
Overview of Realtime
Streaming Protocols

Introduction							 3

Communication Paradigms			 5

Request-Response Protocols			 8
HTTP 1.1 								 9

Persistent Connections 						 10

Pipelining 								 11

Long Polling 								 12

HTTP Streaming 							 13

WebSocket 								 14

Piggybacking on HTTP 1.1 						 16

BOSH – or XMPP over HTTP 					 16

HTTP for constrained environments 				 17

CoAP 									 17

HTTP/2 								 20

Publish/Subscribe Protocols 			 21
MQTT 									 22

XMPP PubSub 							 23

WebSub 								 24

Conclusions							 24

Table of
Contents

3

It is no exaggeration to say that the World
Wide Web has now become the universal
computing platform, used for every form of
data-driven interaction between humans,
humans and machines and between machines.
These diverse interactions are based on a few
key communication paradigms and protocols,
honed and adapted over the past forty years
to their current state as the common substrate
which powers the entire Web.

›››

Overview of
Realtime
Streaming
Protocols

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 4

This White Paper provides an overview of these paradigms and key
protocols. It collects many topics we have touched on in various
PubNub blogs into a comprehensive story.

This overview describes the key communications protocols developed
for the Web, by open standards setting bodies like the IETF and W3C,
and which are now built into operating systems or available as royalty-
free, open source implementations.

To keep this White Paper to a reasonable length, we will concentrate
on a large subset of these protocols, leaving out those used for voice
and video communications and media delivery as these require more
elaboration on topics that would divert from our main thesis. We will
concentrate on those that are typically browser-based (for human-
to-human and human-to-machine interactions) or data transfer for
machine-to-machine (M2M) communications, such as required for the
burgeoning area of Internet of Things (IoT).

https://www.pubnub.com/blog/
https://www.ietf.org/
https://www.w3.org
https://en.wikipedia.org/wiki/Machine_to_machine
https://en.wikipedia.org/wiki/Internet_of_things

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 5

Communication Paradigms
All interactions require communication between entities, and the two
key ways to do so broadly mimic the way humans gather and consume
information.

If we know who we wish to talk to, we open a communication channel
to them – using carrier pigeons, letters, phone calls, emails, instant
messages, and so forth as each improvement of technology allows. We
ask questions and we get answers, or we share information both ways
once a steady communication channel is open. This is more formally
known as the request-response paradigm.

When we don’t know where the information we seek is, or we chose
not to bother with the task of “hunting and gathering” information, we
leave this task to others. Newspapers, magazines, bulletin boards, news
portals – again, the same pattern, but adapted to newer technologies
allow us to get information at the rate at which it becomes available or
changes, without the effort of actively soliciting or searching for it. This
is the publish-subscribe paradigm.

Understanding these two ways of information gathering/sharing is key
to following the different protocols in the rest of this White Paper. We’ll
describe these from now on using communication networks (wired or
wireless) between the communicating entities, called client/server or
publisher/subscriber as appropriate.

REQUEST-RESPONSE PARADIGM

As the name suggests, one party (formally, the client) sends a query
(request) to another (the server) which responds with an answer
(response). The two communicating entities can keep up such request-
response exchanges between themselves until either party drops out.

This simple pattern requires a lot of heavy lifting by infrastructure, to
avoid burdening the client and server with delivery issues. By now, the

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 6

underlying communication network on the Web is almost always TCP/
IP, the data communication protocols tuned over the last fifty years by
the IETF to provide an error-free, bi-directional communication path.
A request-response protocol operating on top of a TCP/IP connection
can be guaranteed that requests or response will be delivered in order,
at most once and without corruption. If the data needs to be protected
against eavesdropping or alteration while in transit, the TLS protocol,
operating on top of TCP, provides the necessary protection. In fact, the
protocol stack in Figure 1(a) is by now the de facto communication suite
for almost all Web interactions.

There’s another protocol, UDP, operating at the same level as TCP –
see Figure 1(b) – which provides a light-weight, one-way data transfer
mechanism. If this is used, and it is for certain types of applications, an
upper-layer protocol has to take care of most of the features that TCP/
IP provides. The request-response protocol has to ensure that each
request is numbered, so that a response can be correlated with the
corresponding request, duplicated requests and/or responses are
discarded, lost requests are resent, and so on. Thus, this type of data
transfer is best suited for those cases where the application is resilient
to loss and duplication – a simple query, say, where the request can be

Figure 1(a) Figure 1(b)

Application Application

TLS DTLS

IP IP

Link Layer Link Layer

Physical Layer Physical Layer

TCP UDP

End-to-end security
against eavesdropping,

tampering, etc.

Message protection
against eavesdropping,

tampering, etc.

Need to build in error
correction, sequencing,

flow control, etc.,
if needed.

End-to-end connection
with error correction,

sequencing, flow control.
One-way Datagram

(unreliable)

Routing messages to
the final destination.

Routing messages to
the final destination.

https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc768

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 7

repeated multiple times without causing any harm. (Such queries which
can be resent repeatedly without harmful consequences are more
formally called idempotent.)

PUBLISH-SUBSCRIBE

The request/response interaction paradigm represents a tightly coupled
interaction between known entities on pre-defined types of information.
In contrast to this, the Publish-Subscribe pattern is a loosely coupled
interaction style where consumers of information (the subscriber) are
decoupled from the sources of information (the publisher). Subscribers
express interest in information on particular subjects, which publishers
provide. Information (more formally called events) can be variously
described – one common method is via topics (e.g., stock quotes),
while more sophisticated forms include specific content (e.g., price of a
particular stock) or even expressions (e.g., when the price of the stock
drops below or rises above a certain threshold).

To operate at scale, such interactions are almost always mediated by a
third party, variously called a message bus or event broker. Publishers
make available the sorts of information (events) they are willing
to publish to the mediator, which advertises it to subscribers, who
subscribe to those events they are interested in and are notified of its
availability. The available event can be pushed to subscribers who’ve
expressed an interest in it, or they can periodically pull the events from
the mediator by polling it.

This decoupling between the publishers and subscribers occur in
several dimensions, which gives this interaction pattern its usefulness
and scalability. These are:

Time: A subscriber or publisher need not be available all the time, and
more importantly not active at the same time. This is particularly useful
in situations with limited or poor connectivity. The mediator retains the
published events and ensures that it is available to subscribers at a time
and manner of their choosing.

https://en.wikipedia.org/wiki/Idempotence

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 8

Space: Publishers and subscribers do not know each other’s location
or identities. Except for the nature of the information that is shared, they
are completely unaware of each other.

Manner: In contrast to the request/response interaction, where the
client and server have to be active and engaged in the interaction
at the same time (i.e., the interaction is synchronous), the publish/
subscribe interaction is asynchronous. Publishers provide information
when available, while subscribers pick up the information when they
wish or are able (in other words, asynchronously). Neither party is held
up waiting for the other to act, which, as we shall see, can be an issue
in some request-response interactions.

Request-Response Protocols
This section will mainly be about HTTP, which has been the workhorse
of the World Wide Web since its creation in 1991. From that time on, this
protocol has been adapted (contorted, some critics might carp) to meet
every conceivable variant of the basic request-response paradigm. It is
now used as the basis of ordinary web interactions, of course, but also
instant messaging, bulk data transfer, multimedia streaming, etc.

One reason for this need to reuse HTTP for new applications – even if
these are not strictly request/response – is because HTTP messages
almost always freely move through NATs and firewalls, most of which
are configured by default to leave open TCP ports through which
HTTP, and its secure variant, HTTPS – HTTP over TLS , communicate.
By piggy-backing a new application protocol on top of HTTP, clients
behind NATs can reach servers outside and vice versa.

In what follows, we’ll describe the ways in which HTTP has been
adapted to meet new challenges, as new applications reuse its basic
interaction pattern to achieve their objectives.

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2818

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 9

HTTP 1.1

Figure 2(a) shows a typical HTTP request-response interaction pattern.
As it was initially designed for simple web interaction, where web
“pages” are delivered (via a simple read request – GET) or online form
data submitted (via a write request – POST) or metadata retrieved (a
HEAD), a series of multiple request-response pairs was sufficient to
achieve this type of application’s objectives.

Each request-response was bracketed by the setup and teardown of a
TCP/IP connection (a three-message sequence that is not shown in the
figure), a step whose inefficiency did not become apparent until HTTP
and web surfing became the most prominent form on internet traffic.

Many of the techniques discussed in what follows are ways to get
around the inefficiencies that HTTP’s use of the simple request-
response pattern imposes.

Figure 2(a)

TCP connection tear down

TCP connection setup

TCP connection tear down

TCP connection setup

Request

Client Server

›››
››› Response

Request ›››
››› Response

https://tools.ietf.org/html/rfc2616#section-9.3
https://tools.ietf.org/html/rfc2616#section-9.5
https://tools.ietf.org/html/rfc2616#section-9.4
https://en.wikipedia.org/wiki/Transmission_Control_Protocol#Connection_establishment

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 10

PERSISTENT CONNECTIONS

The simplest change to improve HTTP efficiency is to ensure that the
TCP connection is not dropped after each HTTP request-response.

HTTP 1.1 has this as its default behavior, with a change explicitly
indicated by a Connection: close header. To allow for the same
behavior in HTTP 1.0, a new header, appropriately called Connection:
Keep-Alive, was introduced which signals that the TCP/IP connection
should not be dropped. (See Figure 2(b)).

Of course, servers and intermediaries must respect this setting if the
desired effect is to be achieved. In fact, increasingly, most do.

Another technique is to set up multiple TCP/IP connections to the
server. Most browsers allow up to 6. However, such attempts at
“parallelism” also suffer from the TCP connection setup overhead as
well as managing multiple connections.

Figure 2(b)

TCP connection tear down

TCP connection setup

Request

Client Server

›››
››› Response

Connection: Keep-Alive

Request ›››
››› Response

Request ›››
››› Response

Connection: Close

https://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.2
https://tools.ietf.org/html/rfc7230#section-6.3
https://tools.ietf.org/html/rfc2068#section-19.7.1
https://tools.ietf.org/html/rfc2068#section-19.7.1

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 11

PIPELINING

Instead of waiting for a response before making the next request, the
client can send multiple requests one after another – as shown in
Figure 3 – over the same, kept-alive TCP/IP connection, a technique
called pipelining.

Unfortunately, the HTTP protocol requires that the server return
responses in the order received; so, a long running server operation
(for request 2 in the figure) can block a much more quickly completed
one (for response 3).

This head of line blocking, as it’s called, reduces performance and
makes web page loading slow down.

Figure 3

TCP connection tear down

TCP connection setup

Request 1

Request 2

Client Server

›››
›››››› Response 1

Request 3›››
››› Response 2

››› Response 3

Processing completes;
Response 1 returned.

Processing completes;
Response 2 returned.

Processing completes;
Response 3 withheld until
operation 2 completes.

https://tools.ietf.org/html/rfc7230#section-6.3.2

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 12

LONG POLLING

The simple request-response interaction is fine so long as it is the client
that requests information from the server. The server cannot initiate any
communication with the client except in response to a request. This
means that server operations that create data at intervals can only be
retrieved if the client asks for it.

The client can, of course, poll the server at regular intervals to retrieve
new data since its previous request. If no data is available at that time,
an empty response is returned. But this is particularly inefficient when
the server data updates are irregular, as most of the responses will be
empty. Small footprint devices or those communicating over bandwidth
limited networks, such as many IoT devices talking to a central
controller, are most affected by this.

Long Polling is a clever workaround of the above shortcoming of
frequent polling with empty responses. As shown in Figure 4, instead
of returning an empty response when no data is available at the server,
the latter simply holds back – hence the word “long” in the name – the
poll response until there is data to send back.

Figure 4

TCP connection tear down

TCP connection setup

Request 1

Client Server

›››
››› Response 1

Request 2›››
››› Response 2

Withhold response until
data available.

Withhold response until
data available.

Request 3›››

Send next poll for data
request immediately after

getting a response.

https://tools.ietf.org/html/rfc6202#section-2

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 13

There is a configurable timeout to prevent the client from being held up
by a “hanging GET” indefinitely. But if the timer value is chosen carefully,
a response is usually returned before the timeout.

And once the response is returned, the client immediately sends out
another poll (request) – and the cycle continues.

Long polling is clearly superior to periodic polling in those situations
when data is available at irregular intervals.

HTTP STREAMING

The word “streaming” in this context (defined and used long before OTT
video became synonymous with this term) refers to a server keeping
the HTTP connection open indefinitely, even after it has pushed the
first piece of data in a response message. In effect, the response body
in HTTP streaming might be considered as open ended, allowing, in
effect, multiple responses to be sent for a single request.

This is signaled to the client by the inclusion of a HTTP header Transfer-
encoding: chunked in the response. The response isn’t considered
complete until the server sends an End of File (EOF) or either side
explicitly closes the connection. Each data item in a “chunk” of data in a
response is identifiable by a length (in hex) and a CR, a size 0 indicating
the end of that chunked response.

Again, as before, intermediaries in the message path may not always
respect the signals for HTTP streaming and retain a chunked response
until the entire response is received.

SERVER-SENT EVENTS

Server-sent Events (SSE), defined by the W3C as a part of the HTML5
suite, is both a browser API and an on-the-wire data format for the types
of notifications that can be sent by a server. It is a replacement for long
polling for browser-based web applications, and provides a way for the
server to push data to a client as data becomes available. Unfortunately,
the data can only be text-based; therefore, any binary data needs to

https://tools.ietf.org/html/rfc6202#section-3
https://tools.ietf.org/html/rfc6202#section-3
https://tools.ietf.org/html/rfc7230#section-3.3.1
https://tools.ietf.org/html/rfc7230#section-3.3.1
https://www.w3.org/TR/eventsource/

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 14

be base 64 encoded, but which can be compressed – using gzip, say.
Even with this limitation, it’s a simple way to send notifications from the
server to the client asynchronously for applications like status updates.

The mechanism is quite simple, and makes use of both Persistent
Connections and HTTP Streaming described earlier. It is triggered by
the invocation of the SSE API in the client application code. Over a long-
lived (i.e., Keep-Alive connection as described earlier) HTTP connection,
a client identifies, in a request to the notification data source on the
server, an interface where it can receive notifications as an event
stream – the data format referred to earlier, identified by a HTTP header
Accept: text/event-stream.) The client also sets up a listener, which lets
it know that data has been received on this interface, or an error.

Notification data, as soon as generated by the server, is sent to this
interface as an event stream in chunks (indicated by the previously
mentioned HTTP header Transfer-encoding: chunked) in the response
message body. As these events are received at the interface, the client
application code is notified by the event listener of new data, which can
then be retrieved.

WEBSOCKET

We’ve chosen to include WebSocket as a subsection of HTTP
enhancements because while it can be used independent of HTTP, it
almost always never is.

In its HTTP manifestation, WebSocket is an API (defined by the W3C)
through which a browser can create a bi-directional data channel with a
server over which arbitrary application data can be exchanged. Hiding
behind this simple API is an on-the-wire handshake protocol (defined by
the IETF) to set up this bi-directional channel and a data framing format.

https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Gzip
https://www.w3.org/TR/eventsource/#text-event-stream
https://www.w3.org/TR/websockets/
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 15

Simplifying a lot of details, Figure 5 shows how the data channel is
set up by the client using a HTTP Request with two new headers –
Connection: Upgrade and Upgrade: websocket.

The server accepts the set-up request with a HTTP Response code 101
Switching Protocols, and reflecting back the two headers.

Other headers for authentication and the protocol to be used over this
data channel may also be exchanged during this setup phase.

After a successful setup, arbitrary application data can flow from either
side over this channel.

WebSocket is the latest in a series of HTTP 1.1 improvements to break
the strict request-response pattern and allow both client-to-server
as well as server-to-client interactions over a single TCP connection.
Using HTTP to set up the channel retains all the goodness of easy NAT
and intermediary traversal that HTTP support has now baked into our
networking infrastructure. It also removes the limitation in Server-Sent
Events of sending text-only data, and all the latency and processing
inefficiencies of Long Polling and HTTP Streaming.

However, using the raw byte stream that WebSocket sets up requires
that the application using this channel now do all the hard lifting of
correlating requests with responses, caching, etc.

Figure 5

Bi-directional data transfer

Data transfer protocol negotiated

HTTP GET
Connection: Upgrade
Upgrade: WebSocket

HTTP 101
Connection: Upgrade
Upgrade: WebSocket

Client Server

›››

›››

Client (browser) involves
WebSocket API

https://tools.ietf.org/html/rfc6455#section-1.2

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 16

PIGGYBACKING ON HTTP 1.1

The ubiquitous use of HTTP for almost all types of interactions has
created a networking infrastructure of intermediaries (caches, proxies,
NATs, firewalls, etc.) that are adapted to the protocol. Perhaps most
importantly, ports 80 (and 443) are now almost always left open for
HTTP (respectively HTTPS) access to the public internet from a private
network. This has led to all sorts of applications which take advantage
of piggybacking their protocol on HTTP. What follows is one example of
using HTTP to tunnel through a firewall.

BOSH – OR XMPP OVER HTTP

First, a few words about XMPP – Extensible Messaging and Presence
Protocol. It’s an open standard created by the IETF, and its client-server
model allows a wide range of applications that take advantage of the
protocol to send one-way or bidirectional messages between entities.
Applications of XMPP include instant messaging, user presence status
updates, group chat, data syndication and many more.

We won’t describe the protocol here but only illustrate the creative way
to use XMPP services when direct access to an XMPP server is blocked
by a firewall. This open solution created and maintained by XMPP.org –
called Bidirectional Streams over Synchronous HTTP, or BOSH – uses
HTTP as an underlying substrate to get past the firewall.

Figure 6

Firewall

HTTP Post

Body: XMPP Message

HTTP 200 OK

Body: XMPP Message

XMPP
Client

XMPP
Proxy

››› ›››
››› ›››

Port 80 open
to HTTP traffic

XMPP

XMPP

XMPP Other
XMPP

entities

https://tools.ietf.org/html/rfc3205
https://tools.ietf.org/html/rfc6120
https://tools.ietf.org/html/rfc6120
https://xmpp.org/extensions/xep-0124.html

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 17

As Figure 6 shows, a XMPP client behind a firewall talks to a XMPP
proxy (formally the Connection Manager) on the internet, which acts as
a proxy for the client. The XMPP message is sent in the body of a HTTP
Request message, which is extracted and forwarded by the Connection
Manager to the appropriate XMPP server. And likewise, for the XMPP
server response, which the Connection Manager returns in the body of
the HTTP Response.

This interaction pattern can be (and indeed is) used by other application
layer protocols to get past firewalls.

HTTP FOR CONSTRAINED ENVIRONMENTS

There are environments, typically in the burgeoning area of machine-
to-machine (M2M) communications and the Internet of Things (IoT),
where devices are constrained in memory and processing power while
communicating over low bandwidth, lossy networks. For example,
sensors and actuators in hard-to-reach locations or too numerous to
individually target, as is often the case in various automation situations.

Querying such a device (now in a server role) for status or to update
the firmware using HTTP may not be efficient or even feasible in such
constrained situations. However, the request-response pattern and
HTTP’s familiar semantics (GET to read and POST to write, among
other methods) can easily be retained, while improving performance in
other dimensions. One such open standard is CoAP – the Constrained
Application Protocol.

COAP

The Constrained Application Protocol (CoAP), standardized by the IETF,
provides a light-weight request/response interaction pattern which
mimics HTTP semantics using a binary protocol for reduced message
size and UDP datagrams for message transport. It was designed for
machine-to-machine communications in environments with lossy
networks and low-footprint end points.

https://tools.ietf.org/html/rfc7252

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 18

As we noted in an earlier section, the use of UDP means that an upper-
layer protocol is needed to provide state management, message
sequencing, delivery reliability and other features (e.g., flow control),
when needed by the M2M/IoT application.

CoAP provides all this through two logical layers, as shown in Figure 7.
On the wire, both layers are contained within the binary header.

The request/response layer uses method codes (numbers rather
than text) to identify the type of action requested – GET, POST, PUT,
DELETE, which closely resemble HTTP methods, although with some
nuances/differences which we’ll elide over for now for sake of length
– and response codes which also resemble and are a subset of HTTP
response codes (e.g., 2.00 and 4.04 for the familiar HTTP 200 OK and
404 Not Found) . These methods and responses carry their own ID,
Token, for correlating requests and responses, several of which may be
sent in either direction and outstanding at any time.

Figure 7

Application

UDP

Messages
(CONN, ACK, NCON, RST, etc.)

Request/Response
Protocol

(GET, PUT, POST, DELETE)

Messages for carrying
requests and responses

(handles duplicates
and reliability).

HTTP-like request/
response protocol

One-way Datagram
(unreliable).

COAP

https://tools.ietf.org/html/rfc7252#section-12.1.1
https://tools.ietf.org/html/rfc7252#section-12.1.2
https://tools.ietf.org/html/rfc7252#section-5.3

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 19

The underlying message handling layer carries a request or a response
code in one of four types of messages – CON, for a message whose
receipt must be confirmed with an ACK, a NCON which need not
be confirmed and a RST message (for reset) to indicate receipt of a
message that cannot be processed.

It’s easiest to show how CoAP’s two layers operate in conjunction
through some examples. In Figure 8(a), a request to GET a sensor’s
reading is sent in a CON message and the response piggy-backed
in the ACK. Figure 8(b) shows a case where the reading is not
immediately available, but promptly ACKnowledged to prevent
needless resubmissions. When the reading is available, the server
sends it in a new CON message in the opposite direction. Note how
the separation of the request/response token ID from the message
ID ensures that requests and responses can be correlated despite
being sent over different underlying messages. If anything, this
example shows how HTTP-like semantics can be achieved and data
asynchronously pushed over a one-way datagram network without
polling (long or otherwise) or any of the other complexities identified in
earlier sections.

CoAP contains many more options, and the reader should consult the
suite of drafts and specifications accompanying the base protocol to
understand its versatility.	

Figure 8(a)

CONN msg. id = XX
GET/Temp, token = aa

ACK msg. id = XX
Temp= 100, token = aa

Client
Server

(sensor)

›››

›››
Figure 8(b)

CONN msg. id = XX
GET/Temp, token = aa

ACK msg. id = XX

time passes

Client
Server

(sensor)

›››
›››

CONN msg. id = YY
Temp = 100, token = aa

ACK msg. id = XX
›››

›››

Measurement
not available

Empty ACK
returned to avoid
client hanging

Measurement
available (note
new message
ID, but original
request ID)

https://datatracker.ietf.org/wg/core/documents/

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 20

HTTP/2

The previous sections outlined various solutions that application
designers have created over the past years to adapt the HTTP request/
response pattern to allow more flexible interactions, culminating in
WebSocket’s bi-directional communication channel. Instead of bespoke
solutions for use in different situations, each bringing new performance
or implementation issues, the IETF decided in 2012 to standardize a
major overhaul of HTTP using as a basis a protocol, SPDY, introduced
by Google and implemented in its Chrome browser.

With the completion of this new version of HTTP in 2014, called HTTP/2,
the IETF dealt in one swoop with all the issues that led to the various
ad hoc solutions created for HTTP 1.1 described earlier. The result is
a completely new on-the-wire protocol but with the same application
semantics (the various HTTP methods and URI schemes) as before so
that applications remain unchanged. It would take too long to describe
the various features of HTTP/2, which we’ll cover in future articles
on the PubNub blog, but we contrast here the key ways in which it
addresses the shortcomings of HTTP 1.1.

HTTP/2 is a binary wire protocol; thus, it’s backwards-incompatible
on-the-wire with text-based HTTP 1.1. This allows for reduction of the
message size, an important consideration in many environments, but
also requires that both clients and servers upgrade to the new protocol
to benefit from its features.

HTTP/2 requests and responses are multiplexed on logically
independent connections called streams, so that a blocked or stalled
request does not block the queue for those behind it. Streams can be
prioritized and flow controlled so that the critical streams can be acted
on first.

HTTP 1.1’s header bloat, where header data is repeated for requests
to the same resource and often take up more data than the response
body, is mitigated by only resending changed or new headers.

https://www.chromium.org/spdy/spdy-whitepaper
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540#section-5

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 21

And, a server can preemptively push data if it anticipates, based on a
current request, that the client is likely to request it sooner or later.

There’s much more to it, of course, but it would take a separate article
to describe it all. HTTP/2 penetration, as measured by Web Technology
Surveys, stands at about 30% at the time of this writing and is offered by
almost all major web sites and browsers.

There’s also work in IETF on a mapping of HTTP/2 onto a secure, UDP
transport named QUIC, the result called HTTP/3, but describing it here
would take us further afield.

Publish/Subscribe Protocols
Before providing an overview of publish/subscribe protocols, let’s
recap our earlier discussion of this interaction pattern. In contrast to
the request/response pattern, where pre-defined types of information
are consumed from a known source, the publish/subscribe pattern
allows for a fully decoupled mode of communication between unknown
entities, which may or may not be available at all times. Thus, the
need for an interaction pattern that is based on events (information of
interest in a given domain) produced by publishers, collected by an
intermediary, and disseminated to subscribers that have expressed
interest in those events.

Depending on the requirements, event delivery can be made reliable
(e.g., using TCP instead of UDP), secure (using TLS) and pushed one-
to-many (e.g., using IPv6 multicast). However, independent of these
underlying techniques, the basic mechanism remains unaltered.

This pattern is particularly suited for cases where small-sized event data
(e.g., a temperature reading) needs to be distributed in large volumes
(e.g., from thousands of sensors) over networks with low bandwidth and
dubious connectivity. This is the environment in which many IoT devices
operate and M2M communication occur. That’s why IoT/M2M protocols

https://tools.ietf.org/html/rfc7540#section-6.6
https://w3techs.com/technologies/details/ce-http2/all/all
https://w3techs.com/technologies/details/ce-http2/all/all
https://tools.ietf.org/html/draft-ietf-quic-transport-22
https://quicwg.org/base-drafts/draft-ietf-quic-http.html

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 22

have gravitated towards publish/subscribe protocols, some examples of
which we outline in what follows.

MQTT

Message Queueing Telemetry Transport – or just MQTT, the current
preference being to not spell out the acronym – offers a lightweight
messaging mechanism to convey event data from constrained devices
across unreliable, bandwidth constrained and high latency networks
to remote subscribers. It is being standardized as an open, royalty free
protocol by OASIS.

MQTT messages are in a binary format and typically transported over
a TCP connection (although an UDP variant has also be standardized)
to ensure delivery guarantee. All interactions are mediated by a MQTT
broker, to which both Publishers and Subscribers connect using a
CONNECT/CONNACK pair.

Please see Figure 9 for typical message exchanges for a stock price
quote publication service.

Figure 9

CONNECT

CONNACK

SUBACK

CONNACK

PUBLISH
(NYSE/StockQuotes/Stock/IBM, at least once)

SUBCRIBE
(NYSE/StockQuotes/Stock/IBM)

PUBLISH
(NYSE/StockQuotes/Stock/IBM)

PUBLISH
(NYSE/StockQuotes/Stock/IBM)

delete data

save data

PUBLISH
(NYSE/StockQuotes/Stock/IBM, at least once)

PUBACK

PUBACK

CONNECT

MQTT BrokerPublisher Subscriber

›››

›››

›››
›››

›››

›››

›››

›››

›››

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Toc442180846

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 23

Publishers identify the subjects (called topics) about which they will
provide data to the MQTT broker in a PUBLISH message Topics have
a very simple grammar, such as NYSE/StockQuotes/Stock/IBM for the
stock price, the specific value carried as payload of the message.
Payloads can be in any format. Publishers can ask for levels of delivery
guarantees when they publish to a broker – at most once (which
means best effort), at least once or exactly once – depending on the
application’s requirements. A Publisher can also ask that the data
be retained by the broker. When so requested, a MQTT broker only
retains the last value received – that’s one reason for deprecating the
misleading term “Queuing” in the expansion of the acronym.

Subscribers connect to the broker and listen for publication of data
on topics they are interested in using SUBSCRIBE messages, which
are acknowledged by the broker using SUBACK messages. Each
SUBSCRIBE message lists all the topics of interest to that particular
subscriber. Conversely, there is an UNSUBSCRIBE message to drop out
of those topics the subscriber is no longer interested in. When data on
a topic has been PUBLISHed to the MQTT broker, it, in turn, PUBLISHes
it to all entities that have subscribed to that topic. WebSocket is often
used the data transfer mechanism from the broker to subscribers,
especially as subscribers typically view updates via their browsers.

MQTT is by now firmly established as a major M2M communication
mechanism, and its uptake can only grow given the number of IoT
devices expected to be deployed in the coming years.

XMPP PUBSUB

The XMPP protocol has an extension XEP-0060, maintained by
XMPP.org, which implements the publish/subscribe interaction
pattern. It defines certain XMPP nodes (much like the MQTT brokers
described earlier) to which XMPP publishers publish data, which the
node distributes to interested XMPP subscribers. The language for
publishing and subscribing is verbose, being based on XML. All the
usual interesting use cases are possible, and the PubSub mechanism is
included in all major XMPP implementations.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Toc442180919
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Toc442180912
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Toc442180912
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Toc442180876
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Toc442180881
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Toc442180850
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Toc442180940
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html#_Toc442180940
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://tools.ietf.org/html/rfc6120
https://xmpp.org/extensions/
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/

O V E R V I E W O F R E A LT I M E S T R E A M I N G P R O T O C O L S 24

WEBSUB

WebSub (formerly known as PubSubHubbub) is a W3C
Recommendation, and used for pushing web content like blog updates
(from WordPress.com, for example, among others) to feed readers
(e.g., Google Reader, Bloglines, etc.). It’s another in a line of openly
standardized web-scale publish-subscribe mechanisms, but one based
entirely on HTTP.

Subscribers search for sources of events (topics) on interest via a
HTTP GET, and subscribe (using a HTTP POST) to the “hub” from which
such events are published. The subscriber includes a callback URL in
the subscription request, to which events are posted when available.
Publishers notify their hubs when content has been updated using any
mechanism. The hub, in turn, POSTs the changes to the callback URL
on the subscriber. (See here for an illustrative figure of the interactions.)

Conclusions	

As the reader who has come this far will no doubt realize, there has
been an enormous amount of effort over the past decades to create
a variety of open, royalty-free standards for real time data transfer
between communicating entities. All are based on one of two major
communication paradigms, each best suited for a certain set of
requirements and use cases. The request-response interaction
pattern, and its implementation in the HTTP protocol with variants
created for specific situations such as bidirectional data transfer and
M2M communication, is perhaps the most widely-deployed open
protocol. New versions such as HTTP/2 and HTTP/3, that mitigate
many of the shortcomings of the earlier versions, have the potential
to replace many today’s bespoke solutions with a truly universal
communication protocol.

https://www.w3.org/TR/websub/
https://github.com/pubsubhubbub
https://en.blog.wordpress.com/2010/03/03/rub-a-dub-dub-in-the-pubsubhubbub/
https://www.w3.org/TR/websub/#high-level-protocol-flow

www.pubnub.com

@pubnub

(415) 223-7552

Contact Us

http://www.pubnub.com
https://twitter.com/PubNub
https://www.pubnub.com/company/talk-to-sales/?utm_source=Inbound &utm_medium=ebook&utm_campaign=WB-CY18-Q2-chat-hotair-ebook-june-13&utm_term=talk-to-sales&utm_content=form

