xStudio Architecture - Fig 1. Media Management Data Model

Session

Playlist

Playlist

Playlist

Notes:

.
.

Playlist

Media

Media

Media

Timeline

Media

Media Source

render_vO1.#.exr

Media Source

render_vO1_proxy.#.exr

Media Source
render_v01.h624.mp4

Active Video Souce
.
.

Media Source

render_v01.aif

Active Audio Souce

Media Source

render_v01.prores.mov

Metadataf

Ve

AN

Media Source

Media Stream
Video Track 1

Media Stream

Stereo Audio Track

Active Audio Track

Media Stream

Dolby 5.1 Audio
Track

{ Metadatezr

Active Video Track
.

J

o Classes are implemented using the Message Passing Interface (MPI) 'Actor Model' design pattern using 'C++ Actor Framework'.
« Each class instance executes code in inherently thread safe way on threadpool managed by framework. Highly concurrent.

o The purpose of the Media Source object within the hierarchy is to resolve the universal VFX practice of generating/maintaining multiple encodings of the same visual output (and associated audio). For

EN

Media Stream

.
.
.
.
o
.

*DTS | AVFramelD - |

.

0.0 Frame 0

0.042 | Frame1 °*,

*DTS = display time stamp

\/Rate| Frame N g
.

~

.

AVFramelD

ID

URI

Frame Number

Stream Index

Ref to Media Stream

example a CG render may be output at 4k EXR, from which one or more additional encodings would be created for various purposes, like lightweight motion compressed quicktime, a higher quality

review quicktime or more compressed and down-res'ed EXR proxies. By encapsulating these within the broader 'Media' class we aim to simplify the logical access to these various (usually distinct

filesystem) resources.
« The Media Stream entity further resolves a Media Source into its logical internal AV components. Specific examples are containerised encodings like MP4 that can carry multiple video and (more

commonly) multiple audio tracks. Similiarly multipart EXRs are handles with a separate Media Stream for each 'part' allowing the application to enact switching between parts or displaying data relating
to those parts in the Ul, say.
¢ The Media Stream maintains a map of 'AVFramelD' which is a lightweight struct containing all the information required by a Media Reader to read and decode a single given frame of audio/video data.

The passing of these structures ultimately enables the components involved in playback to request frames for decoding, cacheing and display.

xStudio Architecture - Fig 2. Playback Engine Components and Data Flow.

m Video Frame Playable Source 1 Playhead 4 h
Audio Frame (A Video Frames and Colour Data for
Sub Playhead Immediate + Imminent Display
o
AVFramolD Playable Source 2 (] ‘
— { =
Playable Source 3 Sub Playhead
~ l
||||_ - Sub Playhead \A\A
Playback .
Full AVFramelD List \ Controller Viewport -
ul ramel IS
\\ I Duration openGL, Apple
IIII_ Playback Metal (in
Media Metadata Frame Rate Timer Loop [€— VBlank Beat —| plannlng)
T e Playhead 3
I(I_ vvvvvvv : T | | aveemont® l===== Playhead Position 2 = = = 1
: AVFramelDand| [[| = === = i
Media Reader Manager III—
I'“lll' I | DTS resolver
u T ‘ Onscreen
Media Reader m v Mot ata
Frame Read (
Cache Check
Media Reader Request Queue L
| Media Reader (\
l Luts and GLSL. Colour
i | el e .
Il Audio Output
l (Soundcard)
YyVvyYy AA 4
Colour Management \ J

Notes:

Image / Audio Cache

siaininin

Plugin (OCIO v2)

9y

* Playheads are designed to run completely independently of Ul components, with the exception of receiving a message on display refresh (framebuffer swap) to assist with video sync.
* The application can support any number of running playheads.
» Sub-playheads allow image data to stream from mulitple sources in sync., providing a means for comparing more than one source in an A/B mode or a contact sheet, for example.
» The Playhead position is maintained to a much higher granularity than source frame rate or video refresh rate. This allows sub-playheads to play media with different playback rates and
maintain best possible synchronisation.
« A valid Sub-playhead source is any entity that simply a map of type <DTS, AVFramelD> through a common message handler - in other words a list of AVFramelDs with a timestamp
relative to the first frame. In practice this can be a Media item, a Media Source, a Timeline, an EditList, a Retimer (that wraps another source of AVFramelDs) etc.
» The sub playhead delivers multiple video frames including the current frame and one or two subsequent frames to the Viewport, each stamped with an accurate display time.
» The Viewport is responsible for displaying the right frame at draw time and starting asynchronous uploads of the following frames to GPU memory where possible.
« Media Readers attach static GLSL shader code and data to the Video Frames that they generate. This GLSL code does pixel unpacking to RGB from the raw image buffer.

xStudio Architecture - Fig 3 Backend / Ul

™)

Session - - e
Session QtObject X
(QML Shim) = - .

Playlist

Playlist QtObject
(QML Shim)

ImageBuf unpack
Is|

I A

‘ View
port
<": Backend

Display Shader

Media QtObject Colour Transform

Playlist (QML Shim) lg—gistfuncs ‘ Colour LUT data

Viewport State

<
A
Viewport Ul Events _ Viewport QtObject
(QML Shim)
PIayIlSt Playhead QtObject
(QML Shim) Generalised Qt Abstract
Data Model Viewport Attributes State
’ Playhead :D: .
Notes:

« For most backend components a dedicated shim class exposes state data to Qt/QML for each component type

QML layer visualises backend data, interacting through the shim, so no backend execution happens in the Ul layer.

Some backend components declare 'attributes' that can be exposed in the Ul layer via a generalised model/delegate/view approach (e.g. toolbar buttons which are built at runtime)
Planned refactoring will make greater use of this generalised approach, we may be able to drop the 'shim' classes altogether for a full, more flexible 'runtime constructed' GUI.

Viewport renderer has no dependency on Qt and therefore can render into any OpenGL surface. It is hoped this approach will help with port to Apple metal.

All user interaction is forwarded through the application's message passing framework and as such the Viewport backend class does not have to execute within the main Qt event loop.

xStudio Architecture - Fig 4 C++ Plugin

Session Plugin

- -
Plugin Overlay Renderer (OpenGL?

Plugin QML Interface

1

Playlist

Display Shader

Plugin / Session
Interaction via MPI

k/
Playlist / 9 x

Hotkey and
Viewport Backend

Attribute (int)
Attribute (bool)

Attribute (string)

k5]
2
i
Q
2
=
=
E
<

Nl

Attribute (vector<float>)

ré é : b
Generalised Qt Abstract | : : ; \ :

List Model [: '

Mouse Events

Toolbar ! h !
Injection ~ _-* B)

Playlist Voo V!
Notes:

« There is no Plugin specific C++ API - plugins are authored like any core component of xStudio

* Most xStudio classes have a public message handling interface, plugins can interact freely with core components through the MPI framework.
« Core components are reachable via the public object registry

¢ Plugins can include OpenGL C and GLSL code to render viewport overlays

¢ Plugins can include QML code to add new interfaces

« Attributes can be used as a convenient way to define data that connects QML Ul to C++/Python backend (and OpenGL renderer)

« Attributes can be used to add menus, menu items and toolbar widgets to the main xStudio interface

xStudio Architecture - Fig 5 Remote Control (Python)

4 .
1 Python 'Plugin’
Session 1 ! -5
| — Q2 @
. = |13 4] [= = - =
Playllst < i < N ES § E § g’ Display Shader g QML Interface Code 9 o
Media <]—»| | Session, Playlist, S22l 5] |2 B | T e_ e
- I P | |Media Interaction & E % 2 E % .05’ [Tl
Media . > a Ul Event £ |8 5 = = 2 E ()
. Processin | |Z < = = <
Media «—> 1 9 < < < =
C S
' i g
i o
—
Playlist I > O
v \ v aw
I MPi (Python Interpreter Side) =~
Socket
Connection
-_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— L) -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_—
L
PIayIist MPI (Application Side)
Attribute
Data/Events
[Generalised Qt Abstract List Model J
Hotkey and
Mouse Events
Menu GLSL For
Injection Tgolpar Viewport QML Code
Injection Overlay
Viewport Ul
Events
Notes:

« xStudio's MPI framework can transparently send and receive messages over a network socket
« This feature allows Python plugins to run in a completely separate process, if desired

« Since they run in a separate process, a Python controller with a novel PySide interface could be created, for example, that would not interfere with xStudio

playback performance
+ The Python API binds the MPI framework functions and types for sending and receiving messages and mirrors backend core classes.
« Objects within the Session can be interacted from the Python side using their public message handlers
« Attributes can be used to add menu items, standard widgets (like toolbar buttons) or custom widgets to the xStudio interface
« Python plugins can also pass GLSL and QML code to the xStudio application for creating graphics overlays or new interfaces, as required
e GLSL uniforms can be automatically mapped to plugin attributes
» Direct OpenGL rendering hooks are not possible, however.
o C++ plugin/controllers can also be implemented in a similar way

