STANDBY BATTERY
Vented Cell Installation & Operating Instructions
SAFETY PRECAUTIONS
Only authorized and trained personnel familiar with standby battery installation, preparation, charging and maintenance should be permitted access to the battery.

WARNING
SHOCK HAZARD - DO NOT TOUCH UN-INSULATED BATTERY, CONNECTORS OR TERMINALS. BEFORE TOUCHING THE BATTERY, BE SURE TO DISCHARGE STATIC ELECTRICITY FROM TOOLS AND TECHNICIAN BY TOUCHING A GROUNDED SURFACE IN THE VICINITY OF THE BATTERIES BUT AWAY FROM THE CELLS AND FLAME ARRESTORS.

GASES PRODUCED BY THIS BATTERY ARE EXPLOSIVE. PROTECT EYES WHEN AROUND BATTERY. PROVIDE ADEQUATE VENTILATION SO HYDROGEN GAS ACCUMULATION IN THE BATTERY AREA DOES NOT EXCEED TWO PERCENT BY VOLUME (CONSULT LOCAL CODES). DO NOT SMOKE, USE OPEN FLAME, OR CREATE SPARKS IN THE VICINITY OF A BATTERY.

LEAD ACID CELLS CONTAIN DILUTE SULFURIC ACID. AVOID CONTACT WITH EYES, SKIN AND CLOTHING. SHOULD CONTACT OCCUR, REMOVE CONTAMINATED CLOTHING IMMEDIATELY AND FLUSH AFFECTED BODY AREAS IMMEDIATELY AND THOROUGHLY WITH WATER. WASH CLOTHING THOROUGHLY BEFORE REUSE. DO NOT ATTEMPT TO CLEAN AND REUSE CONTAMINATED SHOES. IF ACID SHOULD CONTACT THE EYE, FLUSH IMMEDIATELY WITH LARGE AMOUNTS OF WATER FOR AT LEAST 15 MINUTES. ALWAYS CONSULT A PHYSICIAN IN CASES OF ACID CONTACT WITH THE EYES.
IMPORTANT: FOLLOW MANUFACTURER’S PUBLISHED INSTRUCTIONS WHEN INSTALLING, CHARGING AND SERVICING BATTERIES.

C&D TECHNOLOGIES, INC.
1400 Union Meeting Road P.O. Box 3053 | Blue Bell, PA | 19422-0858
(800) 543-8630 | (215) 619-2700 | Fax (215) 619-7899
customersvc@cdtechno.com | www.cdtechno.com/contact/contact.html

For technical assistance contact the Technical Services Department:
(800) 543-8630 | Fax (215) 619-7842
powercomfswarranty@cdtechno.com | www.cdtechno.com/contact/contact.html

WARRANTY NOTICE
This instruction manual is not a warranty. Each standby battery is sold subject to a limited warranty, which is in place of all other warranties, express or implied (including the warranties of merchantability or fitness for a particular purpose) and which limits a purchaser’s (user’s) remedy to the repair or replacement of a defective battery or parts thereof. The terms of the limited warranty are incorporated herein and are available upon written request from:

C&D TECHNOLOGIES, INC.
Global Corporate Headquarters 200 Precision Rd. Horsham, PA 19044 USA
C&D Technologies, Canada, Inc.
6665 Millcreek Dr. | Unit 3 | Mississauga, ON | L5N 5M4
INTRODUCTION
The batteries referenced in this document are C&D Technologies, Inc. (C&D) stationary vented lead acid (VLA), with sulfuric acid electrolyte, and pasted plate lead alloy electrodes. These batteries are designed for standby applications requiring a dc power source.

NOTE: Please refer to RS02208 for inert gas/dry charge battery Installation and Operating Instructions.

C&D offers three major battery design options - long duration, short duration, and general purpose.

• Long duration batteries are designed for applications where load currents are relatively small but must be supplied for many hours, typically eight hours, and are typically used for Telecom & Solar applications.

• Short duration batteries are specifically designed to supply very high currents for a relatively short period of time, typically 15 minutes, and are typically used for UPS applications.

• General purpose batteries employ design features that optimize their use in applications requiring both short duration, high current loads and longer duration, low current loads, typically 30 minutes to 8 hours, and are generally used for Utility applications.

Specifications are subject to change without notice. Contact your nearest C&D sales office for the latest specifications. All statements, information, and data provided herein are believed to be accurate and reliable but are presented without guarantee, warranty, or responsibility of any kind, express or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement, and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated, or that other measures may not be required.

These instructions assume a certain level of competence by the installer/user. The following recommended practices and codes contain relevant information, and should be consulted for safe handling, installation, testing and maintaining of standby batteries. Applicable state and local codes must be followed.

IEEE Std 484 (latest revision) “Recommended Practice for Installation Design and Installation of Vented Lead Acid Batteries for Stationary Applications”

IEEE Std 485 (latest revision) “Recommended Practice for Sizing Lead Acid Batteries for Stationary Applications”

IEEE Std 450 (latest revision) “Recommended Practice for Maintenance, Testing and Replacement of Vented Lead Acid Batteries for Stationary Application”

IEEE Std 1375 (latest revision) “Guide for Protection of Stationary Battery Systems”

Copies may be purchased at www.ieee.org.

NESC, National Electric Safety Code, (latest revision)

Federal Codes:
29CFR1926.441 “Batteries and Battery Charging”
29CFR1910.151(c) “Medical Services and First Aid”
29CFR1910.268(b) “Telecommunications”
29CFR1910.305(j) “Wiring Methods, Components and Equipment”
STD 1-8.2(e) “OSHA Standing Directive”

IBC International Building Code

Before handling cells or storing cells for future installation, take time to read this manual. It contains information that could avoid irreparable damage to the battery.

Please refer to our website for the latest version of the manual: www.cdtechno.com
Table of Contents

Part 1 - Receiving and Installation

Section 1 - Receiving

- 1.1 General
- 1.2 Damage and Shortage Situations
- 1.3 Cell Type Identification

Section 2 - Storage and Shelf Life

- 2.1 Storing Charged VLA Batteries

Part 2 - Charging and Operation of Battery

Section 1 - Charging Battery

- 1.1 Initial Charge
- 1.2 Float Charge

Section 2 - Watering Cells and Adjusting Electrolyte Level

Section 3 - Cleaning Cells and Battery Rack(s)

Section 4 - Battery Operation

- 4.1 Float Service
- 4.2 Equalize Charge
- 4.3 Performance Characteristics
- 4.4 Environmental Requirements

Part 3 - Dry-Charged Batteries, Preparation & Charging

Part 4 - Reference Information, Troubleshooting & Extended Maintenance

Section 1 - Reference Information

- 1.1 Battery Voltage Measurements and Equipment Voltmeter Calibration
- 1.2 Constant Current Charging
- 1.3 Specific Gravity, Effects of Temperature, Electrolyte Level and Recharge
- 1.4 Battery Performance Tests
- 1.5 Connection Voltage Drop
- 1.6 Measuring Connection Resistance
- 1.7 Cell Type Identification

Section 2 - Troubleshooting, Extended Maintenance

- 2.1 General
- 2.2 Float Versus Cycle Life
- 2.3 Low Float Voltage and Sulfation
- 2.4 Batteries on Open Circuit
- 2.5 Hydrated Batteries
- 2.6 Cleaning Cell Containers
- 2.7 Cell Reversal
- 2.8 Flame Arrestors, Contamination
- 2.9 Battery Recycling
- 2.10 Battery Records
- 2.11 Measurement of Internal Cell Ohmic Values
- 2.12 Plate Polarization Measurements
- 2.13 Sedimentation
- 2.14 Shifted Separators

Appendix A: Terminal Plates

Appendix B: Safety Data Sheets

Appendix C: Spill Containment

Appendix D: Graphs

Sample Battery Record

Form RS-105 rev 6, 2003
PART 1
RECEIVING AND INSTALLATION

SECTION 1 - RECEIVING

1.1 General

Every precaution has been taken to pack the battery for shipment to ensure its safe arrival. As soon as you receive the battery, check the packing material for evidence of damage in transit. If the packing material is physically damaged or wet acid stains are present, make a notation on the delivery receipt before you accept the shipment/delivery.

NOTE: Freight carriers generally require that concealed damage be inspected by the carrier's representative within 10 days from date of delivery to determine responsibility. The resolution of such claims may extend up to 9 months. It is the receiving facility's responsibility to notify the freight carrier of concealed damage.

Verify the number of cartons and skids against the bill of lading and verify their components against the packing lists. Keep a copy of the verified lists for your installation records. It is important to verify that the accessory package is present and the component quantities are correct.

Accessory kits for complete battery systems typically consist of:

- Inter-cell and/or inter-unit connectors
- Inter-tier (or step or row) cable connectors
- Terminal plates
- Connection bolts, nuts, and washers
- NO-OX-ID grease
- Brass bristle brush(es)
- Labels, flame arrestor vents, and cell numbers
- Optional hydrometer, hydrometer holder, and thermometer
- Lifting sling and wood spreader board (when applicable for larger cell types)
- Replacement identification labels*

*In some cases, where batteries are shipped from stock or per customer request to a changed location, the battery may not ship with the tracking order number on the battery identification label. In these cases, replacement identification labels containing the correct order number will be shipped as part of the accessory kit. Please apply these updated labels over the existing labels on the cover of the cells.

NOTE: C&D does not furnish cross aisle connections. If the final system arrangement is different from a specific ordered design, the quantities of the interconnection components will probably change and must be ordered as additional, optional components.

Battery racks are manufactured at a different location than the batteries and are shipped separately. Racks are shipped unassembled and consist of:

- Frames
- Support rail assemblies and insulating covers
- Cross braces
- Restraint rails, brackets, and cell spacers (seismic only)
- Nuts, bolts, and washers
- Rack outline drawings/installation instructions

Spill containment systems are available upon request. These electrolyte containment systems may be required by local building or fire codes. Reference Appendix C for additional information.

1.2 Damage and shortage situations

C&D ships FOB plant (ownership passes at our dock). If shipments are damaged or if cartons or skids are damaged or missing, a claim must be filed with the carrier. Place an immediate order for replacement with C&D. Pay both the original invoice and the replacement invoice using the replacement cost as the amount of freight damages or shortages involved as part of your claim. If individual component items are missing, a shortage report should be filed within 30 days from the date of receiving a shipment with the C&D customer service department. Mail (express mail recommended), e-mail customersvc@cdtechno.com, call 1-800-543-8630, or fax a copy of the VERIFIED component-packing list. This verified list should show both the name of the packer, as well as the quantities of items checked off by the receiver.
1.3 Cell type identification

C&D presently produces lead calcium alloy and lead antimony alloy products. The distinction can be made by checking the cell type label (lead calcium white label, lead antimony green label), the operating instruction label, or the stamping on top of the post as calcium alloy may have “CA” and antimony alloy may be stamped with “SB.”

SECTION 2 - STORAGE and SHELF LIFE

2.1 Storing charged VLA batteries

Store batteries indoors in a cool (60°-85°F / 16°-29°C), dry location, preferably at 77°F (25°C) or below, and place in service before the date stamped on the shipping carton. The indicated storage time is based on storage at 77°F (25°C) and is 6 months for lead calcium alloy and 3 months for lead antimony alloy. Storage at temperatures above 77°F (25°C) requires monthly cell voltage monitoring. Higher than normal storage temperature 77°F (25°C) will accelerate internal self-discharge of a battery. Self-discharge will double for every 15°F (9°C) over nominal 77°F (25°C) storage temperature. This factor will shorten the allowable time between freshening charges. Reference Table 1 for freshening charge interval.

Table 1 - Storage Period in Days
Before Requiring Refresh Charge

<table>
<thead>
<tr>
<th>Battery Chemistry</th>
<th>Storage Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-77°F</td>
</tr>
<tr>
<td>Lead Antimony</td>
<td>90</td>
</tr>
<tr>
<td>Lead Calcium</td>
<td>180</td>
</tr>
</tbody>
</table>

Storage in hot and/or moist environments may result in white oxidation of the lead. Refer to Part 1, Section 4.6 for cleaning instructions.

Exercise caution when operating or storing batteries at low temperatures because of the possibility of electrolyte freezing. Although the specific gravity of a fully charged battery may present no freezing problem, discharged batteries with depleted electrolyte specific gravities may freeze. Table 1A provides information on freezing temperatures versus specific gravity.

Table 1A - Freezing Temperature Vs. Specific Gravity

<table>
<thead>
<tr>
<th>Specific Gravity at 77°F (25°C)</th>
<th>Freezing Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Celsius</td>
</tr>
<tr>
<td>1.000</td>
<td>0.0</td>
</tr>
<tr>
<td>1.050</td>
<td>-3.3</td>
</tr>
<tr>
<td>1.100</td>
<td>-7.7</td>
</tr>
<tr>
<td>1.150</td>
<td>-15.0</td>
</tr>
<tr>
<td>1.200</td>
<td>-27.0</td>
</tr>
<tr>
<td>1.250</td>
<td>-52.0</td>
</tr>
<tr>
<td>1.300</td>
<td>-70.0</td>
</tr>
<tr>
<td>1.350</td>
<td>-49.0</td>
</tr>
<tr>
<td>1.400</td>
<td>-36.0</td>
</tr>
</tbody>
</table>

A convenient measurement technique is to read the open circuit voltage and compare it with Table 2. If the open circuit voltage drops 0.02 volts from the nominal value shown in Table 2, the cell(s) must be given a freshening charge, at equalize voltage as specified in Part 2, Table 6.

Product must be installed and on float charge within one year of ship date. Contact C&D if this cannot be met.

Failure to charge as noted voids battery warranty. The freshening charge is conducted at equalize voltage as specified in Part 2, Table 6 Equalize Charge Voltages. The freshening charge may be given to individual cells, groups of cells, or the entire battery. If constant current charging equipment is used, charge at 5 amperes per 100 ampere-hours rated 8 hour capacity for a period not exceeding 24 hours.

If you have any questions about storage requirements and/or limitations, please contact C&D.

DANGER

DO NOT handle cells during or after freshening charge for 48 hours due to potential hydrogen build-up.
SECTION 3 - PRE-INSTALLATION PLANNING

The cell arrangement, rack(s) and connections are typically installed using generic information provided by C&D. However, a customized and detailed installation drawing may be obtained from C&D when placing your original order at an additional charge.

The installer should plan the battery arrangement, starting with the positive terminal of the battery to the negative terminal. Planning should be completed before receipt of the battery. First, sketch a footprint of the rack location. Check the applicable codes for clearance requirements. Allow sufficient aisle width to permit loading cells directly to their ultimate location on the rack and clearance for maintenance including overhead clearance. Determine the battery terminations and locations on the rack layout. The floor loading capacity of the room should be checked, as well as its capability to hold anchor bolts.

Table 2 - Open Circuit Cell Voltages

<table>
<thead>
<tr>
<th>Nominal Specific Gravity of Cell</th>
<th>Individual Cell Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.215</td>
<td>2.063</td>
</tr>
<tr>
<td>1.225</td>
<td>2.075</td>
</tr>
<tr>
<td>1.250</td>
<td>2.098</td>
</tr>
<tr>
<td>1.300</td>
<td>2.145</td>
</tr>
</tbody>
</table>

WARNING

The positive and negative terminal connections of a battery should never be terminated within a multi-cell unit. The positive and negative terminal connections of a battery must be from different cell containers properly spaced to provide isolation between the highest potential differences of the battery.

If there are an even number of tiers or steps, the battery will terminate on a common end. If there are an odd number of tiers or steps, the battery will terminate at opposite ends. Polarities below are shown for reference only.

Cells at the end of each row in stepped or tiered racks must be arranged for the shortest cable run between steps and tiers. See the following illustration. Failure to do so will result in some cables being too short due to terminal (post) locations especially on multi-cell units.

3.1 Installation of battery rack(s), overview

NOTE: Standby battery rack assembly instructions and/or rack assembly drawings are supplied with C&D supplied racks and should be consulted for detailed instructions specific to your rack assembly prior to assembly.

Remember that standby battery and rack systems will be in place for many years. Rack frames, rear cross bracing, bottom support and rear restraint rails must be assembled before any batteries are installed.
CAUTION

Racks must be installed in a safe location for maintenance and away from radiant heat sources. Before batteries are installed, racks must be level and have cross braces in place. All bolts must be tightened to specified torque values. Floor loading must be considered in the planning phase.

1. For C&D supplied racks, follow the instructions in the rack assembly instruction guides and/or the C&D rack assembly drawing – supplied with the rack - to mark the rack footprint, rack frame locations with spacing and anchor bolt locations and drill holes for the anchor bolts.

2. Follow the instructions as noted for initial assembly steps including mounting the frames to a flat and even floor with anchor bolts and attaching the rear cross bracing. Hand tighten all the bolts and nuts.

3. After ensuring that all the frames are plumb, vertical and level, tighten all bolts and nuts to the specified torque value starting with the rear cross braces and then the support rail clamp nuts. The anchor bolts are to be tightened to the manufacturer’s recommended torque value.

4. For seismic racks, position rear restraining rails and tighten bolts and nuts to the proper torque. Temporarily position the front restraint rail and cover down next to the front support rail prior to installing the cells.

5. Install plastic rail covers prior to installing batteries.

6. Front and end restraining rails are usually installed after the cells have been placed on the rack. Installation of the front restraint rails after the cells are in place can be completed by simply raising the restraint rail into position. A gap between the battery jar walls and the rails of the approximate thickness of a business card is typical.

7. The end restraint rails and corner brackets are to be installed and moved up to the end batteries of the tier.

8. Secure rack assembly checking that all bolts and nuts - including anchor bolts - are tightened to the proper torque.

NOTE: Anchor bolts are not selected nor supplied by C&D and are the responsibility of the installer. Installation must be in accordance with local building code requirements.

CAUTION

- Top rows of batteries in multiple-tier installations tend to operate at slightly higher temperatures than those on lower rows. Always provide adequate overhead (minimum of 8” to 12” recommended) clearance for ventilation and maintenance.

- When assembled, battery racks must be anchored to the floor.

- Do not place battery cells on the rack until it has been completely assembled with the braces installed, secured to the floor and all bolts tightened to specified torque (refer to sequential steps of rack assembly). Otherwise, the weight of the cells may cause the rack to shift and collapse.

- Never loosen or remove braces from a standard loaded battery rack. Removal of bracing can allow the rack to shift and collapse. Front restraining rails on seismic (EP) racks may be removed to accommodate loading/unloading of cells.

NOTE: It is helpful to clean the rack(s) and the area surrounding the installation to remove abrasive materials and residual building materials before installing cells. This will not only reduce the chance of damaging cell containers but will ease installation and simplify final cleaning of the assembled battery.

3.2 Electrolyte containment

Although it is unlikely that a properly maintained battery will exhibit a container failure and electrolyte leakage, electrolyte containment systems are required by the Uniform Fire Code — Article 64. These systems are available through C&D. Consult your C&D representative or C&D directly for assistance in specifying and ordering spill containment systems. Reference Appendix C for additional information.
SECTION 4 - INSTALLING CELLS

These instructions apply to lead acid batteries configured as single cell containers or multi-cell containers. The term containers can apply to both configurations.

NOTE: Read and follow the “Battery Handling and Installation Guidelines” packed on top of the cells, form RS-999.

CAUTION

Before working on the battery, be sure to discharge static electricity that can build up on tools, cell containers, or the technician by touching a grounded surface in the vicinity of the battery but far enough from the cells to avoid creating sparks.

4.1 Unpacking and handling cells

Do not handle or move units without the orange shipping vent installed.

Before installing battery, gather the following tools and equipment:

1. Safety equipment: Eye protection and portable or stationary water facilities for rinsing eyes and skin in the event of contact with electrolyte, safety shoes, rubber apron, and acid resistant gloves
2. Calibrated, insulated inch-pound torque wrench and box/open end wrench
3. Sodium bicarbonate, water, a bucket, and clean rags. DO NOT USE SOLVENTS of any kind, other than water.
4. Brass bristle brush(es), packed with battery accessories. Optional: fiber bristle brush, or medium grade Scotch Brite™ pad
5. Cell lifting sling and wood spreader board (when provided)
6. Battery hoist of appropriate lifting capacity
7. One inch paint brush or rag for applying NO-OX-ID grease
8. Platform lift, when applicable
9. Thermostatically controlled hot plate with no open flames (optional)
10. Hot air gun or blower (optional)

Large single cell and multi-cell containers are packed in individual cartons banded to a wooden pallet. Remove the banding and carefully lift off cartons for access to lifting slots in the bottom support foam. (Figure 1.4.1)

Always lift units from the bottom, never by the posts. A lifting sling and spreader board are packed in the accessories carton. Slip the lifting sling under the cell, then install the spreader board on top of the cell. Ensure the sling fits into notches in the spreader board. Use the loops in the sling to hoist the unit. Refer to Figure 1.4.2.

Smaller units, such as the D series, are supplied in cartons from which they can be lifted by hand.

4.2 Pre-installation procedures

At the first opportunity, check the electrolyte level in each cell. It should be between the high and low level lines (see Figure 1.4.3) on the container. If the level is below the top of the plates, order a new cell and file a claim for concealed damage against the carrier.

If the cell plates are covered but the level is lower than the low level mark, make no additions (i.e. water, acid) until the cells have been on float charge for one week, and contact your local C&D representative. If electrolyte is found on the top of the cell or terminal posts, clean immediately with a solution consisting of one pound sodium bicarbonate to one gallon of water. Do not allow the cleaning solution to enter cell. Rinse with clean water after neutralization step.

FIGURE 1.4.1 - Removing the cartons

FIGURE 1.4.2 - Use of lifting sling and spreader board

FIGURE 1.4.3 - Electrolyte should be between the high and low level lines
Not using the correct cleaning solutions will void warranty on the battery.

Consult the optional battery arrangement plan, if one was ordered from C&D. Cells may now be loaded onto the rack(s). Always lift cells by the bottom only.

WARNING

Batteries present both electrical and chemical hazards to those who install or service them. It is essential you exercise extreme care at all times to assure a safe working environment.

- Gases produced by vented cell lead acid batteries are explosive. Do not smoke, use an open flame, or create an arc or sparks in the vicinity of a battery.
- Always use protective insulating equipment, such as gloves, shoes and eye protectors. Wrenches and other tools must be insulated to comply with applicable codes and safety standards.
- Observe local, state, and national electrical codes at all times.
- Work with the battery ungrounded whenever possible.
- Battery ground connections, if required, should be made last.
- To avoid working with high voltages, break the battery down into convenient, lower-voltage modules, i.e. do not interconnect rows or tiers of cells until the final step in connection.
- Lead acid cells contain dilute sulfuric acid. Avoid contact with eyes, skin and clothing. Should contact occur, remove contaminated clothing immediately and flush affected body areas immediately and thoroughly with water. Wash clothing thoroughly before reuse. Do not attempt to clean and reuse contaminated shoes. If acid should contact the eye, flush immediately with large amounts of water for at least 15 minutes. ALWAYS CONSULT A PHYSICIAN IN CASES OF ACID CONTACT WITH THE EYES.
- Before working on the battery, be sure to discharge static electricity that can build up on tools or the technician by touching a grounded surface in the vicinity of the battery but far enough from the cells and flame arrestors to avoid ignition of any hydrogen gas present. Avoid creating sparks or exposing cells to open flames that could ignite the gases produced by a charging battery.

4.3 Arrangement of cells on racks

- Lifting slings and spreader boards are effective tools for safely moving cells.
- Install cells in the center of the row and work out towards the ends. On properly anchored step type racks, it is permissible to load the middle of the top step first to avoid reaching across cells that could be installed on the bottom step. On multi-tier type racks, always begin installing cells on the bottom tier, completing that row before starting the next higher tier.
- Cell models KT/KCT, LT/LCT & MCT-HP can be installed with the plates perpendicular or parallel to the longitudinal axis of the rack; all other cell models can only be installed with plates perpendicular.
- Retrofit models may need further assistance to connect. Contact C&D.
- Cells should be loaded by placing them directly in front of the designated location on the rack. It is recommended that a platform lift be used for this procedure, however the hoist used to lift the cell from its container may be used to position the cell. Carefully adjust the cell into its final position. When moving cells on rack, **DO NOT push on the center of the jar walls**. Move cells by placing hands on the corners of the jar and pushing. Arrange cells so the positive post (terminal) of one cell can be connected to the negative post (terminal) of the next cell. Cell post polarity is marked with symbols molded in the cover. A plus sign (+) denotes the positive post and a minus sign (-) denotes the negative post.
- Space cell containers approximately one-half-inch apart at the top of the jar. If batteries are being installed on a seismic rack, use provided cell spacers to position cells.
- If the aisle is too narrow to allow access to the rack from the front, it may be necessary to load the rack from the end.
- **Lubrication is typically not required since the plastic rail covering provides a low friction surface for sliding the cells. If a lubricant is deemed necessary, only unscented talcum powder or Dow Corning 111® silicon compound may be used sparingly.** The talcum powder may be removed with a cloth dampened in water. An equally acceptable method for lubrication is to use a small amount of water applied sparingly to the rail covers. **Do not use any solvents.**
For seismic (EP) racks, spacers between cells are required.

Add front and end restraining rails and install front-to-back restraining rail tie rods if supplied, for EP racks. End rails should be placed within one-eighth inch from end cells. Reference provided rack instructions or drawings for more information. Do not tighten end rails against cells as it can result in jar damage. Tighten tie rods/cell restraining rails to allow a business card to fit between the cell jar and the restraining rail.

CAUTION

Where multiple standard type racks are installed end-to-end, no more than one-eighth inch of cell length should rest over a support rail that is not rigidly spliced.

CAUTION

Never move or adjust a rack with batteries loaded on it.

4.4 Numbering cells, labels and warnings for battery

C&D provides labels and warnings to help you maintain your battery and to apprise you of certain hazards. Be certain to attach maintenance and operating labels to cells so they may be read by anyone working on or in the vicinity of the battery. Reference Part 4, section 1.8 for examples.

Every cell has an identification label on the cover. This label is very important since it lists cell type, date code, and order number. This information is needed for warranty purposes.

The cell ID label is usually placed prior to shipment at the factory. However, some cells are prepacked to expedite delivery. In this case, the ID labels will be shipped separately and must be placed onto the cover by the installer during installation.

For ease of identification, all cells of a battery should be numbered. Plastic peel-and-stick numbers are furnished in the accessories package. Common practice is to start with “1” at the positive terminal of the battery and follow the electrical circuit with succeeding numbers. Remove the plastic backing and firmly press the number into position on the appropriate cell. See Figure 1.4.4.

NOTE:

Depending on the EP rack type, spacers provided may be foam or molded PVC.

NOTE: This is a good time to confirm proper cell orientation, insuring correct polarity and terminal location (i.e. positive to negative to positive, etc.).

4.5 Preparing electrical contacting surfaces

All electrical contacting surfaces must have a clean, electrolyte-free finish. Any tarnish or discoloration should be removed with the brass bristle brush, optional fiber bristle brush, or medium grade Scotch Brite™ pad.

For the connectors, lead plating effectively protects the copper from corrosion in the presence of sulfuric acid while tin plating is a lower maintenance material that can also resist corrosion from moisture and oxidation, but does not protect well against exposure to sulfuric acid. C&D recommends and provides lead-plated connectors for VLA (Flooded) battery systems where contact with sulfuric acid is common. Tin plating is available as a special-order on some VLA battery systems, however the protective plating is not warranted or guaranteed in these applications due to the risk of exposure to battery electrolyte.

NOTE: DO NOT REMOVE ALL LEAD PLATING FROM THE CONNECTORS

WARNING

Do not use wire pulling compounds, oils, grease or any other material not specifically authorized by C&D in writing, as these may contain additives that could damage the plastic containers. Use of any unauthorized solvents voids warranty.

CAUTION

Never move or adjust a rack with batteries loaded on it.
Cell posts are typically factory coated with oil in the factory and may be covered with a plastic cap to prevent oxidation of the lead during transportation and storage.

To maintain electrical contact integrity, C&D supplies NO-OX-ID grease (in the accessories package) as a corrosion resistant coating for all bolted, electrical contacting surfaces. For optimum connection integrity, C&D recommends the following procedure:

1. Remove any factory-applied coating from the posts and post seals with a dry cloth as they may be contaminated with dirt or residual acid. NOTE: Post seals, and the surrounding areas, may appear wet due to the oil.

2. With a neutralizing solution, consisting of one pound sodium bicarbonate mixed with one gallon water, wipe the cover, post and post seal with a cloth or fiber bristle brush moistened with the neutralizing solution.

3. Rinse with clean water and dry thoroughly. **DO NOT USE ANY INDUSTRIAL BATTERY CLEANERS AS THIS WILL VOID WARRANTY!**

4. Lightly brush the post and adjacent lead of the post seal with the brass bristle brush (provided in the accessories), or medium grade Scotch Brite™ pad, to provide a clean bright finish. **NEVER USE STEEL BRUSHES OR OTHER ABRASIVE TOOLS OR MATERIALS.** Cells designed for high discharge currents are constructed with plated copper inserts cast within the lead posts to optimize conductivity. The copper faces should be lightly brushed to minimize scratching or removal of this protective plating.

5. Carefully remove any oxidation or white powder from the inter-cell connectors’ mating surfaces with either the brass bristle brush, fiber bristle brush, or medium grade Scotch Brite™ pad and buff to a clean and uniform finish. Inter-cell connectors are plated copper and require that care be taken not to remove the plating.

6. NO-OX-ID grease must be applied to the terminal post and to the horizontal lead surface of the post seal to ensure all exposed lead is properly coated to protect against surface discoloration. It is optional to heat the NO-OX-ID grease to a cream like consistency using a thermostatically controlled hot plate (with no open flames). Set the temperature between 160°F (71°C) to 185°F (85°C) to maintain the desired consistency.

4.6 Making the connections

C&D batteries are supplied with stainless steel connecting hardware; optional lead-brass hardware is available (see Figure 1.4.5 & Table 3).

<table>
<thead>
<tr>
<th>Type</th>
<th>Hardware Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1/4 - 20 brass bolt with cast-on head and brass-inserted cast lead nut.</td>
</tr>
<tr>
<td>B</td>
<td>5/16 - 18 brass stud and two brass-inserted cast lead nuts.</td>
</tr>
<tr>
<td>C</td>
<td>Stainless steel hexagonal bolt, two flat washers, and hexagonal nut.</td>
</tr>
<tr>
<td>D</td>
<td>Stainless steel hexagonal bolt and one flat washer.</td>
</tr>
</tbody>
</table>

Cells are supplied with different post configurations suited to their current handling requirements, see Figure 1.4.6.

Place inter-cell connectors against cell posts and insert C&D supplied brass stud or stainless steel bolt through the bolt hole in the post and the hole in the connector. For stainless steel bolts, install heavy-duty washers, bolts and nuts. Ensure the sharp edge of the stamped steel washer is facing away from the inter-cell connector. Hand tighten. Where one brass stud and two lead capped nuts are supplied, be sure that an equal number of threads is engaged on each nut.
Tighten connections to the torque values shown in Table 3, using an insulated torque wrench and an insulated box/open end wrench in counter-torque, as shown in Figure 1.4.7.

Refer to Table 3 to verify that your hardware is correct for the battery type being installed. Align cells so the inter-cell connectors match up with the holes of the terminal posts.

When two inter-cell connectors are supplied for connecting cells, they must be placed on opposite sides of the posts. Make the inter-cell connection (positive to negative) using the bolt assemblies supplied. Refer to Figure 1.4.5.

Table 3 - Torque Requirements for Specific Cell/Unit Types

<table>
<thead>
<tr>
<th>Bolt Assembly Standard</th>
<th>Optional</th>
<th>Terminal Design</th>
<th>Initial Torque (inch-pounds)</th>
<th>Maintenance Torque (inch-pounds)</th>
<th>Current Cell/Unit Types</th>
<th>Discontinued Cell/Unit Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>C A</td>
<td>FLAG</td>
<td>70</td>
<td>60</td>
<td>3DCU 3-11</td>
<td>-</td>
<td>KCR5-13 (Pre-2018)</td>
</tr>
</tbody>
</table>
| C B | SQUARE NO INSERT-CROSS DRILLED 1H (2) | 110 | 100 | DCU 13-17
KCT
LCT/LCT-HP
LCR 13-17
LCUN 19-33
4LCY 544 & 660 | 4JC, 2JC
3KCT190
CJ3C0 | |
| C B | CHAIR (3) | 110 | 100 | 4LCY290 & 420
4LCY9 & 11 | 3KCR5
XT4L/XT4LP 7 & 9 | |
| C N/A | CHAIR (3) | 160 | 125 | 4LCY 5 & 7
4XTH/4XTHP 7 & 9 | - | |
| C N/A | SQUARE WITH INSERT; SINGLE HOLE (4) | 160 | 125 | LCR 19-33
LCU 19 & 27
LCY 35-39
4LCY 9 & 11 | KCR 15-21
(Pre-2018) | |
| C N/A | SQUARE WITH INSERT; 2 HOLES (5) | 160 | 125 | KCR 15-21
2LCR 13 & 15
(2-cell)
XT2L/XT2LP 33 & 25
XT1L/XT1LP 35-53 | XT4L/XT4LP 11-15
XT2L/XT2LP 17-21
XT1L/XT1LP 27-33 | |
| C B | SQUARE NO INSERT; 2 HOLES (6) | 110 | 100 | KCR 5-13
LCM-HP | - | |
| D N/A | MULTI-CELL INTER-CELL POST (7) | 160 | 125 | 4LCY 9 & 11
4LCY 544 & 660 | XT4L/XT4LP 11-15 | |
| C N/A | SQUARE (8) | 160 | 125 | - | LCT II 1700 | |
| C N/A | RECTANGULAR (6) | 110 | 100 | 3DJ-HP
4JC-HP | 3DJ, 3DJU, 3XDJ | |
| C N/A | BLADE (10) | 160 | 125 | 4XTH4XTHP 11-23
2XTH2XTHP 25-33 | - | |
| C N/A | SQUARE NO INSERT-CROSS DRILLED 2H (11) | 110 | 100 | MCT-HP | - | |

Note: Use the same torque values for connection of terminal plates or cable lugs to battery posts. Recommend 100% recheck of all connections after assembly, using maintenance torque values. Refer to Appendix A for connection torque of load cables to terminal plates.
High current batteries may use shorter piggy back inter-cell connectors applied over the top of the full length inter-cell connectors connecting all posts. See illustrations for four and six post cells, Figure 1.4.7B.

Tighten the connections to the torque values specified in Table 3, using an insulated torque and box/open end wrench in counter-torque to avoid damaging posts.

4.7 Checking connection integrity & polarity

After connecting and torquing all cells in the battery, and prior to connecting to the charger or dc system, recheck the torque of all connections in sequence using a digital low resistance micro-ohm meter (DLRO), and immediately check the total voltage of the battery using a calibrated, digital dc voltmeter. Total battery voltage should equal the open circuit voltage (Table 2) of an individual cell multiplied by the number of cells in series connection. The cell nameplate provides information on the specific gravity of your cell(s). Refer to Part 4, Section 1.8, for description of nameplate information.

If the battery voltage is less than this value, either your voltmeter is incorrect or one or more of the cells is installed in reverse polarity. Check and correct cell polarities. Making this correction will avoid the possibility of charging cells in reverse and destroying them.

Initial cleaning, surface preparation and torquing establishes the lowest possible connection resistance between posts, connectors, and lugs – all of which may have somewhat irregular surface finishes. Over-torquing will distort lead posts, permanently damaging the cells.

Maintain clean, tight connections. Per Part 4 of this manual, check connection resistance. Connection maintenance is the responsibility of the battery end user. Refer to Part 4 for additional maintenance information.

The preferred method of checking connection integrity is by using a DLRO and recording the resistance values of each connection. For new installations, remake any connection that is more than 10 percent above the average value or 5 micro-ohms, whichever is greater. Refer to the Reference section (Part 4) of this manual, IEEE-450, and IEEE-484 standards for additional information.

CAUTION

It is the sole responsibility of the battery end user to check connection integrity. Never operate a battery with loose or corroded connections.

4.8 Flame arrestors

All C&D standby cells use flame arrestors, see Figure 1.4.8. Most cells are shipped with orange colored vent plugs which must be removed before installing the flame arrestors.

After cells have been installed and connected, remove the orange shipping vents and install the flame arrestors and dust cover vent assemblies provided in the accessory kit.

CAUTION

Be sure flame arrestors are installed before making final battery termination connections. Use caution not to over-rotate (tightly).
4.9 Terminal plates, cables and lugs

C&D offers a variety of cables, terminal lugs and special terminal plates as optional equipment for specific battery installations. Before beginning installation, check the accessories cartons to determine if the parts ordered have been received. Also check for additional instructions which may be specific to your application. This should be done before you schedule installation to permit delivery of any necessary additional hardware.

Standard length inter-step and inter-tier (not inter-aisle or charger) cables are supplied by C&D. They are flexible, battery cables with lugs, properly sized for minimal voltage drop. Lead plated lugs are supplied when lugs are attached directly to the battery posts.

Terminal plates facilitate the connection of multiple power leads. They are made of heavy copper, tin or lead-plated and formed to permit connection to posts of various configurations. See Appendix A for details of the terminal plates supplied in the standard accessory kits and recommended cable connection torque values.

NOTE: C&D recommends the use of lead-plated cable lugs on vented flooded lead acid batteries if connections will be made directly to the posts of cells.

NOTE: Always complete a record of open circuit voltage, initial charge, float charge readings and connection resistances with DLRO. Retain the readings in your files for future reference. Any future warranty discussions will require this information. For convenience, use Form RS-105. A sample is included in this manual. Make a photocopy of the sample so the original will be available for subsequent use. The service life of your battery will depend on freshening charges (if in storage), its operating temperature, frequency of use and depth of discharge, discharge rate, and float charge voltage and regulation.

4.10 Connecting battery to charger

Use only direct current (dc) for charging. With the charging source de-energized, connect the positive terminal of the battery to the positive terminal of the charger or system bus, and the negative terminal of the battery to the negative terminal of the charger or system bus. Check polarities with a voltmeter to be sure that connections are correct. Energize the system by following the charger manufacturer’s procedures.
NOTE: AC Ripple

Commercial battery chargers convert ac electrical energy to dc. However, the conversion is not perfect, and some variation remains in the output voltage and current. This is known as ac ripple voltage and ac ripple current. The frequency and magnitude of the ripple depends on the design of the charger and the filtering included in the supply. Lead acid batteries act as a filter for ac ripple, and any variable energy delivered to the batteries is converted to heat. If the magnitude of the ripple is high enough, shallow charge and discharge cycles may take place.

The impact of ac ripple on flooded battery performance and life has been studied; however, there are few conclusions with regard to recommendations for maximum ripple voltage. It is clear that any voltage variation that forces the batteries between gassing and discharge voltages may have an adverse effect on product life. The key parameter is the difference between the float voltage setpoint and the product open circuit voltage. If the charge voltage falls below the unit open circuit voltage, the batteries will discharge. For most C&D flooded products the difference between float voltage and OCV is 6% of the recommended mid-range float voltage.

Example:

<table>
<thead>
<tr>
<th>KCR-13 (60 Cell String)</th>
<th>Per Cell</th>
<th>Per String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float Voltage: 2.21 V</td>
<td>132.6 V</td>
<td></td>
</tr>
<tr>
<td>OCV: 2.055 V</td>
<td>123.3 V</td>
<td></td>
</tr>
</tbody>
</table>

132.6 x 0.06 = 7.956
132.6 - 7.956 = 124.64
124.64 > 123.3 (AC ripple is acceptable)

CAUTION

Do not adjust electrolyte levels before initial charging. Adjust electrolyte levels only when cells are fully charged and stabilized at float voltage.

SECTION 1 - CHARGING BATTERY

1.1 Initial charge

All batteries shipped wet and fully charged lose some charge in transit or while standing idle before installation and require an initial charge, using either the constant voltage method or the constant current method, prior to placing into service.

Provide an initial charge to the battery at the recommended voltage shown in Table 4.

Table 4 - Initial Charge Voltage and Duration of Charge

<table>
<thead>
<tr>
<th>Nominal Specific Gravity (See Part 4, Sec. 1.3)</th>
<th>Maximum Average Volts Per Cell VPC*</th>
<th>Time in Hours at Maximum Cell Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAD ANTIMONY CELLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.215</td>
<td>2.39</td>
<td>40</td>
</tr>
<tr>
<td>1.215</td>
<td>2.36</td>
<td>60</td>
</tr>
<tr>
<td>1.215</td>
<td>2.33</td>
<td>110</td>
</tr>
<tr>
<td>1.215</td>
<td>2.30</td>
<td>160</td>
</tr>
<tr>
<td>1.215</td>
<td>2.24</td>
<td>210</td>
</tr>
</tbody>
</table>

*Note: Applies to average cell voltage. Battery system voltage should be set at average cell voltage multiplied by the number of cells in battery.

<table>
<thead>
<tr>
<th>Nominal Specific Gravity (See Part 4, Sec. 1.3)</th>
<th>Maximum Average Volts Per Cell VPC*</th>
<th>Time in Hours at Maximum Cell Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAD CALCIUM CELLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.215</td>
<td>2.38</td>
<td>24 - 100</td>
</tr>
<tr>
<td>1.250</td>
<td>2.43</td>
<td>24 - 100</td>
</tr>
<tr>
<td>1.300</td>
<td>2.50</td>
<td>24 - 100</td>
</tr>
</tbody>
</table>

*Note: Applies to average cell voltage. Battery system voltage should be set at average cell voltage multiplied by the number of cells in battery.
CHARGE COMPLETION: The charge is complete when the lowest cell voltage is stable over three consecutive hourly readings, the voltage of the lowest cell is within 0.05 V of the string average. The string charge current (amps) should remain the same over a 3 hour period by the end of the initial charging period.

NOTE ON THE SPECIFIC GRAVITY OF THE CELLS - The electrolyte of the cells is set at the factory to the nominal specific gravity shown in Figure 4.1.3, at 77°F (25°C), with the electrolyte level between the high and low level lines as specified in Part 4, section 1.3 of this manual.

NOTE: As the cell operates and the electrolyte is depleted and replenished, and the state of charge changes due to usage of the battery leading to sulfation and/or stratification, the specific gravity of the electrolyte is impacted accordingly and specific gravity measurements may not reflect the overall cell specific gravity. In such cases, the use of the string average specific gravity measurements is recommended in troubleshooting possible outlying cells versus their shift from nominal. For a new cell, following proper initial charge methods, the measured specific gravity should reflect the factory requirements for nominal gravity on the initial float charge. Reference Part 4, Section 1.3.

1.2 Float charge

Standby batteries are continuously connected to control circuits which must be energized at all times. Connected to a load in parallel with a continuously operating charger, these batteries assure instantaneous support of the load in the event of a power failure or brownout. In addition to operating the connected load, the power supply maintains the standby battery in a fully charged condition. This parallel interconnection and operation is called float service. For optimum service, adjust the charger to the float voltages shown in Table 5.

<table>
<thead>
<tr>
<th>Table 5 - Float Voltage Per Cell (VPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAD-ANTIMONY CELLS</td>
</tr>
<tr>
<td>Nominal Specific Gravity</td>
</tr>
<tr>
<td>1.215</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEAD-CALCIUM CELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Specific Gravity</td>
</tr>
<tr>
<td>1.215</td>
</tr>
<tr>
<td>1.215</td>
</tr>
<tr>
<td>1.250</td>
</tr>
<tr>
<td>1.300</td>
</tr>
</tbody>
</table>

(1) **Setpoint:** The recommended float voltage setpoint range for the system based upon voltage reading at battery terminals. Charger settings can be calculated by multiplying the recommended target voltage times the number of series cells in the battery system. Charger set points can be made anywhere within the range to commensurate with the battery operating temperature, however, the best results for battery life and recharge time will be obtained by setting the charger in the middle of the range.

(2) **Individual Cell Voltage:** Allowable cell voltage range; individual cells will vary around the float voltage set point. The individual cell voltage range is provided to identify cells with unusually high or low voltages. These cells should be identified for further action such as charging at a higher voltage (equalizing).

For information on constant current charging consult Part 4, Section 1.2 of this manual. See Part 4, Section 1.3 for operation at temperatures other than 77°F (25°C).
SECTION 2 - WATERING CELLS AND ADJUSTING ELECTROLYTE LEVEL

Before adding water to a battery, you must consider its condition and state of charge. If the plates are covered by electrolyte, the battery should be placed on charge. The gases produced by charging will displace the electrolyte and raise it to an acceptable level between the high and low level lines on the container. Had the level been adjusted to the high mark before charging, charging could have caused the electrolyte to rise to a point where it could overflow through the vent or be forced up into the flame arrestor, requiring needless maintenance.

NOTE: Adding water to a battery to bring the initial electrolyte levels up will reduce the specific gravity and introduce a higher level of variation to specific gravity measurements.

If, after charging, the electrolyte levels have not risen to between the high and low level lines, sulfuric acid of the same specific gravity may be added to bring levels to the high mark. Adding acid is a procedure that should be done only after consultation with C&D and performed by a C&D representative.

CAUTION
POTENTIALLY EXPLOSIVE GASES
VLA (flooded) lead acid cells release hydrogen gas during charge, which is potentially explosive. Flame arrestors reduce the likelihood of ignition within a cell; however, caution must still be exercised not to bring an open flame or sparks near the battery. Hydrogen can be evolved at the rate of 0.000269 cubic feet per minute per charging ampere per cell at 77°F (25°C). The maximum level of hydrogen gas in the battery room should not exceed concentrations specified by local codes, typically 1 to 2 percent by volume. Do not install batteries in unventilated areas or enclosures.

SECTION 3 - CLEANING CELLS AND BATTERY RACK(S)

CAUTION
CLEANING THERMOPLASTIC CELL CONTAINERS – clean or wash the containers with clean water only. Do not use solvents or glass cleaners.

Neutralize acid spills with a solution of sodium bicarbonate – one pound of sodium bicarbonate mixed with one gallon of clean water. Never use ammonia, soda ash, sodium hydroxide, or any strong alkalis. If alkalis are inadvertently spilled on the containers, they should be immediately washed off with clean water.

SECTION 4 - BATTERY OPERATION

4.1 Float service
In ideal float service, a battery is always maintained in a fully charged condition. However, in the event of a power failure or system test in which the chargers are shut down, the battery must support the load resulting in a battery discharge. Typically, a standby battery will not be subjected to more than one test discharge each year and a transfer test monthly.

Additional deep and/or frequent discharges can shorten service life, even with proper maintenance and operation. This section will consider batteries that are used in full float service. They will not be exposed to service in which the standby power system is not capable of supporting peak loads. In such cases the battery would be exposed to numerous partial discharges. In float service, the charger voltage is regulated and filtered and the battery is operated in a temperature controlled environment.

For optimal service, adjust the chargers to the recommended float voltages shown in Table 5. See Part 4, Section 1.3 for temperature correction factors. If more frequent discharges are anticipated, use a higher float voltage setting. Operating within these criteria will maximize battery service life.

Equalize charges are used to bring cell voltages into a narrower operating range, or to assure full state of charge before a discharge performance test. An equalizing charge may be required at a voltage higher than the nominal float voltage to restore proper voltage to a battery which has:

• been subjected to frequent discharges, resulting in a partial state of charge condition
• been charged at less than minimum float voltage, resulting in an undercharged condition

An equalizing charge should be given when the lowest cell voltage reaches the minimum allowable cell voltage shown in Table 6. Please note that antimony cells require regular equalization, while lead-calcium cells should be equalized when a cell reaches a low voltage limit.
4.2 Equalize charge
As noted above, equalize charges are used to narrow the overall voltage spread of a battery system. Equalize charges are needed on a regular basis for lead antimony cells, and on an as-needed basis for lead calcium cells. Minimum allowable cell voltage is the point at which arrangements should be made to provide an equalizing charge. It does not imply the battery is malfunctioning or will not provide power if called upon. The ability to perform an equalize charge on a system will depend on the maximum voltage capability for the system and any downstream components. Verify that all equipment fed from the system can withstand a sustained equalize voltage. – Contact your C&D Technologies representative if system limitations require equalizing at an alternate voltage to what is recommended.

Terminating Equalize Charge: The duration of an equalize charge for lead calcium batteries will depend on various factors, including the local battery environment, the conditions causing the need for equalization, the total voltage variability within the system, and the length of time that the low cell voltage condition persisted. Terminating the charge will depend on the voltage rise of the low cell and the stability of the voltage in the lowest cell. Start measuring the voltage of the lowest cell in the system eight hours after initiation of the equalize charge. The equalization can be terminated after 24 hours when the lowest voltage cell is within 0.05 V of the string average (in volts per cell) AND the voltage has not changed for three consecutive hourly readings and the charging current is stable. If these conditions are not reached within 2 days of charge initiation please contact your C&D representative.

Single Cell Equalize: Some equipment may not have the required equalizing voltages available thereby lengthening the charging period. As an alternative, a single-cell charger with ac line isolation may be paralleled across the affected cell while still part of the overall battery to provide an over-voltage to the subject cell. Set points similar to system equalize should be used. Termination of the charge should occur when the cell voltage and charger current (in amperes) stabilizes (three consecutive hourly readings). Again, contact your C&D representative with questions on system issues.

4.3 Performance characteristics
Battery performance is rated at 77°F (25°C). Operation at higher temperatures increases capacity, but reduces life approximately 50 percent for every 15°F (9°C) rise. Operation at lower temperatures reduces capacity but extends life. It is recommended to size the battery with additional margin for operation at the minimum expected temperature.

Battery performance at a given rate is related to the internal resistance of the cells and the external resistance of the conductors connecting the cells. Aging increases internal resistance that results in greater voltage drop, or losses. The effects of aging have the greatest impact on high rate performance. A battery whose resistance has increased by 10%, for example, when discharged at its 8 hour rate will experience a loss of approximately 10% of its reserve capacity or provide only 7.2 hours of support. But the same battery discharged at its 15 minute rate will experience a loss of approximately 20% capacity and may not provide adequate support time.

Typically during the last half of the battery service life, capacity will begin to fall slowly at first, then at an increasing rate. Lead acid batteries have been historically considered to reach the end of their useful life when they have reached 80% capacity. It is recommended that a battery be sized with an aging margin to compensate for loss of capacity as the battery ages. At short duration high rates there may be little or no time left when the battery reaches 80% capacity. It is strongly recommended that in such applications, an aging factor be applied to assure that the critical load will be supported for adequate time at end of life. For further information on this topic, refer to Annex K of IEEE Std-450.
PART 2
CHARGING AND OPERATION OF BATTERY (CONTINUED)

NOTE: Frequent charge/discharge cycles accelerate battery aging and performance degradation.

4.4 Environmental requirements

Recommended operating temperature range for standby battery operation is: 60°F (15°C) minimum to 90°F (32°C) maximum; 77°F (25°C) yearly average.

Operating temperature limits to prevent mechanical and/or performance degradation (or failure) is: 32°F (0°C) minimum to 120°F (49°C) maximum at standard atmospheric pressure.

SECTION 5 - BASIC BATTERY MAINTENANCE

CAUTION

For multi-cell batteries, a battery string must be disconnected from the charging bus before working on individual cells or batteries. In multi-cell containers, disconnecting an inter-cell (same containers) connector does not guarantee the absence of voltage or current at the end terminals. A potential shock hazard may therefore exist. This is very important since there is always the possibility of a small, internal leak path across an inter-cell partition.

Proper maintenance will prolong the life of a battery and will aid in ensuring it is capable of satisfying its performance requirements. A good battery maintenance program will also serve as a valuable aid in determining the need for battery replacement.

NOTE: These recommended procedures are designed to minimize specific gravity measurements and emphasize cell voltage measurement as an indicator of acceptable operation. The reason for this choice of procedure is that voltage measurements, particularly with digital voltmeters, tend to be more accurate in comparison to readings taken with either a digital or an analog hydrometer. Specific gravity measurements are significantly influenced by method of measurement, current cell conditions and recent maintenance (see Part 4 section 1.3 for the specifics related to specific gravity measurements). In addition, hydrometer measurements are a common source of spillage of electrolyte onto cell covers and connecting hardware and cell posts.

The frequency of battery inspections should be based on the criticality of the loads that must be supplied by the battery and the availability of other power sources. As a minimum, records of three (3) quarterly reports and one (1) annual inspection per year must be maintained to preserve warranty. Record findings clearly and date originals and copies.

5.1 Monthly battery inspection should include the following observations/measurements:

- float voltage measured at battery terminals
- general appearance and cleanliness of battery, battery rack, and the battery area
- charger output current and voltage – NOTE: Gross charger output may be greater than the float current required by the battery as the charger may also be providing the DC system load. Measure battery float current at the battery terminals.
- electrolyte levels (visual check)
- cracks in cell containers or leakage of electrolyte
- any evidence of corrosion at cell terminals, connectors, or racks
- ambient temperature and operation of ventilation equipment
- pilot-cell voltage and electrolyte temperature
- ground faults
- verification all battery monitoring systems are operational, if installed
- record findings clearly and date entries
5.2 Quarterly battery inspection should include:
The monthly observations, plus
• voltage of every cell
• temperature of electrolyte in representative cell(s), typically one cell/tier distributed throughout battery

Optional inspection
• specific gravity of any cell where the individual cell float voltage is outside of the acceptable cell float voltage range indicated in Table 5

5.3 Annual battery inspection should include the following:
The quarterly observations, plus
• cell condition and visual inspection
• inter-cell/inter-unit connection integrity, measured with DLRO (see Part 4, Sect 1.6)
• check for signs of acid leakage

NOTE: If the battery has experienced abnormal operation, such as severe discharge or overcharge, a more extensive inspection should be made to ensure that the battery has not been damaged. More information can be found in the Reference and Maintenance section, Part 4 of this manual.

Periodic inspections, as outlined above, and the subsequent corrective actions are intended to provide a properly maintained battery that will meet its performance requirements. In addition, yearly performance tests can be used to demonstrate the adequacy of the maintenance practices. Each of these inspections and tests should be used as best suited for the particular needs of the application. It is the user’s responsibility to format a maintenance inspection and testing program to optimize the benefits available.

Under specified conditions (see Part 4, section 1.3), the battery specific gravity readings are not going to change very much over the life of the cell. Specific gravity readings are best utilized as a troubleshooting tool. Specific gravity will typically increase 10 to 20 points, depending on design, as water is electrolyzed and the electrolyte levels drop from the high to low lines. The only times that gravity drops is when water is added to bring the levels back up, the battery is in a discharged state, or battery is being self discharged due to an internal short. Both of these discharge situations can be determined without the need for regular gravity maintenance readings, e.g. by low cell voltage readings or the presence of sulfate crystals on the surface of the positive plates and/or internal connector straps.

5.4 Watering the battery
Apart from losses due to evaporation and oxygen diffusion, the quantity of water consumed by a battery is proportional to the amount of overcharge it receives. Batteries manufactured with lead-antimony alloy begin life consuming relatively small amounts of water. As they age, they consume increasing amounts of water, with quantities reaching ten times the original as they near the end of their life. Batteries manufactured with lead-calcium alloy, because of the purity of their grid components, require only about one-tenth the water used by new lead-antimony batteries of the same size. This low requirement remains constant during their entire life. The tops of the plates and bottom of the funnel stem should never be exposed, so water should be added before the electrolyte level reaches low level line.

5.5 Connection integrity
Connection integrity is critical to the safe and efficient operation of any battery. This is the sole responsibility of the installer/end user. Connections must be inspected at least once a year for the following:
• CLEANLINESS: Remove all corrosion by-products and restore as described in PART 1, Section 4.5.
• TIGHTNESS: At least once a year, verify connection integrity using a DRLO meter and re-torque all connections that require it to the re-torque values given in Table 3. Refer to Part 1, Sections 4.6 and 4.7.
• HARDWARE: Replace worn or damaged hardware.

The importance of connection integrity cannot be overemphasized. Take time to check all connections periodically. Batteries with voltages of 250 volts or greater and/or batteries used in high rate applications should have their connections inspected at least twice each year.

CAUTION
An improper or loose connection can cause arcing and possibly a fire.
NOTE: Distilled or de-ionized water is preferred for adjusting electrolyte levels

If you intend to use public water and question the suitability of the local water supply for use in lead acid batteries, consult your nearest C&D representative. If a recent analysis report is not available, you may wish to conduct your own analysis in-house or at a convenient laboratory. Table 7 details acceptable water purity acceptance criteria.

SECTION 6 - MEASURING SPECIFIC GRAVITY OF A CELL

6.1 Use of the float hydrometer

A hydrometer float inserted in a glass-barreled, rubber bulb syringe is used to measure the specific gravity of electrolyte. The float is graduated in points of specific gravity, wherein 0.001 equals one point of specific gravity. The specific gravity is read on the hydrometer scale at the level at which it floats in the electrolyte.

NOTE: Digital electronic hydrometers are available and may provide a more convenient method of measurement for your needs. They still require immersion into the electrolyte and the same care should be taken to avoid spillage of electrolyte onto the cell and connections.

When taking hydrometer readings, always hold the hydrometer syringe vertically and make sure the float is floating freely with no pressure applied to the bulb (see Figure 2.6.1).

The glass parts of the hydrometer syringe should be washed with soap and warm water as needed and rinsed with clean water to keep them clean and accurate.

Information regarding the specific gravity of a fully charged cell appears on the cell name plate as part of the model number. As the cell discharges, the specific gravity will decrease. The specific gravity is an indication of the state of charge or discharge of the cell. However, note that readings on recharge lag behind the ampere-hours returned on charge. The specific gravity does not immediately indicate the true state of recharge. Mixing the electrolyte is dependent upon the amount of gas generated and acid diffusion. Usually, specific gravity measured at the top of the cell is most accurate following an equalizing charge during which the cell has gassed enough to thoroughly mix the electrolyte.

On cell models that have specific gravity sampling tubes (typically located in corner of cell covers), it is recommended to sample electrolyte through these tubes. First remove either the small white cap or translucent plug by gently twisting a 1/4 turn back and forth as you lift up. Otherwise, sample electrolyte through the flame arrestor tube (remove flame arrestor dust cap, see Figure 1.4.8). To obtain a good reading of specific gravity, sample the electrolyte from the hydrometer tubes, discharging the first sample into the filler vent of the flame arrestor and withdraw a second sample for the actual reading. Carefully discharge the second sample into the filler vent and avoid spilling or splashing acid. Any spills should be blotted and the area rinsed with clean water.

NOTE: For cells without electrolyte sampling tubes on the cover, take gravity readings through the filler vent on the flame arrestor.

6.2 Pilot cells

One cell in a battery may be selected as a pilot cell for readings. Since all cells in the battery receive the same amount of charge or discharge current, their specific gravities will fall or rise proportionately to that of the pilot cell. It is advisable to change pilot cells after about 10 readings, because a slight amount of electrolyte is lost each time a hydrometer reading is taken. This rotation of pilot cells distributes the electrolyte loss among all the cells in the battery. Always return the electrolyte in the hydrometer syringe to the cell from which it came.

NOTE: Typical maintenance procedures are discussed in detail in Part 4 of this manual.
SECTION 1 - REFERENCE INFORMATION

A battery used in full float service that has been properly installed and not subjected to frequent discharges and recharges, floated at the recommended charging voltages, and maintained in accordance with recommended practices will require minimal attention. This is particularly true for lead calcium alloy batteries. Lead antimony batteries will require more frequent watering and equalizing charges as they age.

1.1 Battery voltage measurements and equipment voltmeter calibration

Battery voltage measurements must be taken at the battery terminals, not at the attached equipment. The voltmeter should be a digital type with at least 3 1/2 digits display with an accuracy better than 0.25%.

When the battery is not subject to any discharge, but merely in full float operation, the battery terminal voltage should be close to the meter reading on the attached equipment. If this is not the case, check the voltmeter(s) for errors and have them calibrated by a certified testing laboratory.

1.2 Constant current charging

Although constant voltage charging is more common, another method of charging a battery which may be used in some applications is one in which the battery receives its charge from a charger having a constant current control. Under this method, the voltage will rise to any value consistent with the current (a pre-adjusted value). Usually, the current is adjusted to 2.0-2.5 amperes per 100 ampere-hours of battery eight-hour rating. **Note: This type of charging is only to be employed for the initial charge or recharge after a performance test.**

For example, a 1200 ampere-hour cell may be charged at 24 to 30 amperes for a prescribed time, which typically does not exceed 48 hours. One method for determining if a battery is fully charged is to monitor the voltage of selected cells three times for three successive hours. It is optional to also check the specific gravity as a secondary confirmation the battery is fully charged. When these values cease to increase between readings, you can be sure that the battery is fully charged. A slight increase in cell temperature may cause readings to vary slightly. In no event, should cell temperature be allowed to exceed 120°F (49°C). If cell temperature(s) approach this level, reduce the charging current or immediately remove charger.

1.3 Specific gravity, effects of temperature, electrolyte level and recharge

The nominal specific gravity of a cell is specified at 77°F (25°C) when fully charged, with the electrolyte fully mixed, and between the high and low lines. Under these conditions the variation from nominal should be in accordance with Figure 4.1.3.

Note: Maximum specific gravities will occur near the low level line.

<table>
<thead>
<tr>
<th>Acceptable Specific Gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal 1.215 1.250 1.300</td>
</tr>
<tr>
<td>Minimum 1.200 1.215 1.285</td>
</tr>
<tr>
<td>Maximum 1.240 1.275 1.325</td>
</tr>
</tbody>
</table>

Effect of temperature

Electrolyte temperature above 77°F (25°C) will result in a lower specific gravity reading approximately equal to a loss of 1 point (0.001) for each 3°F (1.67°C). In contrast, electrolyte below 77°F (25°C) will read approximately 1 point (0.001) higher for each 3°F (1.67°C). Higher temperatures expand the volume of electrolyte which reduces the observed specific gravity, while lower temperatures condense the electrolyte and thereby concentrate the electrolyte.

The lead acid battery is an electrochemical device. Heat accelerates chemical activity; cold slows it down. Normal battery operating temperature is considered to be 77°F (25°C). Higher-than-normal temperature has the following effects on a lead acid battery:

- Shortens life
- Increases performance
- Increases self discharge
- Lowers cell voltage for a given charge current
- Raises charging current for a given charge voltage
- Increases water usage
- Increases maintenance requirements
Lower than normal temperatures do not have the same effects (see fig 4.1.4 in Appendix D). In general, at recommended float voltage, a battery in a cool location require less maintenance than one in a warm location. If the operating temperature is something other than 77°F (25°C), it is desirable to modify the float voltage (temperature compensate) as follows:

For electrolyte temperatures other than 77°F (25°C), correct individual cell float voltage by 2.8 mV/°F (5.0 mV/°C):
- Add 2.8 mV (0.0028 Volt) per °F (5.0 mV/°C) below 77°F (25°C)
- Subtract 2.8 mV (0.0028 Volts) per °F (5.0 mV/°C) above 77°F (25°C)

Example:

LCT 1680
Nominal float @ 77°F is 2.20 Vpc
Corrected float @ 67°F is 2.228 Vpc
Corrected float @ 87°F is 2.172 Vpc

At lower than normal operating temperatures, battery performance will be reduced as shown in Figure 4.1.3, Appendix D.

At higher than normal operating temperatures, for every additional 15°F (8°C) battery life is decreased by 50 percent. Therefore, continued operation at an average cell temperature of 92°F (33°C) will reduce battery life to 50 percent of that typical at 77°F (25°C). See Figure 4.1.4, Appendix D.

Electrolyte level

When water is lost from the electrolyte, the result will be a more concentrated solution and thereby a higher specific gravity reading. The reverse condition applies when water has been added to adjust electrolyte level. The apparent level can be significantly effected by charging voltage. If the voltage is higher than specified in the float tables or if the battery is being charged at equalize voltage, gases will be generated displacing the electrolyte causing the level to rise.

Never allow electrolyte level to drop below the bottom of the flame arrestor vent tube. Should this occur, hydrogen generated within the cell will not be contained by the flame arrestor and ignition due to external source is possible from an outside spark or flame.

Recharge and electrolyte stratification

When the battery is discharged, the specific gravity of its electrolyte is reduced. This is a result of the utilization of sulfate ions in the chemical reaction with the active materials in the positive and negative plates. The sponge lead in the negative plate and the lead dioxide in the positive plate both convert to lead sulfate, trapping the sulfate ions in a chemical bond with the plates.

On recharge, lead sulfate in the plates is converted back to the original compounds and the sulfate ions are released from the plates. The sulfate ions recombine to produce sulfuric acid with a density greater than that of the electrolyte. As a result, the newly generated, concentrated (heavy) acid falls to the bottom of the cell container. Specific gravity measurements taken at the top of the cell will be lower than those taken at the bottom. This physical condition is called electrolyte stratification.

Stratification does not materially inhibit the ability of a lead acid battery to deliver power. However, battery performance will be less than optimum and specific gravity measurements must take into consideration the non-homogeneity of the electrolyte. Specific gravity measurements may not reflect the average cell gravity.

There are two ways to eliminate stratification. The first is to provide sufficient time for chemical diffusion. This can take several weeks or longer at float voltage, depending upon the degree of stratification.

A more efficient method is to provide an equalize charge to mix the electrolyte. Gases produced by an equalizing charge agitate the electrolyte, causing the electrolyte to become mixed and more homogenous throughout the cell. The degree of gassing and therefore the equalize voltage are directly associated with the time required for mixing.
1.4 Battery performance tests

Batteries are rated on their ability to deliver a certain number of amperes or watts to the load for a specified amount of time before the battery voltage drops to a final cut off voltage. It is important to recognize that the performance of a cell or battery depends on several factors:

1. the discharge rate
2. electrolyte temperature at the start of the discharge
3. state of charge
4. integrity of the connections
5. operating history and age of battery

Consult your C&D specification sheets for ratings of various cell types.

To be valid, a performance test requires that the following conditions exist:

- A fully charged battery, balanced cell voltages, and specific gravity. In some cases, this may require an equalize charge or, in cases of sulfation, other action. Consult with the C&D Technical Services Department.
- Battery must remain at float voltage for at least 72 hours prior to test. This is especially important following an equalize charge to clear the gases developed at the surface of the plates.
- All connections (inter-cell, inter-row/tier, and/or inter-aisle) must be optimized to their minimum resistance and be within specification limits established in Part 1, Sections 4.6 & 4.7.

The discharge rate depends upon the type of test. For an acceptance or performance test, the discharge rate should be a constant current or constant power load equal to the rating of the battery for a selected test duration and to a final predetermined voltage. In order to facilitate meaningful analysis, any test data submitted to C&D for review must be collected in accordance with IEEE-450 (latest revision) procedures. If the test is run to determine battery capacity, the documentation must demonstrate that the battery was fully charged prior to test. Initial readings as well as discharge readings must be included in the data submitted. All voltage and current measurements must be taken at the battery/cell terminals.

REFERENCE INFORMATION

A complete description of testing vented lead acid batteries is beyond the scope of this manual but is discussed in detail in IEEE STD-450 or supplements and other professional standards.

It is important to recognize that standby batteries are designed for a finite number of discharges. Excessive testing or cycling of the battery can materially shorten battery life. For more information, refer to Part 2, Section 4, Battery Operation, Float Service.
1.5 Connection voltage drop

The importance of the integrity of inter-cell, inter-aisle and inter-row connections has been stated. Loose, dirty, or oxidized connections have higher than normal resistance and increased voltage drop resulting in less reserve time.

Typically, the designed voltage drop between cells should be 30 millivolts or less. Voltage drop between rows for standard (inter-tier/inter-step) cables is typically less than 100 millivolts.

1.6 Measuring connection resistance

Reference Information

IEEE-450 provides a comprehensive description of how to measure connection resistance. Details may be found in the Annex F of IEEE-450.

The preferred method of measuring connection resistance uses a calibrated, digital, low resistance meter (DLRO). See Figure 4.1.7.

To measure connection resistance with a DLRO proceed as follows:

• With the battery on float charge or open circuit (make sure the battery is not on charge or discharging), take measurements post to post; positive post of one cell to the negative post of the next cell.

• Starting at one end of the string, work toward the other end, recording micro-ohm resistance’s and noting connections with unacceptable resistance’s or resistance values that exceed the average by 20 percent. NEVER USE THE DLRO TO TAKE A READING ACROSS A CELL OR THE TERMINALS OF THE BATTERY. THIS COULD SERIOUSLY DAMAGE THE INSTRUMENT.

• Recheck connections that exhibit unacceptable resistance. Clean and re-torque to the original (initial) torque value, when required.

NOTE: Whenever a connection must be disassembled and reworked, be certain to re-torque the connection to the original (initial) installation torque value.

Compare resistance readings with the original installation readings and records taken when the battery was first installed. Connections that still exhibit unacceptable resistance after cleaning and re-torquing may indicate the presence of improperly sized or damaged cables or inter-cell connectors. Contact your C&D representative for assistance.

1.7 Cell type identification

C&D cells may be identified by looking at the label placed on the cover of each cell. The label contains valuable information such as:

1. cell type
2. nominal specific gravity
3. rated discharge time, current and final cell voltage (an average of all cells in the battery)
4. date of manufacture
5. C&D battery order number

Examples of Labels

4JC-05HP SAN
1 Hr. 56.6 AMP to 1.75 VPC
4/19 A # 2502378
SECTION 2 - TROUBLESHOOTING, EXTENDED MAINTENANCE

2.1 General

When properly maintained and charged, lead acid storage batteries should provide many years of trouble-free service. However, despite their inherent dependability, failure to operate or maintain them correctly may lead to damage, shortened life, and possible loss of service. The following addresses some of the typical errors in operation and maintenance:

2.2 Float versus cycle life

Standby batteries are designed and constructed to provide long life in continuous float service. They differ in design significantly from other batteries, such as starting or traction types. Traction batteries are designed to be discharged and recharged daily. In contrast, standby batteries are float charged continuously ready to supply instantaneous power either directly to the load or by way of interfacing electronics.

To assure a battery will perform its intended function, it is strongly recommended that unnecessary testing be kept to a minimum, not to exceed the following:

- an initial acceptance test not to exceed user’s originally specified reserve time.
- a load test not more than once every 12 months to verify battery capacity at user’s originally specified discharge rate.
- a monthly transfer test to verify system load transfer and electrical system performance.

The end user is expected to maintain records of all battery testing and unplanned equipment discharges in order to comply with the requirements of the warranty.

CAUTION

Checking voltage drop with conventional voltmeters requires that measurements be taken while the battery is discharging at its rated discharge current. The resistance may be calculated using Ohm’s law. Note that cycling will shorten the life of the battery. For this reason, the use of digital, low-resistance ohmmeters is recommended. This type of equipment allows the measurement of connection resistance without discharging or cycling the battery.

2.3 Low float voltage and sulfation

A battery that is below the specified float voltage at the main battery terminals will develop sulfated plates. The result of such a condition is a battery left in a partially charged state. The first noticeable signs may be erratic cell voltage. Finally, the plates may become sulfated. This condition can be visually recognized by an experienced battery technician. If recognized in its early stages, sulfate may be removed by providing equalize charge to the battery. In advanced cases, sulfate may be extremely difficult to remove. In cases of advanced sulfation, contact C&D. Sulfated batteries are not fully charged and therefore have not completed the electrochemical reaction of recharge. Accordingly, they will have reduced capability or performance. If allowed to remain in a partially recharged condition for an extended period of time, sulfated batteries may suffer irreversible damage, possibly requiring replacement.

For additional information on recovery of sulfated batteries, contact C&D.
CAUTION

RECHARGE BATTERIES AS SOON AS POSSIBLE AFTER A DISCHARGE. Failure to recharge batteries promptly after a discharge may lead to sulfation or, in the case of deep discharge, to a complete battery failure due to hydration. If charging at equalize voltage is not practical, recharge battery at float voltage.

2.4 Batteries on open circuit

As soon as a battery is removed from a charger, self-discharge begins. This is caused by internal losses in the cell. Lead antimony cells lose charge at a faster rate than corresponding lead-calcium cells. Lead-calcium cells will self-discharge at a rate of one to two percent a month. Therefore, if cells remain on open circuit (with no charging voltage supplied) for prolonged periods, the affected cells may become sulfated and require corrective action. In most cases, an equalize charge is adequate to restore the cells/battery to a satisfactory operating condition. However, in extreme conditions, when the battery is left on open circuit for a very long time, the cells may develop hard sulfate and never fully recharge as mentioned in Part 4, Section 2.3.

2.5 Hydrated batteries

When a battery has been discharged beyond its design limits, and left in a discharged state, it is subject to irreversible damage known as hydration. This is a phenomenon in which the specific gravity of the electrolyte has been depleted to a value so low that it permits the lead components to go into solution, totally destroying the cells. The reaction of dissolution forms many compounds and salts generically referred to as hydrate. These compounds clog the separator pores and upon recharge, react to form metallic lead. As the process continues, thousands of short circuit paths are created. Very often, the effect of the short circuits goes unnoticed except for an observed increase in charging current. As the reaction proceeds, over an extended period of time, the short circuits become so extensive that it is difficult to keep the cells charged. Finally, the cells may experience terminal short circuit failure.

The cells and cell components shown in Figures 4.2.5 and 4.2.6 exhibit the damaging effects of hydration. The battery must be recharged as soon as possible. Battery hydration usually occurs when the load on the battery is much more than the design load current which causes the battery to discharge for extended periods of time at low voltages. This condition allows the battery to discharge to a very low depth of discharge depleting the available acid ions in the electrolyte. The specific gravity of the electrolyte finally approaches that of water.

Typically, if one or more cells in a battery become visibly hydrated, it is only a matter of time before the remaining cells exhibit the same condition.
2.6 Cleaning cell containers

Wipe the outside of the cells as necessary with a cloth moistened with water to remove dust and ordinary dirt. If electrolyte is spilled on the covers, neutralize it with a cloth moistened with a solution of sodium bicarbonate and water mixed in the proportion of one pound of sodium bicarbonate to one gallon of water. When fizzing stops as fresh sodium bicarbonate solution is applied, wipe with a water-moistened cloth to remove all traces of sodium bicarbonate. Covers and containers should be clean and dry at all times.

Never use solvents, detergents, glass cleaners, special battery cleaning materials, oils, waxes or polishes on the plastic containers or covers since these materials may attack the plastic and cause it to craze or crack. Use of any of these materials will void the warranty. Cracks and crazing of the plastic components may not be observed for months, but eventually the condition will occur and in many cases result in large cracks in the containers or covers causing failure and leakage of electrolyte.

2.7 Cell reversal

Excessive deep discharging of a string can result in individual cells driven to negative voltages. On recharge these cells may read as high as 4 volts indicating a high internal resistance. Reversed cell temperatures may rise significantly on recharge and immediate action is necessary to avoid permanent damage to the cell(s). Recharge voltage must be decreased to ensure that the reversed cell(s) do not exceed 3.0 volts or 110°F (43°C). If the cell(s) do not respond to this special charging, it may be advisable to charge the cell individually. An ac-isolated single cell charger is required for this procedure. Contact your C&D representative for additional assistance.

2.8 Flame arrestors, contamination

If electrolyte levels are permitted to exceed the high level mark at full charge, it is possible for electrolyte to be pumped up into the vent and contaminate the porous stone. In such cases it will be necessary to remove the flame arrestor for cleaning or replacing it with another flame arrestor. Adjust the electrolyte level to between the high and low level lines while the battery is on float charge.

Clean the contaminated flame arrestor stone in a mild solution of sodium bicarbonate and water. Provide a final rinse in water and allow the stone to dry. All white deposits should be removed from the stone if the procedure was performed successfully.

2.9 Battery recycling

When a battery reaches 80% of its rated capacity it is typically considered for replacement. Government regulations require that lead acid batteries at the end of their useful life be recycled. It is illegal to dispose of industrial lead acid batteries in the trash. Details of C&D’s recycling program can be found by clicking the “Recycling” link from www.cdehyde.com. Contact C&D for assistance in the recycling of your battery.

2.10 Battery records

As noted throughout this manual, battery records are extremely useful for evaluating the installation, operation and maintenance of the battery over its service life. A form is attached (RS-105) to assist you in maintaining a record of service and to be used for warranty records. It is recommended that you make a photocopy of the original RS-105 in the back of this manual so that additional copies may be made for future records.

2.11 Measurements of internal cell ohmic values (impedance, resistance, and conductance)

The measurement of internal ohmic values utilizes either ac at various frequencies (impedance or conductance) or dc (resistance) measured across the cell terminals to determine the degree of deterioration of the element from a baseline value. C&D considers these techniques most useful for identifying cells with gross defects.

However, some users of vented batteries have chosen to use the impedance, conductance or resistance measurement technique for additional analytical data. It is important that readings be taken periodically in exactly the same location. The readings can only be compared if the cell electrolyte temperature is similar to that of previous readings. Values are then compared against both the initial values, at the time of installation, as well as individual cells of the same age. See IEEE-450, Annex J for further information.
2.12 Plate polarization measurements

The life of a lead acid battery is optimized when it is properly floated at the middle of the recommended string float voltage, operated in a temperature controlled environment and is rarely cycled. Application requirements can make the ideal operating parameters impossible or compromised. To better understand and monitor the health of a flooded lead acid battery, it is possible to measure the plate potentials independent of the float voltage of a given cell.

This technique makes use of an instrument known as a third electrode or reference electrode. The third electrode is inserted into the electrolyte of the cell under examination and voltage measurements are made that may be either direct measurements or converted measurements, depending on the type of third electrode used to record the polarization potentials of the positive and negative plates. It is interesting to note that although a given cell float voltage may be above or below the recommended average value of cells in a battery, the cell may be operating properly. This is because the polarization potentials of the positive and negative plates are within an acceptable range. Third electrode measurement instruments are available in both miniature lead acid cells and mercury-mercurous sulfate cells.

Although the technique has been used almost exclusively by battery manufacturers and research and development laboratories for years or under highly controlled field test conditions, some battery testing organizations have added this test parameter for in-depth customer site evaluations.

Third electrode measurements can inform the experienced battery technician of the following:

1. If the positive plates are properly polarized, excessive plate corrosion will be minimized while still maintaining the plates at a sufficient potential and state of charge to avoid sulfation.

2. It is essential that the negative plates remain fully charged while at the same time not depressing the potential of the positive plates. The correct negative plate potential is dependent on individual manufacturers' design parameters and vary widely due to the addition of organic material (expanders) in the negative plates, depolarizers either added to the electrolyte, or in the case of lead-antimony cells, the transfer of antimony as the cell ages.

2.13 Sedimentation

As the lead-acid battery ages a phenomena occurs that results in an accumulation of positive active material in the sediment chamber of the cell. This is called sedimentation. This occurrence is a natural result of the charging process while the battery is on float charge. During the charging process, the mechanical agitation from the generation of oxygen at the positive plate loosens contact at the surface of the plate, resulting in shedding. The shed active material settles to the bottom of the jar where design space has been provided for the containment of the sediment. As previously mentioned, buildup of sedimentation is a normal part of battery operation. Abnormal sedimentation occurs when the accumulation becomes excessive - the sediment reaches the bottom of the separator material, especially in products at half of their expected life or less. Typically this is the result of discharging the battery too frequently, overcharging the battery for a prolonged time at higher voltages, or failure to temperature compensate the charging voltage in warm environments. An example of excessive sedimentation is shown in Figure 4.2.13.

2.14 Shifted separators

Misaligned separators are the result of an element pack that has allowed separator movement. Figure 4.2.14 shows that a shifted separator will be close to the jar wall on one side. This causes the edge of the plate to be close to the edge of the separator on the opposite side. This is a cosmetic flaw; the operability of the cell is not compromised and the cell remains functional provided plate edges are at least flush with the edges of the separator. As can be seen in Figure 4.2.15, there is no danger of short circuiting between the plates even though the positive plates are nearer to the separators edge than normal.
Recommended torque for customer connections to the terminal plate is 160 ±10/-0 in-lb regardless of the size of the hardware used. Higher torque values are acceptable for larger hardware as follows:

- 3/8-16: 195 inch-lbs ±5 in-lb
- 1/2-13: 225 inch-lbs ±25 in-lb
APPENDIX B - SAFETY DATA SHEET

Please refer to C&D’s website at www.cdtechno.com/resource/sds.html for the latest safety data sheet information; 14-324 Flooded Lead-Calcium Batteries and 14-326 Sulfuric Acid, Battery Electrolyte.

APPENDIX C - SPILL CONTAINMENT

Introduction:

Spill containment systems are used to contain and absorb/neutralize the release of battery electrolyte from damaged lead-acid batteries used in stationary applications. Spill containment systems are designed with a minimal number of components for ease of installation. Components may vary from supplier to supplier, yet all systems produce the same results. Components include a 4" high barrier that is typically bolted to the floor with sealed seams and joints. The floor can either be coated with an epoxy paint or have a protective liner. The barriers and the floor must create a watertight area and must be impervious to the battery electrolyte. Flame retardant, neutralizing and absorbent pillows are the final component of the system. Contact your local C&D representative for additional information.

Compliance:

Spill containment systems are required to comply with various codes used for building safety when stationary lead acid batteries systems have been installed. The decision to use a spill containment systems is based on local, regional, state, or national codes as directed by the authority having jurisdiction (AHJ). C&D does not decide or require the use of spill containment systems for our customers. However, C&D recommends the use of any methods and products that assure building and battery room safety for our customers.

Spill containment systems suppliers:

Spill containment systems offered by C&D, with or without our stationary batteries, are designed to meet or exceed all requirements and specifications set forth by applicable codes pertaining to stationary lead-acid batteries and battery room safety. Our suppliers warrant these products and warranty copies are available upon request. C&D will provide information on the available spill containment systems including any specifications or third party testing and verification, if requested.

Selection:

Consult with your local C&D representative for assistance in properly sizing spill containment systems. For code compliance, the inside barrier area must have a 1” perimeter (2” recommended) around the shadow area of the battery rack. Custom sizes to fit specific room layouts are available by request.

Installation:

Provided with the spill containment system are instructions for proper installation with diagrams and a bill of materials or packing list. In most cases, the installation of spill containment systems should be made prior to the installation of the battery rack. If a spill containment system is to be installed after the installation of the battery rack, please consult with your C&D representative to determine which spill containment system will be best for this situation.
APPENDIX D: GRAPHS

<table>
<thead>
<tr>
<th>Electrolyte temperature (°C)</th>
<th>Electrolyte temperature (°F)</th>
<th>Temperature correction factor</th>
<th>Electrolyte temperature (°C)</th>
<th>Electrolyte temperature (°F)</th>
<th>Temperature correction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>40</td>
<td>1.300</td>
<td>26.1</td>
<td>79</td>
<td>0.987*</td>
</tr>
<tr>
<td>7.2</td>
<td>45</td>
<td>1.250</td>
<td>26.7</td>
<td>80</td>
<td>0.980*</td>
</tr>
<tr>
<td>10.0</td>
<td>50</td>
<td>1.190</td>
<td>27.2</td>
<td>81</td>
<td>0.976*</td>
</tr>
<tr>
<td>12.8</td>
<td>55</td>
<td>1.150</td>
<td>27.8</td>
<td>82</td>
<td>0.972*</td>
</tr>
<tr>
<td>15.6</td>
<td>60</td>
<td>1.110</td>
<td>28.3</td>
<td>83</td>
<td>0.968*</td>
</tr>
<tr>
<td>18.3</td>
<td>65</td>
<td>1.080</td>
<td>28.9</td>
<td>84</td>
<td>0.964*</td>
</tr>
<tr>
<td>18.9</td>
<td>66</td>
<td>1.072</td>
<td>29.4</td>
<td>85</td>
<td>0.960*</td>
</tr>
<tr>
<td>19.4</td>
<td>67</td>
<td>1.064</td>
<td>30.0</td>
<td>86</td>
<td>0.956*</td>
</tr>
<tr>
<td>20.0</td>
<td>68</td>
<td>1.056</td>
<td>30.6</td>
<td>87</td>
<td>0.952*</td>
</tr>
<tr>
<td>20.6</td>
<td>69</td>
<td>1.048</td>
<td>31.1</td>
<td>88</td>
<td>0.948*</td>
</tr>
<tr>
<td>21.1</td>
<td>70</td>
<td>1.040</td>
<td>31.6</td>
<td>89</td>
<td>0.944*</td>
</tr>
<tr>
<td>21.7</td>
<td>71</td>
<td>1.034</td>
<td>32.2</td>
<td>90</td>
<td>0.940*</td>
</tr>
<tr>
<td>22.2</td>
<td>72</td>
<td>1.029</td>
<td>35.0</td>
<td>95</td>
<td>0.930*</td>
</tr>
<tr>
<td>22.8</td>
<td>73</td>
<td>1.023</td>
<td>37.8</td>
<td>100</td>
<td>0.910*</td>
</tr>
<tr>
<td>23.4</td>
<td>74</td>
<td>1.017</td>
<td>40.6</td>
<td>105</td>
<td>0.890*</td>
</tr>
<tr>
<td>23.9</td>
<td>75</td>
<td>1.011</td>
<td>43.3</td>
<td>110</td>
<td>0.880*</td>
</tr>
<tr>
<td>24.5</td>
<td>76</td>
<td>1.006</td>
<td>46.1</td>
<td>115</td>
<td>0.870*</td>
</tr>
<tr>
<td>25.0</td>
<td>77</td>
<td>1.000</td>
<td>48.9</td>
<td>120</td>
<td>0.860*</td>
</tr>
<tr>
<td>25.6</td>
<td>78</td>
<td>0.994*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*C&D recommends to use 1.000 as the correction factor for any temperature above 77°F (25°C)

FIGURE 4.1.3 - Battery capacity versus operating temperature.

![Graph: Life vs Ambient Temperature](image)

FIGURE 4.1.4 - Battery Life versus ambient temperature
STATIONARY BATTERIES AND CHARGERS
INSPECTION REPORT

<table>
<thead>
<tr>
<th>User:</th>
<th>Contact:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Location:</td>
<td>Phone No:</td>
</tr>
<tr>
<td>Other:</td>
<td>Installed By:</td>
</tr>
</tbody>
</table>

BATTERY INFORMATION

<table>
<thead>
<tr>
<th>USER INSPECTION</th>
<th>C&D INSPECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C&D Order No.*</td>
<td>Appearance of Following:</td>
</tr>
<tr>
<td>Date Mfg.</td>
<td>Pos. Post</td>
</tr>
<tr>
<td>Date Installed</td>
<td>Pos. Strap</td>
</tr>
<tr>
<td>Model</td>
<td>Pos. Plate</td>
</tr>
<tr>
<td>Cells x Strings</td>
<td>Neg. Post</td>
</tr>
<tr>
<td>Application</td>
<td>Neg. Strap</td>
</tr>
<tr>
<td>Electrolyte Level</td>
<td>Neg. Plate</td>
</tr>
<tr>
<td>Bus Volts, Portable Meter</td>
<td>Cover rise, (eighths of an inch)</td>
</tr>
<tr>
<td>Bus Volts, Panel, Final</td>
<td>Jar Bulge, (eighths of an inch)</td>
</tr>
<tr>
<td>Top Tier, Cells</td>
<td>Jar Cracks</td>
</tr>
<tr>
<td>Mid Tier, Cells</td>
<td>Sediment Amount</td>
</tr>
<tr>
<td>Bottom Tier, Cells</td>
<td>Sediment Appearance</td>
</tr>
<tr>
<td>Charger Cap & Type</td>
<td>Lubricant observed on rack rails or bottom of cell containers:</td>
</tr>
<tr>
<td>Serial No. Or WO</td>
<td>□ yes □ no</td>
</tr>
<tr>
<td>Room Ambient Temp.</td>
<td></td>
</tr>
<tr>
<td>Watering Interval</td>
<td></td>
</tr>
<tr>
<td>Last Discharge</td>
<td></td>
</tr>
<tr>
<td>Peak Load</td>
<td></td>
</tr>
<tr>
<td>Typical Load</td>
<td></td>
</tr>
</tbody>
</table>

*See Part 4, Section 1.7 for C&D Order No. location

COMMENTS AND RECOMMENDATIONS
Required Maintenance Documents for Warranty

<table>
<thead>
<tr>
<th>BATTERY STATUS</th>
<th>OPEN CIRCUIT</th>
<th>FLOAT</th>
<th>EQUALIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office:</td>
<td>Model:</td>
<td>Date:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+2.000</td>
<td>+1.000</td>
<td></td>
<td>Ω</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Record the intercell connection resistance

Note: Measure and record string charge current (amps) after 96 and 100 hours equalization or 68 and 72 hours float.

Form RS 105-Rev. 6 2003