
W H I T E P A P E R

 THE PROS AND CONS OF
BUILDING

REAL-TIME APPLICATIONS
 WITH SOCKET.IO

2

More and more businesses are leveraging chatbots and video conferencing to power real-time
customer interactions. As customers embrace these new technologies, development teams must
ensure applications can support increasing demand. But that’s easier said than done—numerous
performance and security issues come with unregulated traffic spikes.

Open-source libraries like Socket.io make it easier for dev teams to quickly and reliably implement
real-time capabilities. However, socket infrastructure isn’t reliable when managing increasing
workloads. So, how can dev teams ensure applications can meet growing demands in realtime?

Before we jump into the details, let’s start by understanding what it means to scale your application.

Scalability is a system’s ability to adapt its performance to changes in the number of users,
transactions, or data volume. It allows systems to handle two scenarios efficiently:

1. When your workload increases, you can scale up to support new requirements. Your application’s
performance remains consistent, and customers can enjoy high-quality
user experiences.

2. When your workload decreases, you can scale down so the application uses only the required
resources and runs cost-effectively.

Scaling real-time applications like a chat app, chat room, or multiplayer game comes with challenges.

Scaling up allows your system to manage increasing workloads and adds additional server load.
Estimating workloads accurately enables dev teams to evaluate if the current server architecture can
support the extra workload.

As the number of users increases, your application may underperform. Available resources may
not be able to support the surge in demand. Ensure your infrastructure can handle the expanding
workload to offer exceptional user experiences.

Introduction

What is scalability?

Challenges of scaling real-time applications

Performance issues

Infrastructure limitations

3

Effective data management fuels real-time capabilities. Design your system to easily scale up to
handle increasing data volumes with more users and requests.

Data management challenges

Scalability can increase application development costs. Addressing all the above challenges adds to
the overall cost, considering investments in new infrastructure, hardware, software, and labor.

Increased costs

The benefits scalable real-time systems offer make them worth the investment.

Developers can save time on additional development by designing the system to scale server
capacity to meet workload requirements with just a few clicks.

Scalability allows real-time applications to respond faster to spikes in demand. Extra resources are
only used when needed.

Although implementing scalable solutions can be expensive, you can design your applications to
scale only when necessary. This way, you only pay for what you use and avoid purchasing extra
equipment.

Benefits of a scalable real-time system

Improved convenience

Increased speed and flexibility

Reduced cost

Created in 2010, Socket.io is an open-source library that facilitates full-duplex, bi-directional
communication between web clients and servers. It’s very similar to WebSockets. In fact, it builds on
the WebSockets protocol, providing additional capabilities like automatic reconnection and fallback to
HTTP long polling.

Although most browsers today support WebSockets, Socket.io is still viable. So even if you decide
to use WebSockets for your web application eventually, you’ll need to implement features like
reconnection, acknowledgments, and broadcasting.

What is Socket.io?

https://www.pubnub.com/learn/glossary/what-is-socketio/
https://www.pubnub.com/guides/what-are-websockets-and-when-should-you-use-them/
https://caniuse.com/mdn-api_websocket
https://stackoverflow.com/questions/73046322/is-socketio-good-to-use-in-production-website

4

Socket.io offers battle-tested features for creating reliable real-time applications.

HTTP long-polling fallback
HTTP long polling is a variation of standard polling. It duplicates an HTTP server pushing
messages to a client (or browser) more efficiently.

The Socket.io framework first tries to establish a long polling connection, and then tries to
upgrade to a WebSocket connection if possible. It uses this approach because establishing
a WebSocket connection isn’t guaranteed with firewalls and antivirus software in play.

Automatic reconnection
When using WebSockets, the connection can be interrupted under particular conditions
without the client and the server knowing.

Socket.io works around this by including a heartbeat mechanism that periodically checks the
connection status. If the client gets disconnected, it automatically reconnects to the server
and uses a back-off delay to prevent multiple reconnection attempts.

Packet buffering
If the server disconnects from the server, Socket.io automatically continues buffering events
and sends them when the client reconnects. However, this could result in a huge spike in
events. Using connected attributes for the Socket instance and volatile events, you can
prevent this.

Acknowledgments
Socket.io offers a request-response application programming interface (API) called
Acknowledgements. It is a convenient way to send an event and receive a response. You
can even design custom responses to events and add request timeouts to make the process
more efficient.

Broadcasting
As the name suggests, Broadcasting is the process of sending an event to all connected
clients or a subset of clients. This also works when scaling to multiple Socket.io servers.

Multiplexing
Multiplexes (called Namespaces in Socket.io) allow you to split the logic of your application
over a single shared connection. It is useful when creating channels only select users can
access, like admin or membership channels. Each multiplex will have its own event handlers
(emitters and listeners), rooms, and middleware.

Key features of Socket.io

https://socket.io/docs/v3/emitting-events/#acknowledgements
https://socket.io/docs/v3/broadcasting-events/
https://socket.io/docs/v4/namespaces/
https://socket.io/docs/v4/listening-to-events/
https://socket.io/docs/v4/rooms/
https://socket.io/docs/v4/middlewares/

5

Socket.io uses two transport methods to enable socket connections:
• HTTP long-polling
• WebSockets

How does Socket.io work?

Socket.io automatically selects the best available option, depending on browser and network
capabilities. But usually, the HTTP long-poll connection is established first, followed by the WebSocket
connection.

NOTE: Socket.io goes with HTTP long polling first because, although more popular, WebSockets
aren’t supported on all browsers. So, long-polling is done first to guarantee successful connections
and reduce load times.

When the WebSockets connection is established, HTTP long-polling will act as the fallback so you can
confidently continue delivering great real-time experiences.

Socket.io framework

The Socket.io codebase is divided into two distinct layers: Engine.io and the Socket.io protocol.

Engine.io is the underlying transport layer used by Socket.IO. It’s a realtime bidirectional
communication engine that enables a persistent connection between the server and the client.
Engine.io provides the foundation for Socket.IO’s real-time capabilities by handling the low-level
communication protocol and managing the connection between the client and the server.

Engine.io uses various transport mechanisms, such as WebSocket, HTTP long-polling, and AJAX,
to ensure reliable and efficient client and server communication. It automatically selects the most
suitable transport mechanism based on the capabilities of the client and the server.

WebSocket provides a full-duplex communication channel over a single TCP connection. This allows
for real-time bidirectional communication with low latency and overhead.

In cases where WebSocket is not supported or available, Engine.io falls back to HTTP long-polling,
which involves the client continuously sending requests to the server and the server holding the
response until new data is available. This allows for real-time communication even in environments
where WebSocket is not supported, such as older web browsers or restrictive network configurations.
AJAX is another fallback mechanism used by Engine.io. It involves sending asynchronous
HTTP requests from the client to the server regularly to check for new data. While AJAX-based
communication is not as efficient as WebSocket or long-polling, it can still provide a basic level of real-
time functionality in situations where other mechanisms are unavailable.

The Socket.io protocol delivers additional features (automatic reconnection, packet buffering,
acknowledgments, etc.) using the communication channel established by Engine.io
However, you need to host and maintain your cluster of servers when building out your Socket.io
application.

Check out how PubNub can help you establish a reliable Socket.io framework.

https://socket.io/docs/v4/socket-io-protocol/
https://socket.io/docs/v4/engine-io-protocol/
https://socket.io/docs/v4/socket-io-protocol/
https://www.pubnub.com/blog/pubnub-takes-socketio-next-level/

6

When building real-time apps, developers often turn to Socket.IO for its powerful features and
flexibility. However, it’s important to consider the architectural patterns that can be implemented with
Socket.IO to ensure a scalable and secure platform. Here are some to consider:

Server-Centric Architecture
In this pattern, the server plays a central role in handling and managing real-time communication.
Clients connect to the server using Socket.IO and send messages that are broadcast to other
connected clients. The server is responsible for maintaining the state of each client and managing the
connections. This architecture is useful for applications where the server needs full control over the
communication and ensure data consistency.

To set up a server-centric architecture with Socket.IO, you can follow the steps outlined below:

In your server-side code, import the Socket.IO module and initialize it with your server instance.
Here’s an example using Express.js as the server framework: (see next page)

Architectural Patterns & Considerations

Socket.io Architectural Patterns

STEP 2: Initialize Socket.IO in your server code

STEP 1: Install Socket.IO

First, make sure you have Node.js installed on your system. Then, you can install Socket.IO by running the
following command in your terminal or command prompt:

npm install socket.io

7

const express = require(‘express’);
const app = express();
const http = require(‘http’).createServer(app);
const io = require(‘socket.io’)(http);
// Your server code here
http.listen(3000, () => {
 console.log(‘Server listening on port 3000’);
});

io.on(‘connection’, (socket) => {
 console.log(‘A client connected’);
 // Listen for incoming messages from the client
 socket.on(‘chat message’, (message) => {

console.log(‘Received message:’, message);
// Broadcast the message to all connected clients
io.emit(‘chat message’, message);

 });
 // Handle client disconnections
 (socket) => {

console.log(‘A client disconnected’);
 });
});

With Socket.IO initialized, you can start handling client connections and messages. Here’s an example
of how you can listen for client connections and receive and send messages:

STEP 3: Handle client connections and messages

8

You can set up a Socket.IO connection on the client-side by including the Socket.IO library in your
HTML file and connecting to the server. Here’s an example:

STEP 4: Set up client-side Socket.IO connection

// Connect to the server
const socket = io();
// Handle form submission
document.getElementById(‘chat-form’).addEventListener(‘submit’, (e) => {
 e.preventDefault();
 const messageInput = document.getElementById(‘message-input’);
 const message = messageInput.value;
 // Send the message to the server
 socket.emit(‘chat message’, message);
 // Clear the input field
 messageInput.value = ‘’;
});
// Listen for incoming messages from the server
socket.on(‘chat message’, (message) => {
 const messageElement = documentquerySelector(‘#messages’);
 const newMessage = document.createElement(‘li’);
 newMessage.textContent = message;
 messageElement.appendChild(newMessage);
});

You can enhance your chat application by adding features like user authentication, private messaging,
and typing indicators. Here are a few examples:

STEP 5: Enhance the chat application

User authentication:
You can use a library like Passport.js to handle user authentication and authorization in your chat
application. This will allow you to authenticate users and restrict access to certain features or chat
rooms.

Private messaging:
You can implement private messaging by creating separate chat rooms for individual users or groups.
When a user sends a chat message, you can use Socket.IO to only send the message to the specific
recipient(s).

9

Typing indicators:
To show typing indicators in your chat application, you can listen for the “typing” event on the client
side and emit the event when a user starts or stops typing. On the recipient’s end, you can display a
typing indicator to indicate that the sender is currently typing a message.

Peer-to-Peer Architecture
In a peer-to-peer architecture, Socket.IO establishes direct connections between clients without
relying heavily on the server. Clients can send messages directly to each other without going through
the server, which reduces latency and server load. This architecture is suitable for applications where
clients need to communicate with each other directly, such as multiplayer gaming or file-sharing
applications.

To set up a Peer-to-Peer (P2P) architecture with Socket.IO, you can follow these steps:

Peer-to-peer architecture allows direct communication between clients without needing a central
server. In this architecture, each client can act as a client and a server, enabling them to send and
receive data directly.

First, you must set up a Socket.IO server to handle the initial connection and facilitate the P2P
communication. You can use Node.js and the Socket.IO library to create the server. Install Socket.IO
using npm:

Create a server.js file and import Socket.IO:

STEP 1: Understand Peer-to-Peer Architecture

STEP 2: Set up Socket.IO Server

npm install socket.io

const io = require(‘socket.io’)();

10

Set up the connection event listener:

io.on(‘connection’, (socket) => {
 // Handle incoming connections
});

Inside the connection event listener, you can handle the logic for establishing the P2P connection
between clients. When a client connects to the server, you can save its socket ID and listen for
specific events.

To establish a P2P connection, you can emit a custom event from the client side when a user wants
to initiate a connection. For example, when a user wants to start a chat with another user:

On the server side, you can listen for this event and handle the logic to establish the P2P connection
between the two clients. You can use the socket IDs to send messages directly between the clients
without involving the server.

STEP 3: Establish P2P Connection

socket.emit(‘start-chat’, otherUserId);

Once the P2P connection is established, you can handle the communication between clients.
You can listen for custom events on both the client and server sides to exchange messages, files, or
any other data.

For example, when a client wants to send a message to another client: (see next page)

STEP 4: Handle P2P Communication

socket.emit(‘send-message’, { recipientId: otherUserId, message: ‘Hello!’ });

11

On the server-side, you can listen for this event and send the message to the recipient client:

socket.on(‘send-message’, ({ recipientId, message }) => {
 // Find the recipient client by their socket ID

 const recipientSocket = io.sockets.connected[recipientId];
 // Send the message to the recipient client
 recipientSocket.emit(‘receive-message’, { senderId: socket.id, message });
});

Lastly, you need to handle P2P disconnections. When a client disconnects from the server, you should
remove its socket ID from the saved connections. You can use the ‘disconnect’ event to handle this:

This code snippet provides a basic example of how to set up a real-time chat application using the
Socket.IO library in JavaScript. The steps outlined guide developers through establishing peer-to-peer
connections, handling communication between clients, and managing disconnections.

STEP 5: Handle P2P Disconnection

socket.on(‘disconnect’, () => {
 // Remove the socket ID from the saved connections
});

Hybrid Architecture
The hybrid architecture combines both server-centric and peer-to-peer patterns. Clients connect to
the server using Socket.IO but can also establish direct connections when necessary. This allows for a
balance between centralized control and direct communication between clients. Hybrid architectures,
such as video conferencing or social networking platforms, are commonly used in applications
requiring real-time broadcasting and one-on-one communication.

To set up a hybrid architecture with Socket.IO, you can follow these steps:

12

Before starting the implementation, it is important to design your hybrid architecture. Determine which
components of your application will be running on the server side and which will be running on the
client side. This will help you understand how Socket.IO fits into your overall architecture.

To establish peer-to-peer connections, you must save the socket IDs of connected clients on the
server. When a client connects to the server, their socket ID is saved. This can be done using the
‘connection’ event in Socket.IO.

On the server side, you must set up a Socket.IO server to handle real-time communication. You
can use a framework like Node.js with Express to create the server. Install the Socket.IO library and
initialize it in your server code.

Once the peer-to-peer connection is established, clients can communicate directly without involving
the server. Clients can send messages to each other by emitting a custom event, such as ‘send-
message’, from the client side. Listen for this event on the server side and send the message to the
recipient client using their socket ID.

When a client disconnects from the server, their socket ID should be removed from the saved
connections to avoid memory leaks. This can be done using the ‘disconnect’ event in Socket.IO.
Handle this event and perform the necessary cleanup by removing the disconnected client’s socket ID
from the saved connections.

In addition to the steps mentioned above, developers can also leverage the features provided
by Socket.IO, such as rooms and namespaces, to create more complex and advanced real-time
applications.

Rooms allow for grouping clients and sending messages to specific groups, while namespaces
provide a way to separate different parts of the application and handle communication within those
parts separately.

Socket.IO also supports various transport mechanisms, such as WebSocket, HTTP long-polling, and
AJAX, ensuring that the application can adapt to different network conditions and provide a seamless
real-time experience for users.

STEP 1: Design your architecture

STEP 3: Establish peer-to-peer connections

STEP 2: Set up the server

STEP 4: Handle peer-to-peer communication

STEP 5: Handle P2P disconnection

13

A load balancer distributes incoming messages among a group of servers while returning the
response from the selected server to the appropriate client. It tries to get the most out of each
server’s capacity. It offers benefits like:
• Preventing server overload to ensure consistent performance
• Ensuring quick responses to provide a great user experience

Architectural Considerations

Horizontal vs. vertical scaling

When an existing system fails to handle increasing workloads, possibly the most common and
effective scaling options for any cloud application are horizontal and vertical scaling.

Horizontal scaling refers to adding additional servers or nodes to your infrastructure to support
growing demands. Meanwhile, vertical scaling adds new resources to the existing system to manage
the increasing workload.

You can use both approaches to scale your Socket.io application, but if you’re looking to scale
indefinitely, vertical scaling may limit how much you can grow.

Horizontal scaling may be the better option for scaling Socket.io, especially if you want to future-proof
your application and reduce the chances of downtime. However, horizontal scaling also introduces
some technical complexity. Servers must share the burden evenly to avoid any latency. This is where
load balancers and reverse proxies come in.

Load balancers and reverse proxies

Both reverse proxy and load balancers are intermediaries in a client-server architecture, working to
make data exchange more efficient.

Load balancer

Reverse proxies accept requests from a client using edge devices and forward them to the correct
server. They offer benefits like:
• Preventing malicious attacks targeting server information
• Giving you the freedom to configure backend infrastructure

Reverse proxy

https://www.pubnub.com/guides/load-balancing/
https://www.pubnub.com/guides/vertical-horizontal-scaling/

14

Although, at first glance, they perform similar functions, load balancers and reverse proxies differ in a
very important aspect. Load balancers are commonly deployed in instances involving multiple servers,
while reverse proxies work best with just one web or application server. This difference also defines
how Socket.io applications use them.

• When implementing load balancers, choose the right algorithm for your use case when
distributing requests across servers. This ensures minimal latency and bandwidth costs during
data exchange.

• Remember to set proper expiration dates for your reverse proxy caches so your application
doesn’t use outdated cache data to deliver real-time experiences.

• Configure security requirements for load balancers and reverse proxies to ensure your Socket.io
application is safe from external attacks.

Difference between load balancers and reverse proxies

Best practices for implementing load balancing and reverse proxies

A quick note for those following along
It should be noted that the code we shared earlier in this white paper designs a single, non-
durable system, and therefore, will not support load balancing without additional considerations.

One solution would be to implement a Sharding strategy that uses a Shard Key to allow
connectivity to users who need to exchange information. This is required for a production scale
system which enables high availability for a real-time system.

Another solution would be to simply use PubNub. Instead of needing to create a consistent,
key-based load-balancing deployment, PubNub is built in a way that is designed for high
concurrency and availability.

LOAD BALANCERS ARE
USED WITH WEBSOCKETS

BECAUSE:

They offer better fault
tolerance and reliability.

They ensure even
distribution of server load.

They minimize latency and
maximize throughput.

REVERSE PROXIES ARE
IDEAL FOR HTTP

LONG-POLLING BECAUSE:

Great fallback to
load balancers.

They work very well
with APIs.

They can maintain
connections to a

single server.

15

Microservices are smaller services that can be combined to create a more extensive application.
These smaller services make it easier to scale as you only need to work on the microservice that
needs updates while others continue to function independently.

However, microservices bring plenty of development and workflow complexities:
• Many individual services make it difficult to trace bugs or errors.
• Establishing proper communication channels and processes to streamline workflows is vital for

faster development. Microservices require multiple teams with varying expertise.
• Group testing microservices is difficult because they usually don’t use the same programming

language. Ensure you have the right testing tools available.

To get the best out of your Socket.io applications, make sure to manage the following:

Microservices

Best practices for building scalable Socket.io applications

Whenever you send or receive a message from the backend, you’ll expend resources to open,
maintain, and close connections to the database. Your application’s performance may deteriorate
because of the large overhead.

Connection pooling uses a reusable database connection cache to store data. Using cache data,
applications can scale efficiently to manage increases in server requests instead of opening and
closing connections every time.

Connection pooling consists of two types of connections:
• Active connections that the application is using
• Idle connections that the application has available for use

When a new request comes in, the pool manager will look for any idle connections to handle the
request. If all connections are active, it will add a new connection to the pool. If the pool is at its
maximum capacity, the new requests will be queued until a connection becomes available.

An application’s “state” is how it tracks and handles system information at any time. Ensuring an
application functions correctly and provides a seamless user experience is essential.

Poor state management can hinder application scaling because data may be scattered or not properly
synchronized. This means introducing new updates or features will become more difficult.

Connection optimization

State management

16

Using a stateless architecture can circumvent this issue. That’s because the state of older transactions
isn’t stored on the server side or referenced in subsequent transactions. Instead, this architecture
stores data on the client side while sending “reminders” to the server about previous steps and
additional information.

Designing and implementing stateless architecture is relatively straightforward. Still, a few things to
remember to ensure it functions optimally:
• If the workload increases exponentially, share the load evenly among the servers. You can do this

using a load balancer.
• Session-related bugs are hard to fix, as cookies and other session data are stored on the server.

Try to avoid sessions as much as possible.

Every application backend is connected to a database to manage user data. But your database has
limits, and as your application becomes more popular, ensure your database can also handle the
increased workload effectively and cost-effectively.

Consider opting for database applications with automated scaling capabilities like MongoDB and
Cassandra to scale effortlessly. They can automatically adjust their capacity to handle sudden
workload spikes, making them very useful in large-scale applications.

Scalable databases

Traffic spikes are increases in workload significantly more than the application’s average. You may
experience spikes in various forms, including:
• Database load spikes
• Concurrent user increases
• Database storage limitations
• Multiple HTTP requests
• Cache overload

Though you can’t avoid traffic spikes, you can prepare your application to handle them.

Handling real-time traffic spikes

Understanding your application’s load limits ensures you always deliver the best user experience. You
can measure your load limit by establishing two baselines:
• The maximum load your application can realistically handle without compromising performance.
• The average load your system can handle under normal conditions.

Methods like load testing and analyzing historical data can help you establish the application’s
capacity by measuring key performance indicators (KPIs) like response time, throughput, error rate,
and availability.

STEP 1: Define your capacity

17

Estimating how much load your system will have to manage over time will help you plan your scaling
strategy and prepare for any unexpected scenarios. Using data on seasonal trends, company plans,
and user behavior, you can create forecasting models and scenario planning to predict future
application workloads.

Once you’ve established your baseline and predicted workloads, the next step is to assess if your
hardware, software, and supporting network components can handle the workload increase. You
can allocate resources effectively using capacity planning models and simulations. They will also
help predict future costs, performance issues, and the security risks associated with scaling your
application.

Despite in-depth planning and flawless execution, there is always a chance of problems when dealing
with unregulated traffic spikes. Continuous monitoring is the best way to detect any anomalies
affecting your system. You can monitor your system performance by analyzing system logs, setting
alerts, and creating dashboards to identify and troubleshoot any unexpected behavior.

Subscription-based SaaS companies, like Netflix and Amazon Prime, regularly deal with the problem
of account sharing, where multiple users use the same account. To tackle this, SaaS companies
look for a security pattern that allows only one connection per authenticated user while using a data
stream network like SocketIO for NodeJS.

PubNub’s Data Stream Network uses one of two methods to prevent multiple logins on one account:
• Force Remote WebSocket Logout: To revoke previous login permissions when a new user logs in.
• Block Access While WebSocket Subscription in Use: To prevent new logins when a user is already

logged in.

PubNub has the core services to build a reliable geo-redundant signaling solution for WebSockets,
XMPP, BOSH, Comet, HTTP long-polling, etc. It is compatible with most programming languages,
including Android Java, iOS Objective-C, and JavaScript Web/Mobile.

Check out our complete guide here.

STEP 2: Forecast your demand

STEP 3: Plan your resources

STEP 4: Monitor your system

Real-world use cases: How SaaS companies use PubNub with Socket.io connections to
prevent account sharing

https://www.pubnub.com/solutions/data-streaming/
https://www.pubnub.com/blog/mitigate-and-prevent-subscription-sharing-for-saas-companies/

18

Performance and network security are essential for delivering phenomenal user experiences. Real-
time applications must regularly track the application’s health using real-time monitoring tools, which
track and record data on KPIs like:
• Bandwidth usage
• Latency
• Error states
• Server response time
• CPU usage
• Network traffic volume

These tools use devices like sensors, probes, monitoring servers, and cloud-based monitoring
platforms to track these metrics effectively. The aggregated data is usually presented in customizable
analytics dashboards for easy comprehension and troubleshooting. You can also integrate with
existing diagnostics and incident management systems for a more holistic understanding.

Every metric being tracked has a predefined threshold that, if exceeded, will trigger a warning or
alert in the system. This warning signal lets you know of imminent failure so you can take preventive
measures before your system fails.

Development teams should continuously monitor the effectiveness and efficiency of their real-time
monitoring strategy, regularly reviewing monitoring parameters, alerting thresholds, and responses.

Monitoring and optimizing performance in scalable
real-time applications

Sharing data in real time between two or more devices opens up a can of security threats. The more
aware development teams and organizations are of these threats, the better their chances of avoiding
security incidents.

Here are a few common security threats for real-time applications:

Security considerations in scalable real-time applications

Cross-site scripting (XSS) attacks hack into privileged accounts by forging cookies to imitate
valid users. Once logged in, malicious actors can use the accounts to alter content and
perform other actions. There are three types of XSS attacks:
• Reflected attacks that use dummy links and sites to send malicious scripts to the

victim’s browser
• Document Object Model-based attacks that inject malicious payloads into a webpage

by manipulating the client’s browser
• Stored XSS attacks that use unsanitized user inputs to target scripts permanently stored

on target servers

Cross-site scripting attacks

https://www.techtarget.com/searchsecurity/definition/cross-site-scripting

19

In development, a buffer is a region that temporarily holds data being moved from one
place to another. A buffer overflow attack exploits vulnerabilities when more data is added
than it can hold, allowing attackers to crash, control, or modify the system. In-house
applications are the most vulnerable to buffer overflows. Most commercial applications have
identified and released patches to mitigate buffer vulnerabilities.

Buffer overflow attacks

Access control is a security protocol that decides which users can access certain resources
in a system. Without efficient access control, malicious users can masquerade as valid
users to infiltrate the system. You can protect your system by introducing principles of least
privilege and role-based access control. These limit user access rights to the bare minimum
necessary for job function.

Broken access control vulnerabilities

Use Socket.io middlewares
Socket.io offers middlewares that can perform various functions to protect your data from malicious
attacks. Middleware functions can be used for:
• Logging
• Authentication/authorization
• Rate limiting

Avoid tunneling
Socket.io uses tunneling to route HTTP/HTTPS requests from a public server to your local server.
However, using public networks with Socket.io opens up your application to malicious attacks. Avoid
public networks whenever possible. Instead, use other secure and verified protocols.

Use SSL/TLS encryption
Secure Sockets Layer (SSL) is a standard protocol to create secure connections between two devices
or applications in a network. It prevents hackers from stealing personal and financial data. Transport
Layer Security (TLS) is a more advanced version of SSL. It supports encrypted communication
channels that address SSL vulnerabilities. TLS allows for more efficient authentication, faster
handshakes, additional support messages, and more advanced message authentication.

Socket.io is vulnerable to external attacks. To get the most out of Socket.io, take steps to avoid
common pitfalls and errors.

Best practices for securing your Socket.io application at scale

20

IntelliScape.io is a platform offering Internet of Recognition (IoR) solutions. Initially, they relied on
Google’s Firebase and socket development tools like Socket.io for data integration. However, building
real-time data stream networks to scale their systems was extremely complex and expensive.

Eventually, the team decided to go with PubNub, as it offered 50+ software development kits (SDK)
provisioning access keys, channels, and functions to transmit IoR analytics events to customer
dashboards in realtime.

Case studies: Augmenting Socket.io applications with PubNub

Case Study 1: How IntelliScape.io uses PubNub functions to power its global IoR network

Socket.io alone is great for establishing real-time data streaming connections for Node.js. But when
used with PubNub, Socket.io can enhance connections using other real-time features like:

Data streaming
Achieve publication and subscription to real-time data streams in less than one-tenth
of a second.

Presence
Determine who is present by actively monitoring and detecting the connection status of
users and devices.

Storage and playback
Effectively store, retrieve, and replay messages in realtime in the order that they occurred.

Analytics
Visualize and oversee real-time traffic and usage for comprehensive insights.

Cross platform
Serialize and deserialize intricate objects automatically, even when working across diverse
programming languages and platforms.

Security and access management
Enhance security with AES data encryption and implement a robust grant/revoke framework
to ensure only authorized users can subscribe to real-time data streams.

How Socket.io and PubNub are evolving to meet future
scalability needs

https://www.pubnub.com/customers/intelliscape-internet-of-recognition/

21

Disprz is an employee development and engagement platform with a mission to enhance sales and
customer service through personalized and gamified knowledge delivery.

Disprz initially built the platform in-house using Socket.io and other open-source components but
soon faced scalability and performance challenges as they introduced new features like group chat
rooms, send messages, and a collaborative whiteboard.

PubNub allowed Disprz to deliver these real-time services on top of Socket.io protocols. The company
transitioned from the in-house Socket.io stack to PubNub services seamlessly, thanks to PubNub’s
excellent documentation and responsive customer support.

Since adopting PubNub, Disprz has achieved its scalability goals without compromising performance,
even as its user base grows by 30% quarter over quarter.

Looking ahead, Disprz is poised for international expansion, targeting the U.S. market while continuing
to grow its real-time user base in India. PubNub’s global redundancy, featuring 15 points of presence
worldwide, positions PubNub as a crucial partner to support Disprz’s ambitious growth plans.

Case Study 2: Disprz uses PubNub to empower a more knowledgeable workforce

With PubNub, IntelliScape.io significantly accelerated development cycles, often achieving
production-ready solutions in less than a week. PubNub also offered other clear advantages:
1. Integrated within server nodes to enable real-time voice data conveyance with minimal latency
2. Powered real-time responses to voice requests for IntelliScape.io’s voice recognition service,

Galaxy
3. Integrated data seamlessly with enterprise platforms like Microsoft Azure Hub and IBM’s Bluemix

PubNub allowed IntelliScape.io to stay laser-focused on its customers’ needs by maintaining its real-
time infrastructure, making it an invaluable component of its IoR platform.

Users expect real-time interactions, and developers are rushing to meet this demand, driving
innovation in the real-time application space. Keeping up with the latest trends is the best way to
provide users with the best user experience.

The future of scalable real-time applications

1. Case-specific databases
Previously, all data, regardless of type or use case, was stored in a single data store. This was
inefficient and dev teams moved to customized database applications that enable specific use cases.
This approach turned out to be more effective, flexible, and future-proof. Moreover, it complied with
data governance and compliance standards.

https://www.pubnub.com/customers/disprz/

22

2. Low- or no-code platforms
Low-code or no-code platforms are the latest trend in application development. They enable even
non-technical users to develop applications without any prior development experience. They also
allow organizations to create and deploy useful applications quickly and easily. However, you may
need to compromise on flexibility since you’re limited by the capabilities of the application itself.

3. Enforcement of data governance policies
With easier access to data, governments and consumers are concerned with how organizations use
and safeguard data. Ensuring compliance with data governance policies is critical for organizations to
continue their data streaming operations.

Plug into Socket.io and scale your real-time applications

The importance of scalability in real-time applications cannot be overstated. It allows applications to
adapt to changing workloads while delivering high-quality user experiences cost-effectively.
However, scalable real-time applications introduce development and workflow complexities. Dev
teams will find overcoming these complexities worthwhile, considering scalability’s numerous
performance and user experience benefits.

PubNub’s integration with Socket.io enhances real-time concurrent connections by providing features
like rapid data streaming, presence monitoring, storage and playback, analytics, cross-platform
compatibility, and robust security and access management.

Reach out to us to learn more about how PubNub can take your Socket.io real-time application to the
next level. Or start your free trial to see the magic yourself.

https://www.pubnub.com/company/contact-sales/
https://admin.pubnub.com/#/register

