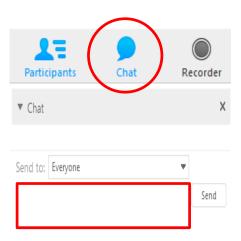
Integrated Resource Planning

Meeting Logistics

Local Participants:

- World Trade Center facility
- Wireless internet access


• Network: 2WTC_Event

Password: 2WTC_Event\$

Sign-in sheets

Virtual Participants:

- Ask questions via 'chat' feature
- Meeting will stay open during breaks, but will be muted
- Electronic version of presentation: portlandgeneral.com/irp
- >> Integrated Resource Planning

AGENDA

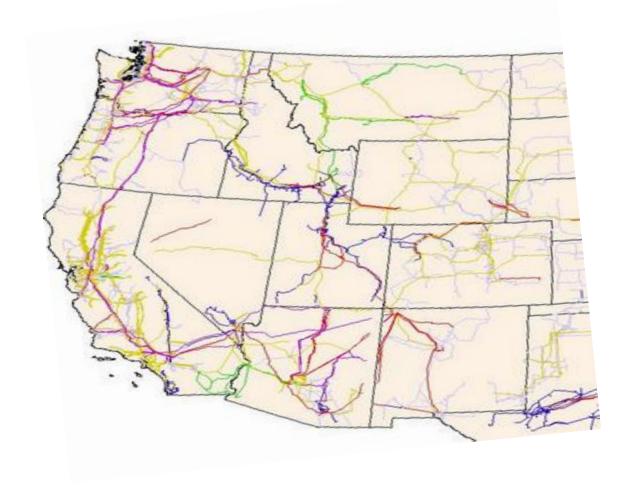
- ☐ Transmission access to Montana Wind resources
- □Other transmission-related comments & questions
- □ Distribution Resource Planning

Winter Driving Preparedness

Montana Transmission Access

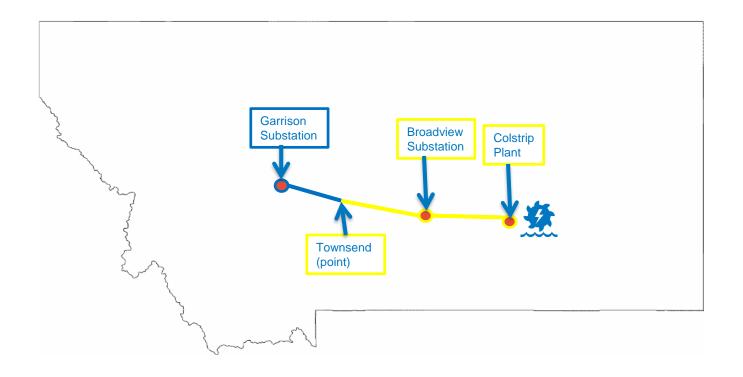
Shaun Foster, Senior Analyst, Transmission & Market Services

Discussion Topics

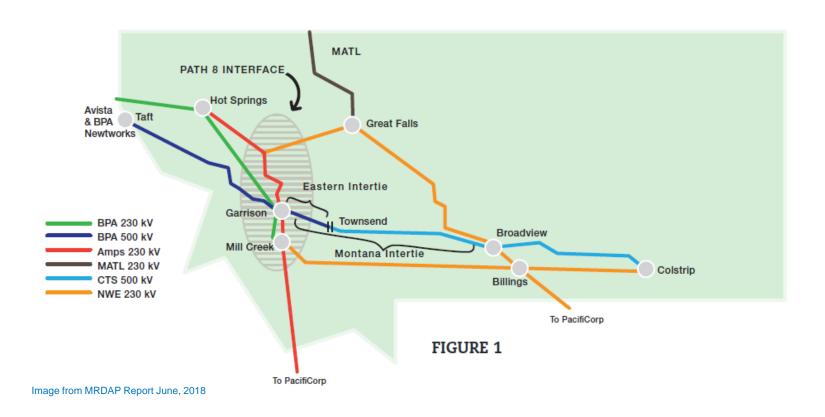

- Background
 - Brief Overview of Colstrip Transmission System (CTS)
 - CTS and Montana Intertie
 - NW Transmission System
- Montana Renewables Development Action Plan (MRDAP)
 - Recent MRDAP Update
 - Ongoing Discussions

Standards of Conduct

Separation of Functions


- FERC Standards of Conduct require the separation of functions for Public Utilities (FERC Term that generally refers to IOUs)
- Transmission Function vs. Marketing Function
- Limits what information Transmission Function Employees can share
- Requires treatment of Transmission Customer information as confidential

CTS & Montana Intertie Location



CTS and Montana Intertie

Approximate location

Montana Transmission

CTS Overview

- Two 500kV transmission lines, approximately 250 miles
- Co-owned by (5) different utilities
 - Northwestern Energy
 - Puget Sound Energy
 - Portland General Electric
 - Avista
 - PacifiCorp
- Delivers output of Colstrip generating plants from central Montana to interface with BPA's transmission system in western Montana
- Generally, transmission on CTS is fully subscribed (some minor exceptions)

Colstrip Transmission Agreement

- Originally executed in 1981 and filed with FERC as a grandfathered contract
- Provides for:
 - Ownership of facilities, ownership of transmission rights
 - Operation by a single owner as "Designated Operator"
- Amended to address Interconnection Service:
 - FERC required amendments to clarify process for interconnection requests
 - Interconnection requests must be made to all (5) CTS owners
 - Each owner is required by contract to have CTS interconnection procedures posted on their public OASIS sites.

CTS Ownership

Company	Colstrip to Broadview	Broadview to Townsend	
Northwestern Energy	36%	24%	
Puget Sound Energy	33%	39%	
Portland General Electric	14%	16%	
Avista Corp	10%	12%	
PacifiCorp	7%	8%	

Relationship Among Owners

- 5 Companies of varying sizes and locations
- 5 different Open Access Transmission Tariffs
 - each company provides Colstrip transmission under their own OATT
- 3 members of Norther Tier Transmission Group (NTTG)
- 2 members of Columbia Grid
- 11 state Public Utility Commissions, consumer advocacy groups, and other stakeholders

Montana Intertie Agreement

- Originally executed in 1981 and filed with FERC as a grandfathered contract
- Includes BPA's obligation to construct, own, and operate the Townsend-Garrison 500kV circuit
- Details parties' transmission capacity allocations, associated costs, and what energy can be moved on intertie
- (6) parties to the agreement
 - Bonneville Power Administration, Northwestern Energy, Puget Sound Energy, Portland General Electric, Avista, PacifiCorp
- Disallows use of Garrison as a scheduling point for all but Northwestern Energy

Montana Renewables Development Action Plan (MRDAP)

- Jointly sponsored effort by BPA and the State of Montana governor's Office
- Kicked off in December 2017 and final report issued June 30, 2018
- Intended to explore barriers, both physical and in process, facing renewables development in Montana
- The effort brought clarification to existing facts, highlighted existing unused available transmission capacity, and identified future opportunities to simplify access and provide solutions to potential barriers
- MRDAP comprised of three different sub-committees (Commercial/Policy, Operations, Planning). PGE participated in all three
- Updated quarterly last update happened in October; next scheduled for January

MRDAP Key Findings

- Significant transmission capacity currently exists to exit Montana
- May be opportunities to update the CTS Agreement and Montana Intertie
 Agreement (MIA) to allow third party access and improve loss calculations
- CTS, Intertie, Path 8 will likely be able to maintain similar TTC (total transfer capability) ratings after Colstrip Plant closes
- Significant incremental transmission capacity exiting Montana can be realized with construction of currently identified projects
 - Remedial Action Scheme (RAS)
 - CTS Upgrade
 - Montana to Washington (M2W)
- Significant DTC (dynamic transfer capability) can be made available by BPA to support the dynamic scheduling of renewables to the west

Available Transmission Capacity

	East of Garrison	West of Garrison	West of Hatwai
NWE to AVA to Mid-C	297	297	297
NWE to BPA	246	0	0
Montana Intertie	184	0	0
BPA RAS Upgrade	0	0	0
PSE Colstrip 1&2	0	0	0
Total	727	297	297

MRDAP Updates

- BPA and NWE have come to an agreement regarding the marketing of disputed 184 MW of ATC between the two entities
- Parties to the Montana Intertie Agreement (MIA) have agreed, and previously publicly announced, that the Colstrip-owning parties to the MIA can utilize their capacity rights on the intertie to move non-Colstrip station power under certain conditions
- Parties to the MIA have verbally agreed to a mechanism that may allow third party access to capacity on the intertie should it come available in future
- Parties to the MIA are in discussion regarding appropriateness of 5% loss rate for third party use; analysis and discussions are ongoing

Questions on Montana wind transmission access?

Other transmission-related comments and questions?

Distribution Resource Planning

Darren Murtaugh
T&D Planning

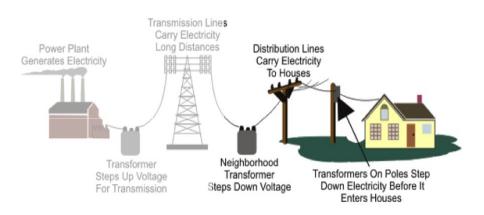
Discussion Topics For Today's Meeting

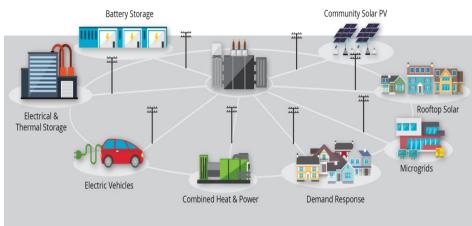
Overview of Distribution Resource Planning (DRP)

· Overview of what DRP entails and what value DRP can provide

Stages of Implementation

PGE's vision for what an implementation plan may look like

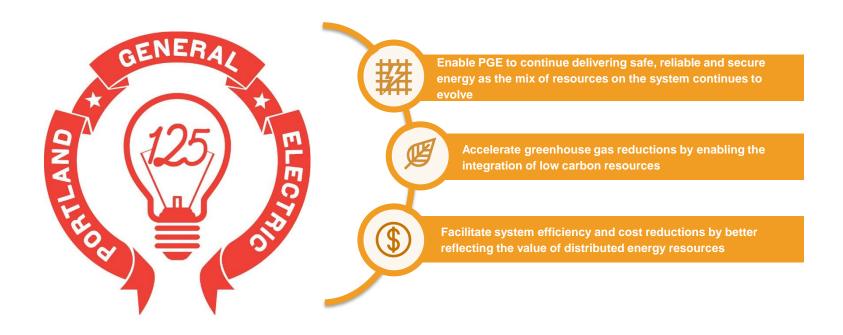

Areas of Focus


- High level description of key outcomes for each stage of DRP
 - Data Integration & Forecasting
 - Distributed Energy Resource (DER) Operability & Functionality
 - Hosting Capacity Analysis
 - Locational Value Analysis

What is Distribution Resource Planning?

Today: Distribution System Planning

New: Distribution Resource Planning



- Ensure we can meet the customer growth
- Capacity and reliability planning for peak loading conditions
- Meet core imperatives of safety, security, reliability, and affordability

- Integrate the presence and availability of Distributed Energy Resources (DER) into T&D Planning processes
- Continue to meet the core imperatives, and also modernize a more flexible grid that advances economy-wide decarbonization

Why Distribution Resource Planning?

<u>Purpose</u>: Distribution Resource Planning (DRP) will form the foundations upon which PGE will plan the evolution of the modern flexible grid that cost-effectively accommodates electric system and economy-wide decarbonization efforts while maintaining or enhancing safety, reliability, and affordability.

Envisioned Stages of Implementation

Foundation

Access to granular information

Analyze

Processes to realize locational value

Implement

 Procurement of Non-Wires
 Alternatives

Integrate

 Dynamic management of distributed energy resources

Envisioned Stages of Implementation

Stage 1 Foundations

Improved circuit model load allocations

Interconnection process improvements

Baseline hosting capacity analysis

AMI data integration

Stage 2 Analysis

Streamlined interconnection studies

System-wide locational value analysis

Non-wires suitability criteria

Stage 3 Implementation

Non-wires alternatives procurement for T&D deferral

Forecasted hosting capacity

Smart inverter roadmap implementation

Stage 4 Integration

Advanced hosting capacity analysis

Active network management

Dynamic communications with smart inverters

Proactive DER integration

Distribution Resource Planning

To effectively utilize Distributed Energy Resources for Grid support, PGE will advance their capabilities along the following primary areas of focus:

Data Integration & Forecasting

- Improve data quality, validate distribution models, integrate AMI nodal summaries
- Advance forecasting processes for DER and EV
- Feeder seasonal Load & Resource profiles
- Day-ahead and real-time distribution models

DER Operability & Functionality

- Streamlined System Impact Study Process
- Standards Implementation / Passive Smart Inverter Functions
- Enable Advanced Smart Inverter Functionality

Hosting Capacity Analysis

- System-wide baseline Hosting Capacity assessment for PV solar
- Refine methodology to consider seasonal values & load profiles
- Quantify impact of smart inverter functionality on Hosting Capacity

Locational Value Assessment

- Identify and Benchmark a uniform set of Value Streams
- Validate locational value and stacked benefits per learnings from PGE pilots
- Refine methods, tools, and processes for reporting locational value
- NWA suitability criteria and study process

29

Data Integration and Forecasting

Stage 1 2019 – 2020 Foundations Stage 2 2019 – 2022 **Analysis** Stage 3 2022 – 2024 Implementation Stage 4 2024 – beyond Integration

Data Integration & Forecasting

Improve data quality, data availability, planning tool integration

Ensure all existing DER is included in CYME circuit models

Coordination with IRP, Customer Strategy

- Seasonal Load and Resource profiles
- Include load characteristics
- Distribution feeder-level forecasts for DER and EVs

- GIS cutover to utility network model
- Assess probabilistic load and DER forecasting
- Increased granularity of forecasts

- Continue to incorporate 8760 data into forecasting scenarios
- Expand implementation of nondeterministic forecasts in planning

30

DER Operability/Functionality and Hosting Capacity

Stage 1 2019 – 2020 Foundations Stage 2 2019 – 2022 **Analysis** Stage 3 2022 – 2024 Implementation Stage 4 2024 – beyond Integration

DER Operability & Functionality

 Validate baseline Hosting Capacity assessment

- Draft standard on utility-required smart inverter settings
- Assess HCA for use in approval process

 Assess forecasted HC results for streamlining engineering analysis Incorporate advanced smart inverter functionality

Hosting Capacity

 Complete system-wide assessment for static Hosting Capacity

- Quantify impacts of smart inverter functionality on HC
- Complete Stage 2 HC analysis
- Forecasted hosting capacity for all distribution feeders
- Expand DER types and consideration of operational flexibility

- Implementation of dynamic hosting capacity
- Include bulk system impacts

Locational Value Analysis

Stage 1 2019 – 2020 Foundations Stage 2 2019 – 2022 **Analysis** Stage 3 2022 – 2024 Implementation Stage 4 2024 – beyond Integration

Locational Value Analysis

- Establish a Locational Value framework for DER
- Develop DRP narrative for 2019 IRP


- Gain agreement on NWA Suitability Criteria
- Identify and assess distributed resource solutions

- Establish processes for NWA procurement, bid evaluation, and implementation
- Integrated
 Planning to
 evaluate DER for
 T&D and IRP
 planning
- Dynamic DER value calculations

32

Questions?

Wrap up

Elaine Hart

Upcoming 2019 Roundtables

Roundtable 19-1 Wednesday, February 27, 2019

(9:00 am - 1:00 pm PST)

2 World Trade Center, Sky Bridge A&B 121 SW Salmon St., Portland, OR 97204 **AGENDA**

TBD

https://www.portlandgeneral.com/our-company/energy-strategy/resource-planning/integrated-resource-planning/irp-public-meetings

Wrap Up

- Thank you for your participation today!
- Questions or Feedback If you would like to provide feedback on PGE's 2019 IRP or the IRP process
 - <u>Complete the IRP Online Form</u>
 (https://www.portlandgeneral.com/forms/pge-stakeholder-feedback)
 - Email <u>IRP@pgn.com</u>