to clients. They don’t contain
any delegated authorization information (though nothing prevents
implementers from extending the default claims set described in the
specifications with their own custom values). ID tokens come into

play during user sign-in, and clients can use them to learn about what
happened during the authentication flow. Whereas clients should really
not inspect access tokens, as discussed in detail just a few paragraphs
earlier, clients must look inside ID tokens - that’s part of the validation
step described in the Web Sign-In chapter and mandated by the OpenID

Connect core specification.

One of the most common points of confusion about ID tokens is whether
they can be used for calling APIs. The short answer is that they shouldn’t.
Let’s invest a few moments to understand why people attempt that and
why it’s generally not a good idea.

ID tokens are designed to support sign-in operations. The client app

OAuth2 and OpenlID Connect: The Professional Guide 77

is simultaneously the requestor and the recipient of the ID token: once
the client has received the token, it has reached its intended destination
and isn’t meant to travel any farther. All the client needs to do with it is
validate it and extract user attributes when they are present. Both are
operations that can be done locally, thanks to the fact that ID tokens
have a fixed format, and the OpenID Connect specification details how
to perform validation. The ultimate proof that the ID token shouldn’t leave
the client app lies in the aud claim, formalizing that the client app is the
intended recipient by carrying its client_id value. We have discussed all
this in Chapter 3, Anatomy of an ID Token.

Nonetheless, there are real-world situations in which client apps

use ID tokens to invoke APIs. Often, that is due to designers not fully
understanding the underlying protocols, and in particular, the role of

the audience claim. For them, a JWT is a JWT, and an ID token is often
easier to obtain as it doesn’t require registering APIs, defining scopes,
and adapting validation techniques to each specific authorization server
requirements. For example, some will not use JWT as the format for
access tokens and will require supporting introspection calls. Some
others might not be designed to protect third-party APIs at all; hence, API
registration and access token issuance and validation features are not
offered, but ID tokens are still issued for sign-in purposes.

In general, using ID tokens to invoke API has issues. The main problem
goes to the heart of why we have audiences in the first place. An API
receiving an ID token can only verify that the token was issued for that
particular client: there’s nothing in the token saying that it was issued with
the intent to call this particular API. Besides the practical issue of being
unable to insert ad-hoc claims for that particular API, there are serious
security concerns: a leaked ID token can now be used not just to access
the client, but also to invoke this APl and all the other APIs following the
same strategy.

Whereas properly scoped tokens would contain the blast radius of a leak
event (an access token scoped to API A can only be used with A), many
APIs accepting an ID token means that they would all be compromised at
once. This also makes it really hard to maintain separation between APIs:
if both A and B accept ID tokens, that means that when the client calls A,
A can turn around and use the same token it received from the client to

OAuth2 and OpenlID Connect: The Professional Guide 78

invoke B. Although that might be acceptable at times, in the general case,
this should never happen as a side effect.

Lastly, | will mention that the use of ID tokens for calling APIs cannot be
secured by sender constraint, as the protocols supporting it won’t provide
any mechanism to associate the ID token to a channel between the client
and the API.

For the sake of exhaustiveness, | want to acknowledge a particular
situation where using ID tokens to call an API might not be disastrous,
though it’s never as good as using access tokens. Consider the case in
which the client app and the APl in itself happen to be the same logical
application. That’s the scenario commonly described as a “firs- party
app”, where both ends have the same owner and are tightly coupled to
implement a given solution. Think of a social network APl and its client
app, for example. In this case, the solution won’t strictly require delegation,
the incoming token will likely be expected to identify the user, and the
tokens issued to that client won’t be accepted by any API other than the
first-party one (if you exclude cases where individual app owners decide
to accept them anyway, which are outside the control of the first-party
solution developer anyway).

From the end-user perspective, the client+APlI ensemble constituting
the solution is a logical whole - my experience of using my Twitter
account through the Twitter app doesn’t usually require any special
consent where the APIs are explicitly called out. In that case, one could
argue that the component of the app requesting the token and the
component implementing APIs are, in fact, the same entity, which could
be represented by the same identifier - hence, here’s the crucial step,
targeted by a token with the same audience... just like an ID token.

Once, in front of a beer, one of the authors of the OpenID Connect
specification told me that an ID token is just an access token with
specialized semantics. That said, it’s still generally not worth it to ever use
ID tokens for calling APIs. Although narrowly defined first-party scenarios
do exist, those would still be better off when implemented with access
tokens (think about sender constraint limitations mentioned above) and
the risk of overreaching and using the ID token in ways that expose you to
serious security risks is just too great. | mentioned this particular case here
because you are likely to encounter that approach in the wild if you work

OAuth2 and OpenlID Connect: The Professional Guide 79

in this space long enough, and | wanted to empower you to understand the
nuances and point of view of the people following that approach: however,
the best practice remains using access tokens for calling APIs. If you need
JWT access tokens, use the aforementioned JWT profile for OAuth 2.0
access tokens.

ID Tokens and the Back Channel

OpenlID Connect offers multiple different ways of signing in. The one
we studied in the preceding chapter leverages the front channel. It

relies on the Implicit flow (that is, issuing an ID Token directly from

the authorization endpoint) plus form post (transmitting the token to
backend-hosted logic, as it is the norm for redirect-based apps). That
flow just happens to have the least number of moving parts, as it doesn’t
require the client app to obtain, manage, and use a client secret. The
flow has more or less the same security characteristics as traditional
protocols such as SAML or WS-Federation, which are still widely used in
mission-critical, high-value scenarios.

The Authorization Code grant we just studied in this chapter for calling
the API can and is commonly used for performing sign-in operations - by
obtaining ID tokens following the same steps we studied for requesting
an access token. Say you are in a scenario in which, for some reason,
you don't want to disclose the bits of the ID token to the user’s browser.
Using the Authorization Code grant, you can make everything take place
on the server side. You can just perform an Authorization Code grant in
the same way we did to get a token to call the API: you just ask for an ID
token as well. Note, that’s exactly what we did in our API calling scenario
by including the openid scope in the initial request. All we need to do to
make that operation count as sign-in is validate that ID token and create
a front channel session based on its content.

The notable difference from the front channel is that, given that the
client obtains the ID token from a direct HTTPS connection with the
token endpoint, there is no uncertainty about the source from which the
ID token bits came from. The client knows for certain that the ID token
comes directly from the authorization server, with no intermediaries that
could have tampered with the content in transit. With origin and integrity
verified, there is no need to validate the ID token’s signature. Think about

OAuth2 and OpenlID Connect: The Professional Guide

it: if you were to validate the signature, you’d use the key you retrieved
from the discovery document. And why do you trust that it is the right
key? Because you retrieved the discovery endpoint over an HTTPS direct
channel! The same assumptions hold for the ID token retrieval from a
direct connection with the token endpoint, which is why the client can
skip the signature verification.

What'’s very, very important to understand is that not having to verify
the signature does NOT mean that the client is allowed to skip token
validation! The client is still meant to validate audience, issuer, expiration
times, and all the other checks that the OpenlD Connect specification
describes for the ID Token validation. The signature is only one of the
many checks a recipient should perform to validate incoming tokens,
even in the front channel case.

However, keep in mind that while having a direct HTTPS connection with
the token endpoint assures you of the token’s origin, it does not ensure
that the token you receive is the one you requested. An authorization
code injection may have occurred between the initial request and

the exchange of the authorization code with the authorization server,
and your application has no way of realizing it. This is why OAuth 2.1
recommends using PKCE with confidential clients, too.

Obtaining an ID token via the Authorization Code grant is technically
more secure than receiving it through the front channel. However, this
technique is more onerous, as it requires the client to obtain, protect and
use an application credential - that has a management cost, associated
risks (like forgetting a secret in source control), performance, and
availability challenges (extra server calls). If your application only needs
to sign-in users and doesn’t have particular constraints about having
tokens transit through the browser, the front channel technique works
fine - as demonstrated by many years of successful SAML deployments
using similar techniques to protect high-value scenarios. If you are indeed
in a situation that calls for higher security or already performing API

calls requiring the authorization code flow anyway, you might consider
implementing sign-in via backchannel as described in this section.

The Userinfo Endpoint

A client requesting an ID token without specifying the profile and email
scope values will receive a skeleton token stating that user X

80

OAuth2 and OpenlID Connect: The Professional Guide 81

(as expressed by an opaque identifier, usually) successfully authenticated
with issuer Y. The token also specifies the time and perhaps the
authentication modes, and no other info - in particular, no user attributes.

There might be multiple reasons for which a client might opt for such
barebone ID token content. For example, a client might want such a
token to use an easy to set up front channel sign-in flow while avoiding
disclosure of personally identifiable information (PIl) to the browser.
Alternatively, clients might go that route simply to reduce the size of
transferred data on a network that doesn't have a lot of bandwidth or on
a metered connection where bigger ID tokens might result in the user
getting charged more for data use.

The good news is that clients can opt to work with barebone ID tokens
and still gain access to user attributes when necessary. OpenlD Connect
introduced a new API endpoint, called Userinfo endpoint, which can

be used for retrieving information about the user by presenting an
appropriate access token - following the same OAuth 2.0 bearer token API
calling technique studied earlier in this chapter. Whenever the client needs

to know something about the user, whether it didn’t save the initial ID
token or received a barebone one, it reaches out to the Userlnfo endpoint
using a previously obtained access token. It will receive what substantially
is the content that the client would have gotten in an ID token requested
with profile and email scopes.

The first chapter described the evolution that led from OAuth 2.0 to
OpenlID Connect. A key passage was about a particular way of abusing
OAuth for simulating sign-in, where the ability to successfully call an

APl with an access token was considered proof enough for the client

to consider a user signed in. That had several problems: access tokens
could not be tied to a user in particular (very important if you are trying to
authenticate, that is, to sign-in), could not be proven to have been issued
as part of a sign-in operation for that app in particular, and could not be
standardized given that every provider protected API of different shape
(Facebook Graph, Twitter API, etc.).

The UserInfo endpoint resolves the first and third problems. The Userinfo
response does provide information about the user who obtained the
access token used to secure the call to begin with - and since it’s
standard, generic SDKs can be built to work against it. That makes

it possible for a client to implement pure OAuth 2.0 to retrieve user
information in a standardized fashion.

OAuth2 and OpenlID Connect: The Professional Guide 82

It is very important to realize that, however, successfully calling the
UserInfo endpoint is NOT equivalent to validating ID tokens and alone
CANNOT be used to implement sign-in, it does NOT count as sign-in
verification. Calling the UserInfo endpoint only proves that the
corresponding access token is valid and associated with the user
identity whose attributes are returned: it does NOT prove that the
access token was issued for that particular client. OpenID Connect sign-in
operations ALWAYS require validating an ID token, although, as we have
seen in some circumstances, the signature check can be skipped from
the validation checkilist.

Another thing to keep in account when considering using the Userinfo
endpoint from a confidential client is that all the discussions about the
burden of using a secret apply here, as that’s part of obtaining an
access token.

After all that preamble, let’s take a look at how an actual call to the
UserInfo endpoint takes place. As usual, we are going to explain each step
- please refer to the numbered messages in the diagram in Figure 4.5.

83

| Guide

lonal

The Profess

OAuth2 and OpenlID Connect

dde gam

Yrq L8 TeLDMAINGUNPHIATYUIBLIAGIAGP JoJeag (uoTleziioyine
g ¢/dLIH OJUTISSN/Woo gUINe J8ss0TS/77sd11y 139 (1)

{
osTes :,POTLTJonT[TEWD,
‘W00 guIneggzL+asol, 1, TTewa,
. 788V VEILS:6LLFT-68-8LOT, 1e~paiepdn,
‘L Bud oldgn] - Jaeabrs//isdiay 24n3o1d,
‘W02 gyinegggL+asof, :,auweu,
‘L ggl+asol, @ aweuxoTu,

‘P96 JZSO0ZALLLFLOPZSSRAS lBUINE, [, ans, }

8'Z/dL1H eez (T)

uonezioyne

d3 ojuuasn

FENNED

AHUHHI

Figure 4.5

OAuth2 and OpenlID Connect: The Professional Guide 84

Userinfo Request

The scenario in the diagram assumes that the client has already
obtained a suitable access token to call the Userinfo endpoint.
Invoking the UserInfo endpoint is simply an HTTP GET request,
attaching said access token in an authorization header.

You might notice that in this particular network trace, the access token
value looks different from all the other tokens shown in the diagrams
so far. Whereas token values in earlier diagrams were always clipped
for presentation purposes, and their shape suggested the classic

JWT encoding, the bits on display here are the entirety of the access
token and don’t appear to follow any known pattern. That's because
calling the UserInfo endpoint is precisely a scenario in which opaque,
formatless tokens make sense. The UserInfo endpoint is co-located
with the authorization server; there is no need for cross-boundaries
communication. The entity that issued the access token in the first
place is the same entity responsible for validating it during the Userinfo
API call. That means that the two tasks can access the exact same
memory space. In concrete terms, this means that the access token
intended to access the UserInfo APl doesn't need to be encoded

in any particular format. It can literally be the identifier of arow in a
database created at issuance time and can now be looked up at API
invocation time or any other technique relying on shared memory.

We cannot afford this luxury when the API being invoked is managed
by a third party and hosted elsewhere. In this scenario, the parties
involved are forced to rely on token validation based on formats,
introspection, and, in general, techniques meant to accommodate
the lack of shared memory between the entity issuing the token

and the entity consuming it.

Userinfo Response

The response returned by the Userlnfo endpoint contains pretty
much the same list of claims carried by an ID token obtained via
a request that includes the profile scope.

OAuth2 and OpenlID Connect: The Professional Guide 85

The Hybrid Grant

The Hybrid grant is, as the name suggests, a mix of multiple flows into
one. It combines a sign-in operation (getting an ID token from the front
channel) and obtaining an access token for invoking an API from the client
backend (by requesting and redeeming an authorization code). That saves
network round trips, consolidates prompts and consent requests, and is, in
general, a very efficient way of performing a sign-in operation while getting
ready to invoke API at the same time. No diagram is shown for the hybrid
grant, as you can easily piece it together yourself by combining the web
sign-in flow diagram in the preceding chapter and the Authorization Code

flow shown here. OpenID Connect is unique in this ability to mix and match
sign-in and calling APIs and having entities playing both roles: a “resource”,
as in something being accessed as part of the sign-in access, and a client,
consuming other resources such as API. The fact that the app in OpenID
Connect is always called a client, emphasizing the latter role and omitting
the former, is a nod to its

OAuth 2.0 origins (and to the fact that “resource” in OAuth 2.0 is

reserved for APIs).

The Hybrid grant is a really powerful tool that is commonly used in
applications. In fact, today, it's pretty rare that an app will forever either
only require sign-in or only call APIs. It's usually a continuum, and the
availability of this grant makes it easy to add one functionality or the
other by simply modifying either the Implicit plus Form Post grant or the
Authorization Code grant.

Client Credentials Grant

In the last section of the chapter dedicated to invoking API, we will study
the Client Credentials grant, a flow defined by OAuth 2 for cases where

a client needs to get access tokens using its own programmatic identity,
rather than doing so on behalf of a user. Unlike the grants we examined so
far, the Client Credentials grant has no public client variant - it can only be
performed by a confidential client.

All the flows examined so far for APl are designed to grant clients
delegated access to resources, that is to say, to enable clients to “borrow”
some of the user’s privileges when accessing resources.

OAuth2 and OpenlID Connect: The Professional Guide 86

There are a number of situations in which clients need to operate as
themselves rather than on behalf of a user. These are scenarios in which
the application has an identity and direct resource privileges in itself. That
class of scenarios doesn’t require a user to be signed in or otherwise
present. Even if a user happens to be signed in at that time of access, their
privileges might not be the ones the client needs to exercise. A classic
example of that scenario occurs when an application needs to perform an
operation for which the currently signed-in user has no privilege. Imagine,
for example, a Continuous Integration (CI) web app in which the final step
of a build process is taking the binaries of a compiled product and saving
them in a particular share that no user has access to.

One way to work around the problem would be to open the floodgates
and give every user permission to access that share. That would preserve
the CI’s ability to call the share in delegated access mode. However, the
risk for abuse would be very high: users might choose to exercise their
privileges on that file share even outside of the Cl process.

An alternative would be to give privileges for file share access to the
application itself. In turn, the application can feature logic that determines
which users should be able to write to the share. So, it can use its own
write privileges to perform writing operations only for the appropriate user
sessions and only within the limits of what the Cl logic requires. Said in
another way, by granting the application itself the necessary privileges to
access a resource, the responsibility of determining who can do what is
transferred from the authorization server to the application itself, which
becomes the gatekeeper for the resource.

One common way of referring to the aforementioned pattern is to say that
the application and the downstream APIs it accesses are defined as a
trusted subsystem.

To use a real-world analogy, consider how a classic amusement park
handles visitors’ access. At the entrance, a visitor pays for a ticket and

is given a bracelet or equivalent visible sign that the individual paid for
access. This sign does not need to bear any indication of the wearer’s
identity. Once the guest is in, they can enjoy every ride without any further
access control check other than the bracelet, broadcasting their right to
be on the premises.

OAuth2 and OpenlID Connect: The Professional Guide 87

Similarly, once a user signs in with the Cl web app, all subsequent calls

to the downstream API will be performed as the web app itself, just in
virtue of the fact that the user successfully signed in. In a way, you can
think of this as a resurgence of the concept of perimeter. However, the big
difference with traditional network perimeter is that the boundaries here
are mostly logical (API’s willingness to accept tokens issued to the Cl app
client) rather than physical (actual network boundaries).

This class of patterns is pretty common in the context of microservices,
where a gateway validates the caller’s identity. Once that check has been
successfully performed, all subsequent calls from the gateway can be
performed carrying tokens identifying the calling app rather than the user.
The user information might still be required, but it doesn’t strictly need to
travel in an issued token.

As is the case with every confidential client flow, the critical point here
is in putting particular care into provisioning client credentials and
maintaining them, for example, by ensuring that no entity other than the
application has access to its credentials. Another critical aspect of the
scenario, not explicitly covered by the standards but of vital importance,
is to carefully choose the privileges assigned to the application and the
application logic exercising them. The least privilege principle remains a
key best practice in this scenario.

Let's take a look at how the client credentials grant actually works on the
wire. Please refer to Figure 4.6.

88

| Guide

lonal

The Profess

OAuth2 and OpenlID Connect

Idv

Ads
JEYLEL]

24Invo

»as
FETLEL|

cYInvYo

dde gam

H—8-

|-

BOI[" JvXeerde 1s1e0g UOTIEZTI0UINE
B Z/dLIH SI9sN/ZA/TUE /UGS GUINE J8550 1) 7/ sd11q 139 (g)

QL

{

LJa.eag, :,2dk1 usxol,

‘p@rog:,UT seiTdxa,

‘.sJasn:peas adoos,,

‘. THALS 1044409049 [NEST003 LAY THWE , 1, usx01~sseo0e,
}

L"L/dLIH eeT (2)

{
LSTETIUBPaIO IUSTLD, , BdA1 Jueib,
. /ZhfTdR/WOD " gYINe JBsSOT Y/ /1sd3Qy, 1, BousTpNE,

L . xgepLbyY

DZHY3 T L343 TI0MBA08D . 1 , 1510357 IUSTTO,
* 196 ZdMAINHNOLJUPONIXBZ LXdATVANN,, i, PT IUSTTO, }
A Z7dLIH US%OT/qINes/Wos GyINe JSSS0TS77 70530 1S0d(L)

d3 uxoy

FEINES]

uonezjoyine

il

Figure 4.6

OAuth2 and OpenlID Connect: The Professional Guide

1. Access Token Request
The client application requests a token by contacting the token
endpoint directly, similarly to what we have observed in the
server-side segments of all the grants we have studied so far.

In the sample scenario we have been discussing so far, the call is
performed during a user session - however, that is entirely arbitrary.
Remember that the Client Credentials grant only relies on the client’s
own identity rather than requesting delegated authorization from

a user. So, from the OAuth 2.0 standpoint, the flow described here
might just as well occur in a command-line tool, a long-running
process, or, in general, any kind of application executed in a context
where distribution and protection of client credentials are possible.

The request is a customary HTTP POST, carrying the well-known
client_id, client_secret, and grant_type (this time, set to
client_credentials)

Observing the body of the POST message, one notable
difference from all the grants encountered so far is that the
message for the token endpoint doesn’t contain any artifact
besides the client_secret. In contrast, the Authorization Code
grant and the Refresh Token grant all included some other
entity to redeem. Once again, this shows why the other flows
are conceivable with public clients as well, whereas the Client
Credential grant isn’t possible without, well, client credentials.

Here, it’s opportune to stress that client credentials and the
Client Credentials grant are two separate, distinct concepts.
Client ID and client secret are the client credentials assigned
to a confidential client application and are used to identify the
client app in every grant whenever communication with the
token endpoint occurs. The Client Credential grant is a grant
that happens to require only the client credentials and no other
artifact to be performed. It’s easy to get confused when using the
terms loosely: whenever you hear someone mentioning “client
credentials”, it’s useful to be clear on whether they are talking
about the grant or just about the client ID and client secret.

One last observation on the request message: the audience
parameter must indicate to the authorization server what resource
the client requests access to. This information is necessary for

OAuth2 and OpenlID Connect: The Professional Guide 90

authorization servers that can protect multiple source servers;
hence, there’s no default resource the authorization server
can refer to. As mentioned in our earlier discussions about
the audience parameter, the standard way of signaling that
information to the authorization server is through the resource
parameter defined in the resource indicators specification. At

the time of writing, AuthO doesn’t support resource indicators.

2. Token Response
The token endpoint response is entirely unsurprising. It carries back
the requested access token, just as described for other grants.
Of course, there is no id_token, given that the grant didn’t entalil
user identity in any capacity.

Notably absent is the refresh token, too. In this scenario, it would
simply serve no purpose. The refresh token is meant to allow a client
app to obtain a new access token to substitute an expired one
without bugging the user with an extra prompt. However, there is

no need to ask anything from a user here, as the client credentials
are available to the client app at any time to request a new token.

Important note

The mechanism shouldn't be abused. Once a client requests
and obtains an access token, it should keep it around
(stored with all the safety measures the task requires) for
the duration of its useful lifetime and use it whenever it
needs to call an API. Discarding still-valid access tokens and
requesting a new access token from the authorization server
every time can be a costly anti-pattern at all levels:

e Security (every time credentials are sent on the wire,
there's an opportunity for something to go wrong).

Performance (network calls).

Availability (possibility of being throttled, transient
network failures).

Money (various providers charge per issued token).

OAuth2 and OpenlID Connect: The Professional Guide

Note that, in this particular case, AuthO uses scope to represent what
the client can do. From what we said earlier about scopes, this is a
bit controversial. Let's say that scopes normally restrain the set of
privileges that the client can use from the user’s privilege, and here,
there is no user. Even if it does not appear quite appropriate, that's
how AuthO does it today. It just represents the privileges that have
been granted to the client application. There is no real security risk
because of this: if a resource owner would interpret the incoming
scopes as the delegated authorization concepts we discussed so
far, the power they’d confer to the caller would be less, not more.
However, it’s an exception that is important to be aware of.

3. Calling the API
As expected, the call to the API occurs as usual,
without any dependency on how the client obtained
the access token being used to protect that call.

This completes our journey to understanding how to leverage OAuth 2.0
and OpenlD Connect to invoke APIs from a traditional web app and, in
general, any confidential client.

In the next chapter, we'll take a look at native clients: mobile clients and
pretty much any application that an end-user can directly operate... and
that isn’t a browser.

Chapter 5

Desktop and
Mobile Apps

OAuth2 and OpenlID Connect: The Professional Guide 92

It's finally time to touch on one of my favorite topics: how to secure
applications meant to run on your desktop or mobile devices.

Public Clients

However, before | do that, | have to introduce yet another actor in our play:
| want to spend some time describing what a public client is.

We have seen that a confidential client is defined as a client that has
credentials and can use those credentials to prove its own identity to
the authorization server regardless of the identity of a user. You guessed
it: a public client cannot do that. Typically, it's because it's just hard to
distribute credentials to, you know, public clients. And it's as hard as
keeping them secret.

So, for example, imagine a situation in which you are installing an
application from an application store on your mobile device. You are
downloading the bits of this application, which will live on your device.
There is no protocol as part of the application's distribution that also gives
you a key representing that particular instance of this app.

But even if we could get such a key, it would become a secret specific to
that app instance. If it's used to identify the client, like that client ID we
used on the server, now you'd have an attack surface that basically leaves
all the way to the pockets of a potential hacker.

As we said earlier, if you assign a credential to a website, | need to
compromise the server to try to steal that credential. In contrast, here,

the device is in my pockets. It's at my disposal and sometimes | can

share it with others. | can install multiple applications without doing an
accurate technical check. In other words, my device can be inadvertently
exposed to malicious attacks more than a server. So, a key representing
my particular instance of the app would be more than the client secret
associated with a client ID, and in this scenario, that would make no sense.

One interesting part is that we might not care all that much about

this limitation, mostly because when you're using such applications,
the highest order bit is the user. So, if I'm using Slack on my phone

and another colleague is using Slack on their phone, in the end, the
authorization decisions are based on the fact that it's Slack. Sure, Slack
might need a list of scopes, which have been granted. But the highest
order bit is really the user and what the privileges of the user are.

OAuth2 and OpenlID Connect: The Professional Guide 93

The best scenario is to have some mechanism for preventing people from
taking tokens and using them from a different device.ln the absence of
such a mechanism, we can take into account the fact that we don't have
a secret and tune our authorization decisions accordingly.

One super important point here is that if a client ID occasionally looks
obscure, i.e., it's too far to be human-readable, it does not mean it's a
secret. It's not a secret at all. A client ID is public. You have to assume it's
public. As a matter of fact, every identifier or credential distributed to such
a client is public.

So, when you have a native application that is a public client, you have

to assume that anyone can grab that client ID and pretend to be your
application. That's by design; that's expected. So, you should never make
authorization decisions on the server side based on the ID of a native
client because that thing is just a hint. It's not really proof of anything at
all. It's super important!

Native Applications and the Browser

Now how do we do this? We have seen that when we use the
authorization server, OpenlID Connect providers and similar, the typical
way we use for interacting is through web pages of some kind which

is super handy because we can change the Ul at any time, and we can
inject multiple authentication factors. We don't need it to really cache
anything on the client. We don't need it to have a dedicated code on the
client for doing prompts and similar.

But here, we have native clients with code living on a device. So, how

can we interact with the authorization server? The trick is to open a little
window on the browser whenever we need to do authentication. So, even
if I'm a native client, | can always provide some kind of surface capable

of rendering HTML, and | can use that surface to drive all interactions

with the authorization endpoint. Once I'm done and receive the artifacts |
want - tokens, calls, and similar - then | can take over from my code, close
whatever | used as a browser, and just go ahead with my flow.

There are different ways of doing this. The traditional way apps did it

at first, and now no longer recommended and unsupported by some
authorization servers, is to use an embedded browser or an embedded
WebView. An embedded WebView is a native component, such as a
component of your operating system or your window management

OAuth2 and OpenlID Connect: The Professional Guide 94

system, that you can place on the surface of your app, just like buttons,
labels, and similar, and this thing will render HTML.

Doing this has risks. One particular risk is that an application can control
everything that happens on its surface. So if it pops out a browser
window that lives inside the application, and the user enters credentials,
that application can record each and every keystroke, which is clearly
dangerous. Say you are using an application that needs access to
Facebook for user authentication. In my case, I'm a subscriber to the
"New York Times", and | associated my subscription with my Facebook
account. If Facebook's login page is embedded in a WebView, that app
can intercept my credentials and impersonate me in other contexts.

The other problem is that this embedded WebView is by design isolated
from whatever browser lives on the machine. As a result, you will get some
inconvenience in the user experience.

Consider the app to read the “New York Times” mentioned earlier:
whenever, for some reason, I'm not authenticated, | end up getting this
little window saying, "Authenticate to Facebook".

When this happens in an embedded WebView, it doesn't matter that

| have already signed in to the Facebook app; | have to sign in again. |

get prompted for my username and password because the WebView is
isolated from the device's cookie jar. That's extraordinarily annoying to the
point that very often, | just close this thing and forget about it and remain
ignorant because it's just a lot of work to have to enter this stuff.

Now, today’s mobile operating system providers supply the solution to this
problem: a programmatic way of invoking the system browser from your
applications. So, when a mobile app, such as an iOS or Android app, heeds
to get a token from your authorization server, you can use a system call
that opens the system browser. The app switches the focus to a slice of
the system browser: a Safari view controller on iOS or a custom Chrome
tab on Android.

This is a view of the system browser with a single tab that has access
to all the values, including cookies, and that, above all, is not in the
application's memory space. It's the browser. At this point, the user can
enter credentials, do MFA, and take advantage of existing cookie jars
without leaking any of their credentials to the calling application. That's
really powerful and super handy.

OAuth2 and OpenlID Connect: The Professional Guide 95

The thing is that it adds a bit of extra attack surface because like
when you have your embedded browser, the communication between
the browser and your application all happens in the memory space of

your app.

So, say that you're doing the Authorization Code flow. | use the browser to
get the authorization code, and then | pass the code to my application. |
need to communicate the code from the browser to the app. That means
that if someone is in the middle, say another app, they might intercept
this code. Given that the app has no credentials - remember that this

is a public client - whoever intercepts that code might use it and obtain
tokens instead of me.

Meet the PKCE

To prevent someone from intercepting the authorization code while it’s
moving from the browser to my app, you can use a mechanism that
substantially ties the request of the code to a secret created by the app
on the fly.

The application must demonstrate knowledge of that secret at code
redemption time. As a result, if anyone steals the code in transit, they
will not be able to use it without knowledge of this secret. I'll show you in
detail what that means.

So, when you use the system browser, you should not just use the
Authorization Code flow but also add this mechanism to protect
communication of the code. This mechanism is called Proof Key of Code

Exchange (PKCE), which is pronounced “pixie”, and is defined as an
extension to the Authorization Code flow.

Desktop Applications and Browsers

Now, here is another controversial point. The best practices document

on using OAuth in mobile apps substantially says what | just told you: You

should use a system browser and protect communication between your
application and the system browser using PKCE.

That document also tells you that you should do the same on desktop
applications, i.e., applications running on your Windows, Mac, or Linux
machine. Frankly, that's just not practical. That's to say, if you try to do
the same for applications that run on the desktop, you might incur a few
issues when you call the system browser. For example, you don't know

OAuth2 and OpenlID Connect: The Professional Guide 96

what browser is installed on the machine. Also, this browser might not
come up on top because you don't control the Z-order of the browser
window, or the user can have multiple browser windows open, or they
have only one window, but the application might run in a modal window.

Above all, if you really want to be compatible across multiple operating
systems, in order to bounce the communication back to your application,
you need to have a mini web server that runs locally on the machine. This
web server listens to your redirect URI, receives the authorization code,
and shoots it back to the app.

In other words, if your operating system does not have a mechanism
comparable to what we have on iOS and Android to directly involve the
system browser in the transaction, this makes the experience for the end-
user really tough. It also complicates the flow and makes security people
nervous because opening sockets on your machine is not fun.

In addition, when you are on a device with no browser whatsoever, you
can't use this flow because it's all predicated on having a browser's
availability - whether embedded or a system browser.

So, if you are developing a command-line application, you can only use
this flow if you target a machine with a browser. Another grant - the Device
Authorization grant - allows you to use a browser on a different device and
close the cycle. But | won't go into the details here.

The Authorization Code Grant with PKCE

Let's look at how these things take place following the diagram shown in
Figure 5.2. In this scenario, | have an API that | want to invoke. There is my
usual authorization server with its good old authorization endpoint, token
endpoint, and discovery endpoint.

On the client side, there is a lot of new stuff. We have our native application
with the usual SDK for implementing OAuth and a cache for saving tokens.
The system browser is a different app running within the same device.
Now, let's go through the flow for our application to get a token for calling
the API following the numbered steps.

OAuth2 and OpenlID Connect: The Professional Guide

Authorization Request

In the case of native clients, | can't first hit the resource and then
be redirected to the authorization endpoint because my app
renders the Ul. | don't rely on the server to redirect me to the app
with the authorization request. So, | need to first do whatever
steps are necessary to get my token and then call the service,
which is why the diagram of this flow does not start with a line
to the resource but with a line to the authorization server.

The application uses the operating system API to invoke the
system browser and make it talk to the authorization endpoint.
Here is the request sent to the authorization server:

(1) GET https://flosser.auth8.com/authorize?
faudience=https://flosser.com/api/

&response_type=code

&scope=openid profile offline _access read:appointments
&redirect_uri= idle2://flosser.auth®.com/ch

&code challenge=KuijWZHBwl® ieZqe¥YmyyHrkcn-d
&code_challenge method=5256

Figure 51

Actually, we are doing an Authorization Code grant, so you shouldn't
be surprised to see the content of this request, at least for the
most part.

The first parameter is the audience. We have seen what the
audience represents, i.e., the particular resource we want to access.
We have seen that it's specific to AuthO and that an equivalent
extension to OAuth 2.0 exists, although currently not supported.

We have the response_type parameter with the value code.
We don't specify the response mode, so we know that we'll get
it on the query string.

Then we added our list of scopes for the same API that we were
calling earlier: openid, profile, read:appointments.
We also ask for offline_access.

In the case of native clients, the refresh token represents, in some
ways, your session because it's the main artifact you have under

97

OAuth2 and OpenlID Connect: The Professional Guide

control and grants you the ability to get new tokens. So, when you

sign out of a native client app, you also dispose of the refresh token.

The redirect_uri brings the first new thing: instead of having
HTTPS, it has id102. This id102 string is just a protocol handle

that we invented when we provisioned this application on the
operating system. This protocol handle represents our app. It tells
the operating system that whenever it sees someone trying to
follow a link that starts with id102, it should activate our app.

This is a way of ensuring that once we get the authorization
code back, it goes to our app rather than the browser.

Finally, we have the code_challenge parameters. | mentioned
the code challenge earlier when | introduced the PKCE
mechanism. The application provides this code to the
authorization server, which will tie the authorization code to
this challenge. We'll see how this comes together shortly.

The code_challenge_method is just the implementation
details of the algorithm used to generate the challenge.

98

99

OAuth2 and OpenlID Connect: The Professional Guide

Idy

Has
121830 ZYINYD

aoTAap

<3002>

TUT/dLIH GONSHTOSJ4UNBOSE-SPIE /13,/003 " Bne - 4as:

Y

44UNBGEE= o003

szepr 130 (5) —— <3000>

o g

S 21
)

aunaes [ATUDHIH (LMD LEIEPIET BTG 200 ¥T CFad=seuided fe=gied 3ecuss[] Tivezseayane

AN TOPSSINBGSE=2PO2E (G203 GYANE 25 T

£ zem aeaer
@ Tiaik o (2)

9307 [IETI0BHINZ STANAAGLNE

B°T/dLLH UaHafy3neD,

Fesday 1sod ()

d3 UL

“,553336 U0 SIUsLToCde

! NaooEsEs PIWNl TIERALOSLPT aZHds!

{

}
B T/diik 08T (5)

Janias
uoTIEZTIONINE

9T TAMANT /203 BRI 2

#1de /a3 - sassar,

Figure 5.2

OAuth2 and OpenlID Connect: The Professional Guide 100

2. Authorization Response
So now you'll have all the usual back-and-forth steps you expect to
complete the authentication process, including the consent step and
whatever MFA might come into play. What's important from a protocol
perspective is that we get back our usual response, in which you can
see the 302 HTTP status code on the location that we specified.

This is our redirect URI, and we are getting an authorization code,
exactly what we asked for. We also have the usual set-cookie as a
result of successful authentication.

3. Redirect to the Application
Now comes the original part, when the browser executes
the 302 redirection. Since the protocol handle is id102, this is
actually a communication within the device. The browser gives
back control to the application passing the code. In this step,
even if someone is in the middle and steals the code, it doesn't
matter because they can't use it. I'll show you why shortly.

4. Exchange the Authorization Code
Now that we have the authorization code in our application, we
can turn around and finally go to the token endpoint. It's a classic
redemption flow with the only caveat that we don't provide a
secret. Remember that a public client does not have a secret.

(4) POST https://flosser.auth@.com/oauth/token HTTR/2.8

audience=httpsk3AX2F¥2Fflosser. com¥2Fapi¥2F

&client id=IrbblpeZ]RMewg8suTx@8PcmHlporjéyZ

&redirect uri=id1@2%3A%2F%2Fflosser.auth®. comX2Fch
&grant_type=authorization_code
&code_verifier=NmFCZzFkSHI1a@ReM3INNSkVuY1lFZNzZRBOEELREJZVES
&code=35beNnPFeolksUQp

Figure 6.3

It's the usual POST to the token endpoint. We have the audience
parameter and the client_id. We don't have a secret but have the
redirect_uri parameter, which, again, we specify for security purposes.
As you can see, it's still the one with the id102 protocol handle.

OAuth2 and OpenlID Connect: The Professional Guide 101

The grant_type is authorization_code, and we provide the
authorization code as the last parameter in the URL.

A new element here is the code_verifier, which proves to

the authorization server that our application is still the same
requester of the authorization code. Anyone who stole the
token while it was passing from the system browser to the app
would not be able to produce this code. That's pretty handy.

5. Get the Tokens
As a response, we get back our usual access token, refresh
token, ID token, the list of consented scopes, the expires_in
value - because we can't look inside the access token - and the
token_type: all ordinary administration. Pretty straightforward.

6. Call the API
Now, our application has the tokens that allow it to work as
expected. It has the ID token with the user claims and the access
token to call the API in the same way we learned in Chapter 4.

The Problem with Refresh Tokens

If our native application receives a refresh token, it will be using it in the
same way as confidential clients. However, unlike confidential clients,
our application doesn't provide a secret because it doesn't have any. Of
course, this is a problem because refresh tokens from public clients can
just be used as-is. So those are little magic things that will keep minting
tokens without any need for doing any excess stuff.

Before | go too deep into this, let me show you how the Refresh Token
grant works in this case. Say that | want to get a new access token. | send
the following message to the token endpoint:

(1) POST https://flosser.auth@.com/oauth/token HTTP/1.1
client id=xHMISSzgwYBPnaztfSQflbFAwxxHUMS
&refresh token=zisHo7hCAqOQzGDST1GmF_E10EVAOVxS5GY0zIBh uZrA
&grant type=refresh_token
&redirect_uri=idle2://flosser.auth@.com/cb

Figure 5.4

OAuth2 and OpenlID Connect: The Professional Guide 102

There is nothing notable here. It's exactly the same stuff that we had
earlier, with the difference that we don't have a secret. So here, there is
no code, no PKCE. It's just the same redemption of a refresh token but
without a secret.

This is clearly a problem, and in fact, lots of people are very nervous about
it, although it's the mainstream. That's what everyone does. So, as an
industry, we are looking to order solutions that do not necessarily entail
creating a confidential client on the native devices. It's more about finding
ways to bind the tokens to the channels used when receiving them.

Token Binding

There have been a couple of efforts in the industry. One is called Token
Binding, and it's a set of specifications used to extend the HTTPS stack
and browsers' ability to surface properties of HTTP stacks that can be
embedded in tokens.

When you use tokens, the authorization server and the resource server
can actually verify that the tokens are being used in the same channel
they were requested for. If this doesn't happen, that basically means that
someone stole that token and they are trying to use it from elsewhere. So
you can prevent this from happening by refusing to serve the request.

This was a good idea, but it required many planets to align. And the
planets didn't align: Apple didn't announce support for this; Chrome had
support for it, but then Google announced it would stop supporting Token
Binding. In the end, the specification was retired.

Mutual TLS Authentication

Another specification is the alternative to the Token Binding flow: Mutual
TLS Client Authentication. This specification has the great advantage of

using capabilities that are already present on browsers and operating
systems, such as client certificates.

An authorization server can require the application to use a client
certificate to authenticate and get the tokens. This authentication occurs
at the network (TLS) level. Then, the same certificate can be required
when you use the obtained tokens. As a result, if you take one of those
tokens and try to use it from a device that doesn't have that certificate,
you won't be able to.

OAuth2 and OpenlID Connect: The Professional Guide 103

Application Level Demonstration of Proof of Possession (DPoP)

Given that Token Binding did not become a generally available mechanism,
the OAuth 2.0 Demonstrating Proof of Possession (DPoP), now RFC 9449,
was introduced. Given the application level constraints, this specification
allows clients capable of generating non-extractable asymmetric keys

to demonstrate their proof of possession, which in turn allows the
authorization server to bind tokens to them. Similarly to Mutual TLS, the
tokens bound with DPoP cannot be used unless also having access to
the keys they’re bound to. This mechanism is not as strong as Mutual TLS
but does not come with deployment hardships and browser UX hurdles
stemming from TLS Certificate system popups that can plague Mutual
TLS setups.

A Final Note

A final thing | want to mention about refresh tokens in the context of native
clients is to reinforce what | said earlier. The refresh tokens are the artifact
that tracks your ability to get tokens. They help you give the user a smooth
session experience without interruptions and you typically have to follow all
the session management steps to also ensure security. For example, when
you want to terminate a session, you typically want to delete the refresh
tokens from your cache as well.

The Resource Owner Grant

Let's talk about another controversial grant you might encounter when you
want to create native applications: the Resource Owner Password grant.
This is pretty much what you can think of: a grant that allows you to take

a user's username and password and programmatically post them to the
authorization server to get a token. Crude but effective.

The Bad Part

In the context of delegated authorization, the direct usage of credentials
is dangerous. It doesn't give you any of the expressive power you normally
have with all the mechanisms that we visited so far. In general, it just
encourages the user to do the wrong thing. It trains users to enter their
credentials in interfaces other than the ones that own those credentials.
Typically, people want to do this when they want to have their own Ul
instead of a web page.

OAuth2 and OpenlID Connect: The Professional Guide 104

But in general, whenever you trade with raw credentials, especially in
the native application space, we use an external browser instead of an
embedded browser. Every time you use raw credentials, you put yourself
in potential jeopardy. In fact, the Resource Owner Password grant is
deprecated in the upcoming OAuth 2.1 specification.

Apart from the security aspect, here is a partial list of shortcomings when
you directly use a username and password:

¢ You cannot prompt for consent
So, any resource gated to user consent cannot be used unless you
take prior steps to register with consent. This is bad both from the
mechanics and the optics: the user is not aware of what's going on or
how those credentials will be used.

¢ You cannot do multi-factor authentication
unless you embed the capability of doing so in your client application.
That's what happened years ago before we introduced the use of a
browser in the context of authentication. | assure you, it wasn't fun
at all. Whenever you want to change even the tiniest thing, you have
to redistribute your code to all your clients, some of which might only
occasionally be connected. So you'll have people who call that up for
the first time and discover it no longer works for years. It's really bad.

¢ You can't do step-up authentication
If you have different resources that require different levels of
authentication, you can't really do that. You can only send a username
and password at login time.

¢ You can't use multiple identity providers
Consider when, during the authentication ceremony, you get prompted
with a list of identity providers from which you can choose. So maybe
there is a button "Sign-in with Facebook" and a button "Sign-in with
Google" or a field for entering your corporate email that will redirect
you to your corporate identity provider. Your application can't do this if
you are using the Resource Owner Password grant. Even if there was
a way for you to expand or contract this list, there is no way for you to
connect to the providers that don't allow you to programmatically send
credentials, which is the case for most of the serious ones.

OAuth2 and OpenlID Connect: The Professional Guide 105

* Finally, there is no single sign-on. If | have a cookie somewhere that
says I'm already authenticated with Facebook, and | click a little button
that says, "Sign-in with Facebook", I'll just be bounced back and forth.
| will take advantage of the fact that | already have a session-tracking
cookie and will not have to enter any credentials.

As you know, having native fields for usernames and passwords is very
bad in the OAuth and OIDC context. However, as an Identity professional,
you will face many arguments in favor of the Resource Owner Password
flow and against other browser-based flows.

You must expect the non-initiated to ask for the Password flow often and
with emphasis, mainly because it's simple. They might feel overwhelmed
by all these million parts, browsers popping out, redirects, and so on.
Simplicity is a tempting aspect of this flow.

In addition, you can often hear concerns about control over the user
experience. Luckily, in AuthO, we don't have this problem because
developers have control over the user experience of the login page.

People might have concerns about performance because of redirects.
They might think about redirects and say, "Wow, it's going to be a hit in
performance". Usually, a good idea is to actually test and show people that
this is not the case. It's normally pretty straightforward.

But there is at least one case in which, in my career, | never managed to
find a way to avoid this flow: in pure legacy scenarios.

Imagine that you have an application that already gathers usernames and
passwords, and you cannot touch its code. Assume that changing the
code for the authentication part is very difficult. That codebase may be
old; maybe the person owning the code is no longer with the company.

Or think of scenarios where you have a script with a connection string. If
the connection string only has a username and password, and you should
use this script as is, then you need to bridge some of the gap.

So, for pure legacy scenarios and cases where there is a plan for moving
forward and moving off of sheer username and password, | usually tend
not to complain too much if people ask me for a review for that scenario.
But it's the only scenario. For all the other scenarios, | will always insist on
using some finesse because this flow is just a problem waiting to happen.

OAuth2 and OpenlID Connect: The Professional Guide

The Flow Description

106

Now, after all those dire warnings, | will show you how the Resource Owner

Password flow works anyway so that if you have to do this, you know what

to deal with. Following the diagram in Figure 5.5, we have a scenario with

an application and an API. The diagram uses the icon for the desktop

app because, as | said, this flow is only remotely acceptable for legacy

applications, and you cannot have legacy applications on the phone since
the phone is just too new.

1.

Send the user credentials

As | mentioned, you have some mechanism for gathering
usernames and passwords, probably some old-fashioned
mechanism. Then you'll just turn around and send those credentials
to the token endpoint, and here is how the message looks:

(1) POST https://flosser.auth®.com/oauth/token HTTP/2.8
{
"client _id": "4z43Vk3MNhaleQn2dPejHRbCueQ@3yXd",
"audience": "https://flosser.com/api/"”,
"grant_type": "password",

"username": "jose+123@auth®.com",
"password": "mypassmypass",
"scope": "read:appointments®
¥
Figure 5.5

We have the usual client_id and audience parameters. There is the
scope requested by the app and the grant_type with its value

set to simply "password". Then, there is the user's username and
password. Remember, we are calling the token endpoint.

Get the response
As aresponse, the app gets the usual data: the access
token, the expires_in value, and the token_type. That's it.

Call the API
Of course, | can grab the token and use it to call
the API. So, it's just your basic normal flow.

107

| Guide

lonal

The Profess

OAuth2 and OpenlID Connect

Id¥
I

Has
J8Jeaq ZYINYQ

0 (G L)

JEag U

os)

dde doijsap
-

Has zyanyo

LsusnuTodde : pea,,
* sseddwssediu,
fwaaguinedzT+asal,

L paomssed, d
L FTHR e JAEERTH/ S sdIN.,
* L PRAERbaNIAEHEAdPTUDOLRUNMEALPZ . .

wdIEIR,
*Beraa
*uBo1[" "]ancka

anpyraeou ‘qaddiusou MeTTogou Cxaputou Rn-SiSn0d-K FRBEFTLST=ATR-RTW A3TANIR5 - Ga0dsura)-33TA05
Aora-ou eudead >p=yaayr-sad g=yIAYR-1500 TAIEPTTEAS -IENE CEYINI-OU “BE0I5-0U TAIRATJD IT0J3UDI-AYIR
OBEBELLEST IAFAI-ITWITAINI-E 6T THUTUTHISI-JTOIIAITI-X 2BE | ITWTT-ITUTTH30I-X

479307 6+E6TIFLERIF SPTASANDII-gyINe-* 26L8 SYIIUAT-auawoa ues[uoTieaTTdde saddy-quauoas

1KD STIET:PT BTEZ 835 92 ‘uow :aep

@°'ZT/dLLH e8T (T)

43 uexoy

Ad@andas
UOFIRZFJOUINE
| — -]
=/

Ol

Figure 5.6

OAuth2 and OpenlID Connect: The Professional Guide 108

Other Grants for Native Apps

There are other grants somehow related to native applications that I'm not
covering in this book. However, they deserve at least a mention.

The Device Authorization Grant

One of these grants is the Device Authorization grant. It applies to

scenarios involving devices like smart TVs, media consoles, or other

loT devices. These are devices with a limited display and no browser.

A server in a server farm is another example where this grant can be
applied. Typically, you have a CLI that runs on a server with no graphical
capabilities, but you still want to call APIs. You learned that in a delegated
authorization scenario, you need a browser. How can you authenticate and
authorize an application that runs in an environment without a browser?

For this purpose, the Device Authorization flow uses a trick. It shows

you a code in the text-based interface and instructs you to pull out a
different device with a browser and navigate to a given address. Once
there, enter that code on the page loaded in your browser. Once you do
this, you'll be driven through the classic experience you need to do for
authentication: MFA, consent, and anything else the authorization server
deems appropriate.

The client running on the text-only device will constantly poll the
authorization server. As soon as you give consent, this polling will be
successful, and the application will receive the tokens it needs. It's really
straightforward and super handy.

The Token Exchange Grant

The second flow I'd like to mention is the Token Exchange grant. This

grant allows you to exchange a token for another. In a nutshell, consider a
scenario where a client calls an API, and this APl needs to turn around and
call another API, carrying forth the identity of the original caller.

The first APl can use the incoming access token as a grant to exchange it
for an access token to call the other API.

OAuth2 and OpenlID Connect: The Professional Guide 109

Extension Grants

The Token Exchange grant is actually a specific implementation of the
extension grant mechanism provided by the OAuth 2.0 specification.

This mechanism allows you to define a custom grant when the existing
standard grants do not apply to a specific scenario.

Another example of an extension grant type is the SAML Profile for OAuth

2.0. This grant is similar to the Token Exchange grant: the application
already has a SAML token obtained using a legacy scenario and wants
to turn it into an OAuth 2.0 access token. While in the case of the Token
Exchange grant, you remain in the same OAuth context, the SAML profile
grant enables interoperability between different authorization contexts.

These are the grants that you might experience in the context of native
clients. However, you can also use them for confidential clients, especially
the Token Exchange grant.

So that's it for native clients, i.e., desktop and mobile clients. Next, we'll
explore the world of Single-Page Applications.

Single Page
Applications

OAuth2 and OpenlID Connect: The Professional Guide 10

What are Single Page Applications or SPAs? | am sure that most of you
know what we are talking about, but let's try to better describe this type of
web application.

The Nature of Single Page Applications

You use information-dense web-based Uls like Gmail or Outlook Web
Access and similar. These are web pages that present a lot of information
at the same time. The natural interaction that the user has with this kind
of application requires updating just parts of the interface. If you would
be implementing that interaction model using classic postback, you'd be
doing a lot of useless work.

Imagine a typical layout with a list of messages on the left and a panel
showing the content of a selected message on the right. Whenever |
click a different message, all | want is for the selection to move to where |
clicked and for the content of the preview panel to update itself.

That's it.

If | were using a classic postback-based web application, I'd go back to
the server and ask for the entire page again: the list of messages, all the
visual elements around it, and icons. Sure, | can do caching, and | have
tricks that can make things better, but that would be a lot of traffic and
also pretty bad performance.

In most cases, all | do with a Single Page Application is get a single page
from the server at the beginning. This page contains the basic visual
elements and, together with that, a lot of JavaScript, which can reach out
to the server and ask only for the data. JavaScript takes this data and uses
it to reflect changes in the Ul. It programmatically injects the new data so
that it gets displayed. So | don't have to get an entire page every time, just
the needed part. That's super handy. Without that, we would not have the
modern web experiences that we enjoy today.

Security Challenges of Single Page Applications

From a security perspective, this is an interesting conundrum. It's a web
page that lives inside the browser. It's subject to all the classic attacks

to which something inside a browser is subject. Since it runs inside

a browser, it's isolated from the device in itself. At the same time, the
interaction | just described is largely based on the client reaching out and
calling an API.

OAuth2 and OpenlID Connect: The Professional Guide il

Sounds familiar? Yes. That's pretty much the same stuff we have seen
with a native client. Now we have this interesting challenge: How do we
secure this thing? How do we deal with identity in this case?

We typically treat this type of application somewhat as a native client. It
gets tokens and uses them to call the protected API. However, we'll see
how this approach opens up some challenges that are not present in the
native client case.

Where we keep the APls makes a huge difference. If the web APl is in

the same domain from where we are getting the single page of the
application, then you can think of securing the traffic in whatever way we
have done in the past for websites. So cookies are viable, but the moment
you need to start making API calls outside of your domain, then cookies
are no longer viable because they are tied to a domain. Your browser
can't just attach cookies to JavaScript calls to other domains. So, the
token-based approach is the most generic, the one you can use in every
situation. It's also the one with the most moving parts and, consequently,
the most brittle. So we'll see what that means in terms of trade-offs.

Single Page Applications and the Implicit Grant

In the early days of OAuth, the traditional way to secure Single Page
Applications was through the Implicit Grant. Now, you have heard the
word "implicit" earlier in the context of signing in for web applications,
specifically in the particular style of the Implicit flow with Form Post.

From the OAuth point of view, a grant is implicit when you are getting a
token directly from the authorization endpoint instead of having to trade
something with the token endpoint. That's the formal definition of implicit.

Interestingly, when you talk about implicit, the most salient scenario that
people will think of, like the classic use, the default meaning in literature, is
what I'm going to explain right now in relation to Single Page Applications,
that is to say, using the Implicit grant and delivering the tokens in a URI
fragment (the part that comes after the pound sign (#) symbol). This
scenario is fraught with issues, but other scenarios are perfectly fine,
such as the one in which we use the Form Post and follow all of the
necessary ID token validation steps.

The Implicit Grant used for Single Page apps gives the entire Implicit
Grant family a bad name. In fact, the bad name is only well deserved in

OAuth2 and OpenlID Connect: The Professional Guide 12

the context of Single Page apps, whereas all the things we did earlier for
the web sign-on on the front channel are perfectly fine, assuming the
application is only getting an ID token and validating it properly.

So don't be worried, and be prepared to explain every time you use the
Implicit Grant with Form Post that it's not that Implicit.

Let me give you a bit more concrete indications about what | mean by a
bad name. As with any Implicit Grant, we use web page redirects to ask
and obtain tokens directly from the authorization endpoint. In the case

of the Implicit Grant with Form Post, the token travels in the body of the
page. In the case of Implicit Grant with Fragment, the token is returned as a
fragment element in the redirect URL.

So, having the token in the body of the page has slightly fewer security
risks than placing it in the URL. The thing is that although no expert in

the identity space ever liked this flow, it was the only game in town, since
browsers could not support cross-domain POST requests at the time. So
pretty much all the Single Page Applications used the Implicit flow and the
fragment approach. We'll see that things changed pretty fast.

The complications here are, to some extent, intrinsic to the fact that we
live inside a browser, i.e., an open platform, and the more open a platform
is, the bigger the attack surface. There are all sorts of ways in which things
can go wrong. For example, if you save your tokens in your local storage,

in the case of a cross-site scripting attack that dumps your entire local
storage content, your tokens are compromised. If you receive the tokens
within your URL, this URL will end up in the browser history but also in the
referral headers. So, there are more ways of leaking those tokens.

To mitigate the effect of a leaked token, we can reduce its validity time.
This entails the need to renew it, but using an artifact that's powerful as
a refresh token within the browser, as we do for native clients, can also
be a problem. A native client living on a local resource can have some
degree of protection, but we cannot afford to have it within a browser.
So, it is not advisable to use refresh tokens within the browser unless you
do token rotation.

In conclusion, the Implicit flow has a number of complications, which
ultimately led the OAuth working group to suggest that we abandon it and
do something else.

OAuth2 and OpenlID Connect: The Professional Guide 13

SPAs and the Authorization Code with PKCE Flow

As | mentioned, the OAuth working group found that the risks we

have when using the Implicit Grant to get access tokens outweigh its
convenience. The alternatives to this flow rely on features that weren't
available across the board when the Implicit flow was first devised, such
as Cross-0Origin Resource Sharing (CORS), for example.

The idea is that we can actually use the exact same flow that |
described for native clients for Single Page Applications as well. In this
case, you use JavaScript to implement the Authorization Code flow with
PKCE. Take a look at Figure 6.1, which shows the exact same flow of a
native application.

As usual, you use the browser to get the authorization code from the
authorization endpoint. Once you have this code, you can use JavaScript
to hit the token endpoint, and then you will get an access token from that
channel. That channel will not expose the access token to the browser
history and will not expose it in headers. So, it's way easier to protect than
all the mess you must do when you use redirects to obtain tokens directly
in the URI.

Note that here we can use the classic HTTPS scheme instead of the
custom protocol handle we used for native applications.

This flow can also use refresh tokens as long as you use one of the
mechanisms | suggested earlier to protect refresh tokens.

One is the refresh token rotation: when you use a refresh token, it's no
longer valid. You get a new refresh token to use from that moment on.
This mechanism is deemed enough to protect refresh tokens in the
browser. The alternative mechanism is to use a standard constraint
mechanism like DPoP, that | described at the end of the chapter about

native clients.

114

OAuth2 and OpenlID Connect: The Professional Guide

Tdv La._nw_u_ TyInyo

I

Box[" -Ivmacke sasres uopieziaoyane

BEFAIIN TOU T IS TN 430 (9)

@.L

N ORI NRASE 2702
| eun GhNs Y102 44UNBGS E @03 /G2 fw0" guane JessaTd/ /5013y 139 [

<3000>

aunsag ‘ATUOHIIH *IMD [T:EPTET FIBT 300 T *TJ4=saurdid {feyied ‘gmgang]] LvERse@yIne tatynod-ias
SI35BELBSTTEARASEIRG. PTaTanbas-guIne-x
57094 4UNBaSE 7apE0; £33 /D3 - UANE - JASOT4// 5033y CUDFIEIAT

@°T/dLIH 788 (T)

dbnsaTaa seunaRsEmapoTy
PINZCIHTIS0GHIHTA LA AN B BR T THS A2 Z 24U 13T 4T 430 9pag
aRa3 uaTaeE puoyanesod 3 due ady

A2 4TERDS QYN ISR TRATIVERZ T

STR T ST I9SSOTS TR ARSI W= T PR

°Z/dLIK Y03 /4INED 00" QUIRE IBSSATY/ 1501 1504 (¥)

b

¢ 09268 s P I UNL E 16804051 PT c~x__ﬂ_uin.§n=u

L),

az/dl ez (5)

-O—

FEYYEEY
UoTIEZTIOYINE

d3 usHoL

—@— <3000> ———

s5Ts=pouan sBuar Eys opoag
P oAb 79T R NEHZNL Ty sBa |

93/403-U3NE - J955OT4//23EAIY =T

SjuauuTodde pra) 53538 AUTT 440 ATTJ0JE P

o

Jvdejuas - sassarss) sdau

aTTioy3ne /uga ‘gyIne sassoTs/ /1sdany 130 (1)

Figure 6.1

OAuth2 and OpenlID Connect: The Professional Guide 15

SPAs with a Backend

We use tokens to secure Single Page Applications. This will allow us to call
APIs no matter where the APIs live, whether it's our backend or elsewhere.
We might have no backend at all and call APIs exposed by others or by
ourselves but on a different domain, such as in a serverless environment.
However, having a backend of your own is pretty common. For example,

if you're serving your SPA from some kind of active page technology like
Node.js or ASP.NET, then you have a backend.

Let’s explore how we can take advantage of having a backend available to
our SPA.

SPA and API on the same domain

If you expose your API for the exclusive use of your presentation layer in
JavaScript, then technically, nothing prevents you from using the same
technique we use for web sign-on. From a browser perspective, it doesn't
matter whether the thing you are trying to access on your web server is

a page meant to be seen by a human or if it's an APl endpoint used to
retrieve data. It's just an HTTP verb hitting a certain domain. If a cookie

for the server's domain exists on the browser, it will just attach it and

send it along with the request. On the backend, if a middleware sits in
front of those routes, it also doesn't care whether the request is trying to
access a page or an APl endpoint. As a result, as long as we are in that
particular scenario, the backend does the same stuff | described for the
web sign-on at the very beginning. It does that when the SPA is requested
the very first time, too. From that moment on, you can just use cookies to
protect your API calls. The same middleware that triggered this sign-in on
the first page will enforce the presence of a cookie, and you'll use it for
authenticating.

Having the API in the same domain as the SPA allows me to simplify
things. I'll probably do the Implicit flow with Form Post to get an ID token
and exchange the token for a cookie. Alternatively, if | want to do server-
side flows, | can do the Authorization Code flow and redeem the code
for an ID token. All the techniques we described for web sign-on can be
applied in this context.

| only have two challenges to think of in this scenario.
Consider that the authentication flow relies on redirects. Say that your

OAuth2 and OpenlID Connect: The Professional Guide 16

cookie expires at a certain point, and you are making an HTTP request
from your SPA. You will get back a 302 HTTP status code because, from
the middleware perspective, you are trying to access this page and are
not authenticated. So, the middleware will send you to the authorization
endpoint. But an HTTP request from a SPA doesn't really know what to

do with a 302 status code. You need an error management logic that
intercepts this 302 status code and shows the user some affordance, like,
"Click here to reauthenticate."

| don't recommend automatically redirecting the user because if they
are in the middle of filling out a form and you ship them away, you are
not offering a good user experience. You could show a popup window,
but popups are controversial because sometimes they are blocked. So,
in general, my advice is to show a little toaster that says you've got to
re-authenticate.

The other challenge is that your JavaScript-based application will want

to access the user information sooner or later. To do so, you expect your
JavaScript to be able to go somewhere and find out the user's first name,
email, etc. All stuff that you would normally get if you'd get the ID token.
But in this scenario, the ID token was received by your backend, and your
SPA works with cookies. Cookies are purposefully opaque to the client, so
you cannot extract information from there.

You need to add a route to your API that allows the JavaScript application
to query the tokens' content and, in general, obtain the user information
that the JavaScript layer requires.

The Token-Mediating Backend Pattern

Having a backend for our SPA allows us to do all the flows we have seen
for calling an API from a web page. For example, as a confidential client,
your backend can obtain tokens using the Authorization Code flow. Can
we leverage this scenario to call third-party APIs, i.e., APIs that require an
access token? The answer is yes, you can do it. One way to achieve this is
to use the Token-Mediating Backend pattern.

You have your JavaScript application that wants to call an APl and your
backend. Your users have an interactive web flow, which will lead to
performing the classic Authorization Code flow, redeeming the code, and
obtaining an access token and refresh token. Then you can just take that

OAuth2 and OpenlID Connect: The Professional Guide 17

access token and send it back to your JavaScript app. Your SPA can use
that token to call APIs from JavaScript.

As in the previous case, we are not relying on any part of the OAuth
flow happening on the client. The client doesn't really have any code for
obtaining tokens.

This approach leverages the security profile of a confidential client - the
backend - to get tokens from the authorization server. This relieves your
SPA from implementing the authorization flow with all the potential issues.
However, this comes at the cost of a significant complication on the server
side, which, in addition to obtaining the tokens, must also take care of
making the access token available to the client.

Notice that only the access token is sent back to the SPA. The refresh
token is kept on the backend and associated with the user’s session.
When the API rejects the access token, the SPA contacts the backend to
request a new access token. Then the backend uses the refresh token
associated with the current user to request a new access token and send
it back to the SPA. In other words, the SPA will never have to directly deal
with refresh tokens.

By delegating obtaining tokens to the backend, you reduce the attack
surface of the SPA. However, the JS application still remains exposed

to attacks that allow an attacker to steal the access token and call the
remote API. In this regard, following best practices to mitigate these
risks is advisable, such as avoiding storing tokens locally in the browser.
For more details on the pattern and its security considerations, see the
OAuth 2.0 specs.

The Backend for Frontend Pattern

There is another way to take advantage of the backend's potential and
lighten a SPA's security burden: delegating the responsibility of interacting
with the authorization server and managing the tokens entirely to the
backend. The pattern we are going to explore is known as Backend for
Frontend (BFF) and is essentially based on attributing the role of the
intermediary to the backend both towards the authorization server and
third-party APlIs.

The backend takes care of interacting with the authorization server as
a confidential client: it redirects the user to the authorization endpoint

OAuth2 and OpenlID Connect: The Professional Guide

for authentication, obtains the authorization code, exchanges it for ID,
access, and refresh tokens, and behaves as a normal confidential client.

As in the previous cases, the backend tracks the user's authenticated
session with a cookie, but unlike the Token-Mediating Backend, it does
not forward the tokens to the JavaScript application. It stores them on
the server and exposes some endpoints with which the SPA can interact
for all its needs. For example, it exposes an endpoint that provides user
profile data, which the backend extracts from the ID token. Furthermore,
the backend acts as a proxy between the SPA and the API. All SPA calls
directed to the API pass through the backend, which exposes one or
more endpoints for this purpose. When the backend receives a request
to these endpoints, it checks that it contains the session cookie and
forwards the request to the API after including the access token. Once
the response is received from the API, the backend forwards it to the
SPA, and that's it.

This pattern offers the security of a confidential client to a public client
like the SPA. The JavaScript application never touches the tokens, so
there is no risk of them being stolen at the SPA level. As the specs say,
“Because of the nature of the BFF architecture pattern, it offers strong
security guarantees. Using a BFF also ensures that the application's
attack surface does not increase by using OAuth. The only viable attack
pattern is hijacking the client application in the user's browser, a problem
inherent to web applications.”

The price to pay for improving the security of the SPA with this
architecture is the increased complexity of implementing the proxy
mechanism between the JavaScript application calls and the remote
API. This, among other things, affects call performance, which must,
therefore, be taken into account when considering adopting this pattern.

To learn more about the threats, attack consequences, security
considerations, and best practices for SPAs, you can check out the
OAuth 2.0 for Browser-Based Applications document.

18

OAuth2 and OpenlID Connect: The Professional Guide

Conc|usion We have reached the end of this book, but this is not the end of the
journey for an aspiring Identity professional. The topics covered in this
book are just the foundation of OAuth 2.0 and OpenlID Connect-based
Identity.

We have not covered several topics that are part of the OAuth
framework. We have simply mentioned some, such as the Device
Authorization and the Token Exchange grant or JWT Profile for Access

Tokens; we have described other concepts at a high level without
going into detail, as we did for DPoP and MTLS; and we haven't even

mentioned other topics, such as Dynamic Client Registration, Token

Revocation, and many other extensions.

Furthermore, recently, we have seen a demand for ever greater security,
especially in areas such as finance, insurance, healthcare, and utilities.
In these areas, security and privacy are of fundamental importance. For
this reason, the OAuth and OIDC community has finalized a series of
extensions that strengthen these protocols for use in critical scenarios.
Part of these efforts feed into the FAPI specifications.

However, beyond the mere concepts explained here, | hope you got the
core spirit of OAuth and OpenlID Connect, the motivation behind their
birth, the reason why things are how they are, and the motivation for
their evolution to fulfill the identity security needs of the industry. With
this foundation, | hope you can design and implement more robust
applications and choose the most appropriate solution for the needs of
your architectural scenario.

These materials and any recommendations within are not legal, privacy, security, compliance, or business advice. These materials
are intended for general informational purposes only and may not reflect the most current security, privacy, and legal developments
nor all relevant issues. You are responsible for obtaining legal, security, privacy, compliance, or business advice from your own lawyer
or other professional advisor and should not rely on the recommendations herein. Okta is not liable to you for any loss or damages
that may result from your implementation of any recommendations in these materials. Okta makes no representations, warranties,

or other assurances regarding the content of these materials. Information regarding Okta's contractual assurances to its customers
can be found at okta.com/agreements.

19

