
A Comprehensive
Guide to the Real-Time
Technology Stack

Apps, products, and businesses are
growing more interactive, more data-
intensive, and more connected. Everyone,
and every product, will be dramatically
changed by an “always-on” connection to
the Internet, and through it, to every other
person and device in the world. 3 billion
people now have smartphones, most with
virtually unlimited data.

A Comprehensive
Guide to the Real-Time
Technology Stack

GUIDE TO REAL-TIME TECH-STACK

Most people use their phones to read content, watch videos, and send emails. Yet the
most exciting use of our phones leverages a blazing fast connection to the Internet.

Think about what has changed in the last decade. People worldwide now use their
phones to order taxis, track food delivery, control their lights, and have about 100 apps
for chatting with each other. They all have something in common – these apps are all
powered by a new layer of technology, real-time technology.

For some novice developers, real-time is more about Internet speed than the design
and architecture of the app. If you think of the app as the car and the Internet as the
road, it’s akin to saying, “give me an empty road and I can race my car like a rocket
ship.” Achieving top performance in a car is more about the design of the car, not just
the road itself.

Challenges of Building a
Real-Time App
INTERNET IS A BEST EFFORT SERVICE - What’s that mean? The underlying protocols
of the Internet work in a way that assure that data will reach the other end without
any hard guarantees. This is not what you want when it comes to building real-time
applications. Messages are valuable, so you need reliable, guaranteed data delivery.
What if that message is an ambulance dispatch request or sending a hazard warning in
an industrial IoT setting? Every message matters.

MANAGING CONNECTIONS BETWEEN PEERS - Building a real-time application that
simply communicates between two users is fairly easy. But expanding the application to
connect multiple users across the globe is challenging. You need to maintain a reliable
and secure “always-on” connection between peers.

GUIDE TO REAL-TIME TECH-STACK

SCALING IS KEY
Scalability is a challenge you should be thinking about from the
beginning. You’ve built an amazing app, but when the userbase grows
beyond your expectations, you need to ensure that it can handle an
increased load of users and data. How can you best prepare for this?

THINKING IN REALTIME
A real-time application performs an action against an event, within
a fraction of a second. However, the key indicator for real-time
performance is the collaboration between apps, such that an event
occurring in one app can trigger an action in another app.

USE CASES
Chat - Two users are connected in a mobile chat app. A chat message keyed
in by one user is an event which triggers an action to display the
message in the other user’s chat app.
Data Dashboard - A user is monitoring the state of a device through a
dashboard. A change in the parameter of the device is an event which
triggers an update. The value displayed in the data dashboard is updated in
real-time.
Geolocation - A bus is sending its current location to a passenger’s mobile
device. A change in the location of the bus is an event that triggers a change
in the location of the bus icon displayed on the map on the passenger’s
mobile device.

GUIDE TO REAL-TIME TECH-STACK

Considerations

1) It’s About Orchestrating The Communication Between Multiple Apps
A real-time application has multiple app instances that need to sync with
each other in a split second to provide the best user experience. So it all
boils down to the orchestration of data between the app instances.

2) It’s About Manipulating Data In Motion
To achieve peak real-time performance, it is imperative to process the
data while in-motion. This means that the data exchanged as part of
real-time interactions should not be stored before processing, which can
lead to delays.

3) There Is Always A Human Angle
In almost all cases, a real-time interaction has a human angle, because
one of the collaborators in any real-time data exchange is always a
human. Even in a machine to machine interaction, there is a human
sitting at the back, receiving feedback. Hence the human perception
of a real-time event is very important. If you pay attention to the above
observations, the common denominator is the time difference between
app to app data exchange. To achieve real-time performance this
data exchange should happen within a fraction of a second. Although
the internet speed and network bandwidth do play a role here, the
true essence of a real-time interaction over the internet lies with the
application protocol stack that works behind the scenes.
Let’s take a dig at building a real-time app with first principles. This
approach will help you figure out the challenges along the way. As you
overcome those challenges, you will be able to arrive at the perfect
combination of the stack components that will form the basis for your

GUIDE TO REAL-TIME TECH-STACK

Your First Real-Time App
Let’s dive into the development process of building a real-time app. A
simple in-app chat feature is a great showcase. In its simplest form,
two users can chat in real time via a chat interface. In this case, you
would develop the app on a standard TCP/IP stack and both users will
use their individual app instance to communicate over the Internet.

What about the protocol stack for this app?
Since the app instances talk to each other directly, WebSocket is the
likely choice here. WebSocket works on the application layer and
provides a full duplex communication over TCP.

WebSocket WebSocket

TCP TCP

IP IP

DL DL

PHY PHY

GUIDE TO REAL-TIME TECH-STACK

Does the app possess real-time communication capabilities? Perhaps
yes, because there is a direct TCP based connection between the app instances.
However, if the geographical separation between the two app users is large
then the real-time performance will deteriorate. Without a doubt, this is not the
best way to build any chat app since a little bit of scale will progressively make
the inter-app communication complex. The impending bottleneck is too many
connections to handle for each app.

NOTE ON TECH
Socket.IO is one of the most popular libraries for implementing
WebSockets. Although all the major browsers now support the
WebSocket interface natively, Socket.IO provides a wrapper that
provides additional features on top of a WebSocket connection
such as fallback and acknowledgment mechanism.

GUIDE TO REAL-TIME TECH-STACK

https://www.pubnub.com/learn/glossary/what-is-socketio/

DEVELOPER’S DILEMMA
Building a 1:1 or 1:N chat app is easy if you are a seasoned
programmer. However, in the case of 1:N chat app, a significant
amount of time has to be spent in managing the connections
between the app instances. As a developer, you will experience some
frustrating moments when you aren’t able to focus on the app and UI/
UX features just because the connection logic isn’t working right.

In this case, the app and UI/UX features are what constitute the
business logic of the app. The connection management is part of the
infrastructure. In terms of the percentage of time spent for developing
both these components, there is a significant jump in the later while
upgrading the app for 1:N chat.

Building a 1 to 1 Chat App

Building a 1 to N Chat App

Developer’s Efforts
 Business Logic

 Infrastructure

99%

75%

01%

25%

GUIDE TO REAL-TIME TECH-STACK

Your Second Real-Time
App: Hosted Services
To handle the challenge of scale, your best option is to have an
architecture based on each chat app instance only having to deal with
one connection, no matter how many users are involved in the chat
session. This can be achieved by defining a new entity, which acts as
the centralized chat service component.

With this arrangement, the chat client is simplified. However, the chat
service component now has to handle and orchestrate all messages
between all the chat app instances. In terms of the protocol stack, the
same WebSocket stack can be retained across all the components
including the chat service. However, since the app instances do not
have a direct connection anymore, the chat service component has to
maintain an active connection with each chat app instance and must
move the messages quickly across them to
provide real-time performance.

GUIDE TO REAL-TIME TECH-STACK

Vertical and Horizontal
Scaling
With the revised architecture, it can be expected that each chat
service component plays the role of a chat room hosting multiple chat
users via their chat app instances.

VERTICAL SCALING
The handling of scale with respect to the number of chat users is
now the sole responsibility of the chat service component. Imagine a
public chat room where hundreds of users can join or leave in a given
moment. This can lead to a significant processing lag to exchange
messages via the chat service components. This leads to vertical
scaling of the chat service component, such that more CPU and
memory resources are utilized to serve more chat users. Eventually,
this has a ceiling beyond which the chat service component can no
longer handle anymore uses joining in.

DEVELOPER’S DILEMMA
Even though the connection management at the chat app client has
been simplified, there are additional challenges at the chat service
component. Coding the service component might seem easy in
the beginning but as more and more users signup, managing their
connectivity, state and status information becomes a challenge.
By and by, the effort will be split into building the overall business
login and the infrastructure. At scale, the latter will take over. You will
find yourself spending more time in ensuring reliability and resilience
of infrastructure rather than working on the business logic.

GUIDE TO REAL-TIME TECH-STACK

HORIZONTAL SCALING
The other scalability challenge is about the handling of geographically diverse locations
from where the users join in. Real-time performance of the app is impacted if the
geographical expanse is not considered. In order to counter this, multiple chat service
components need to be spawned at various geographical locations to aggregate the
users for a location. This leads to what we know as horizontal scaling.

Developer’s Efforts
 Business Logic

 Infrastructure

Chat App with Service Component

Scaling Up

60%

60%

40%

40%

At this point, the
architecture of
the chat service
component has to
evolve to handle
users from multiple
regions, as well as
orchestrate with the
other chat service
components. This is
where things become
quite complex for you
as a developer due to
several reasons.

GUIDE TO REAL-TIME TECH-STACK

Challenges of Scaling
Real-Time Apps
1. Managing Users And Orchestrating Between Other Chat
Service Components
The chat service component is now distributed across multiple
locations such that each chat message is replicated at every location.
This adds an additional partition in the topology of the application
deployment, such that there is an inner partition which handles the
orchestration between chat service components and an outer
partition that manages the connectivity with chat app instances.
This brings upon additional complexity because the chat service
components have to deal with multifarious messages ranging from
users’ chat messages to state synchronization between all chat
service component instances

2. Managing The States And World Views Across All
Service Components
The problem of orchestrating between the multiple instances of chat
service components brings us to the second problem of maintaining
a uniform state across all instances. In this application, the main
state information is the online status of every chat user. When there
was a single chat service component, it maintained the online status
for all users. Now, with multiple components, the online status of all
users have to be synchronized across all chat service components.
This is a humongous task to achieve as chat service component
scales horizontally.

GUIDE TO REAL-TIME TECH-STACK

3. Managing The Dynamic Allocation Of Chat Service Components
Based On Regional Volumes
For building a scalable system, it is important to consider the load on
the service components. If there are too many users logging in from a
given location, then a single chat service components alone may not be
able to handle that scale due to the limits of vertical scaling. Moreover,
a single service component is also not desirable due to a single point
of failure. To mitigate these challenges, a load balancer is required at each
location, so that the chat traffic can be spread across multiple chat
service components. Above all, a set of protocols need to be defined
such that these chat service components can be spawned dynamically
based on traffic surge. Additionally, they should sync up with the
existing components and be part of the data synchronization.

NOTE OF TECH
When deploying an application for scale across multiple geolocations,
it is more about elasticity rather than scalability. Based on the user
volume, the application should be able to scale up or down to handle
the traffic with the help of the requisite amount of computing resources.
That’s where containerization technology provides a lot of flexibility.
A container can be deployed as a standalone execution context within
a host operating system/server and has its own isolated file system
and resources. Docker is the most popular container technology available
today. A Docker container can be pre-built as an image and executed within a
host OS as an independent system with its pre-allocated computing
and memory resources.

GUIDE TO REAL-TIME TECH-STACK

With the additional complexity around horizontal scalability, there is a need for additional
layers of architectural components to manage the service components over and above
the application stack.

4. Security And Access Control
At a global scale, the issues of security and access control become paramount.
Forbidding unauthorized users, denying access to hackers or even avoiding DDoS
attacks by rogue users is a must. Security is a separate subject itself and for such a vast
network, a specialized layer of security protocols needs to reside at the outer edge of
the network to thwart any possible breach. All of it adds to the complexity of the inner
partition and the chat service components.

DEVELOPER’S DILEMMA
If your application has come this far, then, needless to say, it is popular and is being
used by many users from all across the world. Just like the saying goes in software
engineering: 80% code is written to check and handle errors, while only 20% code does
the real job. The same logic applies to handling super scalability as well. Horizontal Scale
Up for Volume & Geo-Distribution

For managing Docker-based elastic application deployment, there
is also a need for a container management system that provides an
application-wide view of all the containers. Kubernetes is one such
tool that is used for this purpose. Together with Docker, Kubernetes
provides a complete suite of tools for management and administration
of Docker containers.

Horizontal Scale Up for Volume & Geo-Distribution Developer’s Efforts
 Business Logic

 Infrastructure
20%

80%

GUIDE TO REAL-TIME TECH-STACK

Real-time Infrastructure
As A Service
Now it’s time to talk about cost – for both setting up and maintaining the
infrastructure at scale.

If you include the costs and the developer’s efforts in managing a real-time
infrastructure for your app, then the situation can get out of hand rather
quickly. All this, at the expense of the user experience
of your app since the developers would be busy tuning the infrastructure for
real-time performance. That’s where a specialized cloud service can be a
boon which handles the challenges of real-time scaling and expansion.
PubNub’s real-time data streaming service solves every problem faced
by developers and IT teams in scaling up a real-time application, both in
terms of time and cost. With PubNub your app’s real-time infrastructure
is as simple as this. Apart from handling all the heavy lifting associated with
handling scale, PubNub guarantees 99.999% of data transmission reach the
recipient within a quarter of a second.

GUIDE TO REAL-TIME TECH-STACK

The most noteworthy feature of PubNub is that it is not entirely a black
box system. PubNub’s infrastructure is like a semi-porous white box
which allows you to plug in real-time message handling components.
Also known as PubNub Functions, these components allow developers
to build their custom real-time data processing pipelines on the go.
Consequently, PubNub is capable of processing data in motion, rather
than at rest, which has significant upside for real-time data transfer.
Backed by a globally distributed data streaming network, PubNub
handles all your chores related to infrastructure, from scaling to security,
access control and more. And now if you ask, what about the protocol stack?

Yes, PubNub now becomes the de-facto application layer protocol
responsible for transmitting your data packets from one app instance
to the other. Now, you do not worry about the infrastructure. You only
worry about building that all enticing UX for your end users and just
plug in the relevant PubNub SDK at your client code to take care of all
things in real-time.

DEVELOPER’S DELIGHT
When you use a service like PubNub, which obviates any need to
manage the infrastructure, then you focus all your energies in making
your application more and more feature rich. The more sparkling
features you add to the app, the more kudos you receive from your
end users. And the best part is that this percentage split in the effort will
remain more or less constant. No matter how many users you have, PubNub
will work silently behind the scenes to deliver your messages in
real-time, all the time.

GUIDE TO REAL-TIME TECH-STACK

pubnub.com

Contact Us

support@pubnub.com

@pubnub

GUIDE TO REAL-TIME TECH-STACK

http://www.pubnub.com
https://www.pubnub.com/company/contact-us/
https://www.linkedin.com/company/pubnub/

