
1

C

The Definitive Guide to

In-App Chat

04 The Different Flavors of Chat

06 The Current Landscape of Chat

08 Choosing a Chat Service Provider: Current Landscape

11 Questions to Ask Yourself When Choosing Your Chat Service Provider

12 Choosing Your Chat Service Provider: Open-Source vs. Hosted

17 Chat of the Future, and What Users Crave

18 Expected Features of Any Chat App

19 Chat Features to Set Yourself Apart

25 Conclusion

Table of
Contents

Chat has hit the mainstream.
In what started as simple 1:1
and group chat, messaging
has become the place for
real communication. Doctor
consultations, classrooms,
collaboration... the list goes on.
As the innovations flow, realtime
online communication embeds
itself further in our day-to-day.

Which brings us to this. This
eBook will give you a 360-degree
view of chat app development,
deployment, and scale—and why
chat can serve any industry.

4

Chat isn’t just hot air. From telemedicine
apps, to customer support, to the realm-
wide conversations of online games, there
is a vast variety of ways in which we now
communicate in realtime online—or, simply,
chat. Each of these different ways of using
chat has dramatically different features,
regulations, and requirements.

›››

The
Different
Flavors
of Chat

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 5

Take healthcare. If you’re building a healthcare chat app

and sending personal health information (PHI), you’d better

be ready to build some stringent security safeguards, and

complex regulatory compliance measures. At the very least,

you’ll need to ensure that your app is HIPAA-compliant and that

authentication measures are rock solid... all so people can chat.

Or take massively multiplayer game chat, where thousands of

users are interacting simultaneously. Scale is everything: there

has to be a reliable and steady user experience, complete with

individual breakout rooms and channels, all of which run lightning

fast and without a break in the action. And with so many users,

you’ll need machine-learning features like sentiment and language

analysis, to analyze and filter out profane messages—and maybe

even realtime translation to connect players around the globe.

The latest trend dominating the chat space is chatbots: artificial

intelligence-driven systems that can have natural language

conversations with humans despite being no more than code—and

whose capabilities continue to grow.

From simple, rule-based automated responses, to using deep

machine learning and AI, chatbots have appeared in chat apps

across the spectrum with the purpose of assisting users in a

number of ways. They can search, analyze, filter, augment, and aid

based on voice and text inputs, and this functionality is finding its

way into applications like customer support, retail, and travel.

With so much variety between apps, it should come as no surprise

that there are a number of technologies needed to build the most vital

features. Careful vetting should take place to ensure that the solution(s),

APIs, and infrastructure you choose to build and power your chat app

fulfill your audience’s unique requirements, otherwise you’re looking

at hefty delays in time to market, higher costs, and scalability issues.

6

When you’re building a chat application
of any kind — mobile group messaging,
multiplayer in-game chat, or customer
support and chatbots — choosing the right
platforms, frameworks, and protocols can
make or break your business.

›››

The
Current
Landscape
of Chat

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 7

That’s because deciding whether to build or buy a chat app isn’t binary.

The days of making a decision to do-it-yourself or buy from a vendor

are gone.

The question is: how much do I want to spend on building the basics,

and how much do I want to spend on building amazing new features

by orchestrating existing tools and infrastructure?

Between open-source, IaaS, PaaS, SaaS, SDKs, APIs and microservices,

businesses have never had more options for ingredients to build their

chat products. And the range of choices is widening at a dizzyingly

rapid pace.

As cloud computing becomes more accessible, predictable, and

affordable, innovative companies are working out how to solve

specific problems in an entirely off-premise way, driving down costs

while improving time-to-market and time-to-innovation. To keep up,

development teams are working hard to understand the vendor

landscape, along with the benefits and challenges of each option

before them.

Developers and organizations can make all kinds of false starts and

troublesome early decisions choosing chat or messaging platforms—

precisely because the technology is so new, and so broadly defined.

In the next section, we’ll discuss a number of different chat application

types and look at the different platform options for powering and

delivering messaging apps. We’ll also discuss challenges that can arise

from making certain decisions throughout the development cycle, like

scalability, time to market, and time to innovation.

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 8

CHOOSING A CHAT SERVICE PROVIDER:
CURRENT LANDSCAPE

There is a wide variety of options for chat providers, ranging from

the least to the most comprehensive, and the most to the least

configurable. You have open-source on one end and fully built out

(SaaS) solutions on the other. With hundreds of options in between, all

with different pros and cons, the following chart provides a simple way

to categorize the marketplace:

OPEN-SOURCE PROTOCOLS

The furthest on the build side are open-source protocols like

WebSockets and HTTP Long Polling. These are simply protocols, which

means that you manage everything to make them work. That includes

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 9

spinning up your back-end infrastructure, maintaining it, building new

SDKs to support new devices and languages, and everything else.

These are great for prototyping, building small applications, or getting

your hands dirty with the full stack. The challenge will come when you

move to Production: unexpectedly large spikes in traffic can overwhelm

the connection maximums for your server, unexpected security

holes can put user information at risk, and you’ll need to keep users

connected when they jump from network to network—the unknowns

are many and deep when going it fully alone.

OPEN-SOURCE FRAMEWORKS

Open-source frameworks are a step past pure build, and of course

allow you to build and maintain the infrastructure on your own. Open-

source frameworks tend to rely on a community of developers to

update the framework and maintain the client SDKs, so what you see

when you start is what you can rely on—think of this as an environment

with a ‘distributed roadmap’.

The flexibility and configurability are still high, as is the list of unknown

unknowns that lurk in the future of the application.

INFRASTRUCTURE-AS-A-SERVICE (IAAS)

These solutions are offered by the big dogs — cloud infrastructure

service providers like AWS, Digital Ocean, Azure, Bluemix, and Google

Cloud. They actually end up powering a lot of the PaaS messaging

solution providers, as well as the SaaS products that we’ll talk

about next.

In a nutshell, you can use open-source protocols with an IaaS to launch

your app. The infrastructure is taken care of, from a pure ‘the-network-

is-up’ perspective, but you’ll be responsible for the realtime-specific

elements that distinguish chat: persistent device connections, security,

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 10

distributed database replication, global server load balancing (between

cloud regions) and so forth.

PLATFORM-AS-A-SERVICE (PAAS)

PaaS providers like PubNub and Firebase offer hosted solutions for

building chat applications. They include not only the infrastructure, but

also the SDKs, APIs, and integrations for building chat features. Building

and customizing the application requires engineering resources, as

flexibility is still high—and arguably higher, as pre-built integrations

to services like language translation, mapping, and alert gateways

accelerate the process of releasing a unique bundle of features.

The greatest benefit, however, is in the chat-ready infrastructure:

developers can offload the security requirements and maintenance of

the service (the back-end and the client SDKs), as these are handled by

the PaaS. Meanwhile, they still enjoy the uptime and support benefits

of IAAS.

CHAT FRAMEWORKS

Framework providers are as close to buying a pre-built solution as you

can get, while still offering the opportunity to distinguish your offering

through unique features that do, in fairness, require a fair amount of

engineering. The big difference between these providers and PaaS

is that they provide more of a black box approach — you have less

flexibility to customize the APIs, the infrastructure, and, to varying

degrees, the UI.

Infrastructure will for sure be a black box—so no headaches scaling or

maintaining security, in principle. It is important, however, to understand

the underlying technologies and network topology to ensure that the

proffered infrastructure is built appropriately for your specific use-case.

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 11

SAAS

Lastly, furthest over on the buy side of the spectrum we find SaaS

companies, who provide a fully-built out solution that requires only a

very small amount of engineering. UI, integrations, and infrastructure

are all handled by the SaaS provider. Leaders in the space include

Intercom, Olark, and Zendesk Chat.

These solutions are ideal when you have a discrete problem to solve,

in which the uniqueness of your solution (beyond the cosmetic) is

relatively unimportant. Adding a salesperson chat widget to your

website, for instance, yields the best results when all the expected

features (and no more) are in place, and extra engineering is likely

wasted effort in most cases.

QUESTIONS TO ASK YOURSELF
WHEN CHOOSING YOUR CHAT SERVICE PROVIDER

As with all the other parts of critical infrastructure, the key questions are

going to be:

1 Should you run your own

infrastructure, or utilize a

hosted service?

2 How much does your

chosen approach cost

upfront? How much will it

cost at scale?

3 Is any hosted service you

are considering reliable,

secure, and scalable?

What guarantees are they

willing to provide?

4 How mission-critical is chat

to your application?

5 Who on your team will

maintain the system? Do

you have the skills

in-house already to make

the system scalable

and secure?

6 Where does the service

store data, and who has

access to it?

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 12

CHOOSING YOUR CHAT SERVICE PROVIDER:
OPEN-SOURCE VS. HOSTED

When it comes to software development, everyone knows that what

works in the lab is not guaranteed to work in the wild. That’s because

the wild presents unpredictable challenges that no sane developer can

dream up before their product gets into the hands of unconstrained

consumers.

When it comes to choosing the right technology to power your chat,

there are a number of build and buy considerations to consider.

For the sake of brevity, in this section we’ll just look at the security,

scalability, and reliability of licensed infrastructure.

INFRASTRUCTURE

If you’re going down the open-source route, you’ll choose your tool,

install it, and orchestrate the operation of that tool.

From there, you’ll start thinking about the infrastructure side of things,

like load-balancing and redundant nodes. These are requirements for

launching an app at scale. This is when you may tap an IaaS provider

to handle the back-end. Even so, it will still require heavy engineering,

including:

• Spinning up multiple testing, staging, and production environments

• Coordinating provisioning for those multiple environments (from

straight-up rack-and-stack in a data center to Kubernetes containers)

• Deploying your application code to the environments

• Setting up service management, system monitoring, and Ops

alerting

• Creating a load balancing scheme (like Nginx or HAProxy)

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 13

• Implementing a scheme to segment data by channels or topics (like

Redis pub/sub with Socket.io)

• Finding a store and forward solution for signal recovery, like in-

memory caching

• Implementing a method to detect connect individual clients to the

ideal data center and port (broadly speaking, global server load

balancing)

• Computing which channels/topics to send/receive for a given client

• Building orchestration between data centers/cloud regions to

ensure data reliability between endpoints

• Deciding which platforms and languages to support

• Creating universal data serialization

• Customizing code to detect data uplink that works across

device types

• Determining Quality of Service and level of loss boundaries, and

developing a data recovery scheme

That’s a laundry list of considerations, of course, and it is not even truly

comprehensive! When choosing the open-source route, however, these

are some of the upgrades that have to be built in order to transition

from lab to production.

SECURITY

For chat, security is critical (nobody wants a busybody looking over

their digital shoulder) and tricky. Users are increasingly sending more

confidential and mission-critical information via chat applications, from

financial details to chatbot commands. Ensuring that you have full

control over access and encryption has become table-stakes.

Every successful chat service provider offers different levels of security.

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 14

Here are the most important

features that must be included

in any hosted-service provider:

• End-to-end encryption

with TLS for in/outbound

packets and AES for

packets

• Fine-grained, token-based

access control. Token-

based access control

allows you to grant and

revoke access to any

messaging channel.

• Regulatory compliance

support for any app that

exists in a regulated

environment. The hosted-

service provider should

be certified for HIPAA

(healthcare), SOC 2, GDPR

(EU), Data Shield, and

SafeHarbor (EU/US).

For those who choose not to

utilize a hosted-service provider,

the following are additional

security considerations that you’ll

have to handle on your own:

• Managing TLS, from certificate

purchase and renewal, to

implementing methods to

effectively utilize it in chat

interaction

• Figuring out how to protect

channels and topics (not

covered by TLS)

• Building an authorization

system for users

• Considering AES and/or RSA

encryption for payloads (not

covered by TLS)

• Complying with legislative

security policies (like

SafeHarbor or HIPAA)

SCALABILITY

For chat apps with thousands of active users chatting simultaneously,

and ones that continue to grow, building infrastructure for scale can

be a major challenge, not least because the nature of the application

is to experience uneven traffic patterns. Both open-source and some

hosted-service providers deal with scalability to some degree, but

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 15

overall, hosted solutions will more completely mitigate the risk of app-

breaking scalability issues than than open-source options.

For hosted solutions, there are a couple indicators that your service of

choice will scale with your app growth:

• Multiple global points of presence: Chat messages should be

globally replicated, so that if messages are dropped, a backup

message can be delivered. This also increases the performance of

your application, as every chat user doesn’t have to connect to the

same data center (especially those halfway across the earth).

• Uptime SLAs: Uptime SLAs hold hosted-service providers

accountable, and you should receive credits when SLAs are

not met.

For the do-it-yourselfers, you need to consider:

• A custom-built load testing service that can simulate a realistic

audience

• Creating update protocol & continuously modifying your network to

support new products/services

• Paying for Socket server costs, QA systems, and hot failovers

• Ongoing Ops monitoring and additional headcount required

RELIABILITY

There is a heated competition for messaging applications: with the app

store a click away, any issue a user encounters can lead them to an

alternative. Reliability is a key factor in making your app sticky. When

vetting hosted service providers, here are a couple key indicators of

reliability:

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 16

• Data replication for multiple points of presence and automatic

failover to ensure that messages are delivered 100% of the time

(and actually in realtime)

• Message “catch-up” in case of connection dropout (if a user is in a

tunnel, for example, they’ll receive the message when they come

out the other side)

If using an open-source solution, you’ll have to also handle:

• Building a load distribution system

• Identifying error messages

• Building a log system

• Knowing when faults occur and developing a playbook of responses

• Building service management (like PagerDuty)

• Developing multi-datacenter deployment

OPEN-SOURCE VS. HOSTED

Building out a realtime messaging system on your own poses a lot

of risks, particularly as the use case becomes more unique, and the

audience larger. Going it alone can be a great option for smaller chat

applications, but as the audience starts to grow, security, reliability, and

scalability challenges can add up.

Most hosted-solution providers also allow a free-forever sandbox

pricing tier. This allows you to develop your app without paying, only

breaking out the checkbook once you reach critical mass. This gets

your product to market, and in front of consumers, quickly and at very

low risk. For those companies looking to move fast and not wanting to

worry about all the intricacies of networking and infrastructure, hosted-

solutions are the way to go.

17

Messaging apps are growing more
innovative, more powerful, and have
become a linchpin for customers,
businesses, and teams across every
industry and vertical.

›››

Chat of
the Future +
What Users
Crave

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 18

We’ve seen a flood of new messaging applications of all shapes and

sizes entering the market. In fact, messaging apps have surpassed

social networks in monthly users, and the gap continues to grow. More

and more functionality is taking place directly in the chat interface

outside of sent and received messages.

So how do you set yours apart from the rest?

Obviously, you’ll need a certain set of core, established features that

users have come to expect: presence detection, typing indicators,

reactions, that sort of thing. These are table-stakes features.

Introducing a new app, though, is normally about taking something

to the next level, differentiated from the thousands of chat apps

already out there. Or, it’s about building messaging into an existing

application to deliver a better user experience and drive engagement.

By combining the vast number of incredibly accessible, affordable,

and easily-available APIs, SDKs, integrations, and infrastructures-as-a-

service, you can do just that.

In this section, we’ll start with features every user expects, then move

into innovative ideas for building the chat of the future.

EXPECTED FEATURES OF ANY CHAT APP

These are the fundamental features that every chat has (or should

have) today:

• Send and receive messages in realtime, either one-to-one, or

one-to-many.

• Join and leave a chatroom.

• Messages should be stored and easily retrieved, either through a

Load more messages option or infinite scroll.

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 19

• Messages should be time stamped.

• A user list, both public and private, that updates in realtime as users

go online/away/offline.

• Typing indicators to show when someone is actively typing.

• Alerts for offline users via push notification when they receive

a message.

• Only authorized users to have access to channels to keep the

conversations private when necessary.

• Ability to invite other users to a group or remove/block them for

inappropriate actions.

• .gifs. So many .gifs.

• Emoji and reactions

CHAT FEATURES TO SET YOURSELF APART

Obviously, we’re all very familiar with the features listed above. Give or

take, they’re at the heart of basically every messaging application out

there today.

More interesting are the emerging technologies allowing you to build

the features of the future, which will set your messaging app apart.

These kinds of features are redefining the way communication takes

place, online, offline, and everywhere in between.

PROGRAMMABILITY

Before getting into specific differentiators, it’s important to first discuss

how important it is to build your chat application with programmability

in mind. Programmability means your chat app is “event-driven”, giving

you complete control over everything that happens with a message,

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 20

from the moment it is conceived to the moment it is received. This could

mean adding realtime translation, alerts, or triggering 3rd party APIs.

This design pattern drives the sorts of innovative features listed below.

GEOLOCATION

Instead of forcing users to switch between messaging and mapping

apps, deliver geolocation directly to chat users.

• Embed live maps with realtime

geolocation tracking directly into a

message stream. eCommerce and on-

demand companies can utilize this to

allow customers to monitor their delivery

or service in realtime.

Integration examples: Mapbox, Esri,

Google Maps

• Initiate directions and ETAs and publish

them directly to the message stream.

Combine with text-to-speech to get

audio directions, and provide the option

to publish progress as users travel—it’s

the best way to know how far away the

birthday cake, surprise party honoree, or

long-lost cousins really are.

Integration examples: Mapbox, Esri

ECOMMERCE AND ON-DEMAND

Run an entire shopping experience, from

browsing to fulfilling orders with chat.

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 21

• Utilize chatbots with automated and AI-

powered cognitive capabilities to assist

shoppers with browsing, ordering, and

troubleshooting orders from a messaging

interface.

• Stream order updates and alerts, like push

notifications and SMS, as the order moves

through the fulfillment lifecycle.

Integration examples: Clicksend (SMS),

Infobip (SMS), RingCentral (SMS), SendGrid

(Transactional Email)

MODERATION

There are a lot of trolls out there. Chat apps

today need moderation tools in them to filter

messages on the fly, not only for text, but also

for images.

• Moderate content flowing through a

chat as the messages are published on

the fly. This could filter out inappropriate

messages, block trolls, or even remove

competition mentions (for live events and

launches).

Integration examples: SiftNinja, Neutrino

• Moderate images on the fly using image

recognition to filter out provocative

images.

Integration examples: Clarifai,

Sightengine, AICeption

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 22

LIVE EVENTS

Chat can complement a video or live event, and allow users to interact

with one another.

• Combine a chat application with a live streaming video, and show

how many users are currently viewing the live event.

• Collect and aggregate geolocation data of users to gain insight on

how many people around the world are watching the event.

• Allow users to vote on custom polls to increase user engagement.

• Add interactive features like allowing users to raise their hands or

upvote other messages.

USER EXPERIENCE

Build delightful user experiences for users.

• Send larger files of any format in realtime. Rather than sending the

entire file, efficient chat applications send a reference to where the

file is hosted for the end user to download.

• Users should be able to bookmark or star important messages and

easily retrieve them later.

• Message search and message tagging/pinning.

AUTOMATED AND AI-POWERED CHATBOTS

Chatbots are difficult, but, luckily for you there are a ton of powerful

chatbot services on the market today. You should be able to integrate

all sorts of chat microservices to power your chatbots directly into your

application.

• Use automation to send responses when a situation is predictable.

For example, a user starts chatting with a support agent on a

website. While an agent may not be available immediately, you can

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 23

collect the user information, like email,

through automated responses. This

benefits the user as they won’t have to

wait for long to hear back from an agent

and frees up time

for agents.

• Use automation to send responses when

the data is available and accessible. In

the example of an eCommerce website,

the user can type in a chatbox, “I would

like to know the status of the refund for

my order.” The intent of this sentence is

“refund status.” An automated response

could be sent to the customer with a mini

form asking them to provide their order

ID and email. This eases the user data

collection experience.

• We can make users’ experiences better

by asking questions and giving automatic

responses contextually depending on

where the user is on the site. While they

are on the payment page, for example,

you can show them a personalized

coupon.

• Combine activity history with customer

inputs to make recommendations and

answer questions in realtime.

T H E D E F I N I T I V E G U I D E T O I N - A P P C H A T 24

THE SKY’S THE LIMIT WITH INTEGRATIONS AND APIS

• The number and range of 3rd party services now available to

pull into your application are truly staggering. Manipulating a

combination of these services is the surest, safest, and quickest

path to creating something truly unique, that solves a particular user

challenge completely. The more unique offerings will combine these

technologies to take the market by storm.

• Interact with 3rd party apps and APIs using commands (like Slack

apps) to make your tasks more efficient.

• Utilize 3rd party alerts and notifications services to trigger SMS,

mobile push notifications, and browser notifications.

• Initiate a video call or interactive collaborative environment with

services like Cisco Spark.

• Create your own API which can be called from chat using a

command that fulfills your needs only.

ANALYTICS

You should give your business users full transparency into the usage of

their application.

• For customer support types of messaging apps, allow business

users to see average chat time, connected end users, open and

closed chats, or even sentiment ratings of conversations (using APIs

like Watson Natural Language Processing).

• Monitor geolocation of connected users to gain a better

understanding of where your users are located.

25

The world of chat is big, and it gets bigger
and more complex every day. As your
organization seeks to dip its toe into
the waters—or to expand your influence
and dominate—you’ll need to make key
decisions on development environment,
delivery and scalability options, and the
customer-facing features that will set your
product apart. You now know how to balance
the pros and cons, and are doubtless
already plotting your next great product.

Make no mistake: in-app chat is the future
of communication.

Conclusion

C

www.pubnub.com

@pubnub

(415) 223-7552

Contact Us

