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Section 1 Executive Summary 

This report outlines work conducted to understand the potential adoption and impacts of 

distributed energy resources, flexible loads, and electrification for Portland General Electric (PGE) 

in support of its Integrated Resource Plan and ongoing Distribution System Planning as outlined 

in UM 2005. This work was undertaken by Cadeo in close collaboration with Ethan Goldman 

(independent), the Brattle Group, and Lighthouse Consulting (hereafter, the “Cadeo team”).  

To meet the evolving needs of PGE and its stakeholders, the Cadeo team worked closely with 

PGE to develop an open modeling framework. The framework integrates true bottom-up 

modeling of the building and vehicle stock with market-level adoption forecasts to create a rich, 

integrated view of how different DER and electrification technologies complement and compete 

under different conditions. The AdopDER model that we developed with PGE represents a 

paradigmatic shift in how potentials are modeled and lays the foundation for continued 

evolution in planning processes across the energy system.  

This report outlines Phase I of a two-phase process to estimate potentials. In this phase, we 

estimated system-wide potential to inform the integrated resource plan. In Phase II, we will 

estimate locational adoption of these resources, fine-tune adoption models to account for 

different demographics, energy use patterns, built infrastructure, and cluster effects that are 

known to impact the distribution of DERs on the system. Phase II results will be used to inform 

PGE’s forthcoming Distribution System Plan and program planning efforts. 

This study presents results following estimated adoption, peak impacts (by season), and energy 

impacts for 2021-2050 from the following adoption pathways: 

• Programmatic adoption: simulates measure adoption through PGE programs. 

• Market adoption: simulates naturally occurring measure adoption for building 

electrification, transportation electrification, solar, storage, and smart devices 

technologies. 

We modeled this adoption for the following technology groups: 

• Flexible loads: programmatic adoption of opt-in direct load control and pricing 

measures, including peak time rebates, smart water heater controls, smart thermostats, 

and curtailable tariffs.  

• Solar and storage: market and programmatic adoption of behind-the-meter solar and 

battery energy storage in residential, commercial, and industrial, including applications 

of microgrids for critical facilities.  

• Transportation electrification: market and programmatic adoption of electric vehicles 

and accompanying charging infrastructure across all sectors and vehicles classes.  
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• Building electrification: market adoption of heat pumps, electric water heaters, and 

induction cooking technologies by residential and commercial sites either to increase 

electric efficiency or to replace the direct use of fossil fuels.  

We estimated forecast adoption and potential for the following categories: 

• Market forecast: represents the expected adoption of resources given no programmatic 

intervention from PGE. This forecast excludes purely programmatic measures, such as 

demand response and pricing (excepting some enabling technologies, like smart 

thermostats, that might be adopted without intervention).  

• Technical potential: provides a theoretical upper limit of adoption, showing what would 

happen if all feasible technologies were adopted in each year.  

• Achievable technical potential: represents the maximum reasonably expected adoption 

of programmatic measures unconstrained by cost-effectiveness criteria, using a mix of 

benchmark programs and historical participation in PGE programs.   

• Achievable economic potential: provides the subset of achievable potential that we 

determined to be cost-effective.  

For achievable technical and economic achievable potential, we estimated adoption and impacts 

under 9 different scenarios, looking at each possible combination of 3 load and 3 DER adoption 

scenarios. This provides us with a range of potential impacts and grounds the analysis in similar 

assumptions to those being used by the broader Integrated Resource Planning (IRP) effort.  

Our final analysis outputs provide a rich view of different possible net load conditions. AdopDER 

provides hourly load and measure shapes down to the site level for each scenario and year over 

the 30-year planning horizon. It additionally provides anticipated costs and benefits for 

programmatic measures and estimated cost-effectiveness ratios using the Total Resource Cost 

(TRC) and Program Administrator Cost (PAC) tests, using an approach consistent with that PGE’s 

Flexible Load Plan1 adopted in May 2021. AdopDER also provides levelized costs and supply 

curves for dispatchable resources at the measure and program levels, to provide a more 

nuanced input into portfolio construction.  

1.1 The AdopDER Model 

The AdopDER model is a comprehensive modeling framework built in Python that is used to 

estimate the adoption of distributed energy resources, electrification, and flexible loads 

dynamically and stochastically under different programmatic and market conditions. AdopDER 

differs from traditional potentials analysis in several ways: 

• Open framework: The AdopDER model is built using open-source tools and the 

entire codebase has been provided to PGE to be used in perpetuity, including 

 
1 UM 2141 Portland General Electric Company Flexible Load Plan available at 

https://edocs.puc.state.or.us/efdocs/HAS/um2141has132229.pdf  

https://edocs.puc.state.or.us/efdocs/HAS/um2141has132229.pdf
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components that were previously proprietary to the Cadeo team. The inputs to the 

model are all either internal to PGE or publicly available, so that PGE is empowered 

to share and engage with commission staff, stakeholders, and communities 

wherever possible.  

• Scalable granularity: While there is often a debate between bottom-up and top-

down approaches, there is almost always a mix of the two based on the 

appropriateness of the model and the availability of data. Where more granular data 

is available and needs warrant, AdopDER can model down to the individual site level. 

However, where that is not available, it augments missing data stochastically, 

simulating missing fields or applying average values, as necessary.  

• Agent-based approach: AdopDER is natively agent-based, meaning that it starts 

with the individual site as the unit of analysis and models its feasibility and adoption 

decisions over time, considering outside system-level factors such as weather, rates, 

costs, and product availability. This is critical for an integrated view of DER adoption 

as many resources compete or complement each other for limited customer 

spending, available site ampacity, or program participation opportunities. 

• Explicit, time-variant modeling of feasibility: AdopDER uses a stock turnover 

approach to update site-level characteristics over time, which in turn updates the 

site-level feasibility for each technology over time. The dynamic nature of feasibility 

in AdopDER leads to findings that would be missed in a study that holds current 

trends static. For instance, forecasts for Level 2 home charging often assume that 

current trends hold through the forecast period, however, when looking at high 

levels of EV adoption that the Cadeo team expects in later years, it becomes 

apparent that a large portion of the residential population cannot install this 

charging due to lack of available parking and/or panel ampacity.  

• Differentiation of technologies and programs: The model explicitly models the 

hierarchy that exists between measures, programs, and specific bundles of measures 

delivered through a program. For instance, smart thermostats can be adopted either 

in the market or through a program, but the latter has a timeline and specific set of 

criteria around it. By decoupling program delivery from specific measures, AdopDER 

allows PGE to model specific program portfolios and see how that changes adoption 

in the market and between different program offerings.  

• Integration of industry-leading tools: Because AdopDER is built on an open 

framework, we can readily incorporate other open tools into the model framework. 

For instance, for this study, we incorporated data and analyses from NREL’s REOpt 

Lite, PVWatts, DGen, and EVI-Pro Lite tools into AdopDER to provide a robust set of 

adoption forecasts for solar, storage, microgrid, and EV charging measures.  

A critical element of this work is the flexibility it provides PGE to respond to changing 

conditions. As system planning relies increasingly on the distribution system and input from 
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communities, and within this context technology and regulation are rapidly evolving, it is critical 

that utilities can rapidly update their models with new information. In creating an open 

codebase upon which PGE can develop new tools, we have enabled PGE and its communities to 

capitalize on new opportunities more rapidly for shared benefits on the distribution system. 

1.2 Findings 

In aggregate, the confluence of solar, storage, transportation and building electrification, and 

flexible loads is set to have a dramatic impact on PGE’s system and its customers. The graph 

below shows the expected energy impacts (in aMW at generation) through 2050 under the 

different adoption scenarios.  

Figure 1-1. Aggregate Energy Impacts by Adoption Scenario 

 

Even after accounting for increased solar adoption, transportation electrification (and to a much 

lesser extent, naturally occurring building electrification) is set to increase load by over 1,000 

AMW in year 2050 in our reference case scenario. The market scenario in  Figure 1-1 provides an 

idea of what we expect to see absent programmatic activity. In outer years, we see the impact of 

PGE’s transportation electrification programs on the adoption of electric vehicles and greater 

utilization of charging infrastructure (we do not model building electrification programs in this 

analysis).  

This increase in load points to the need for flexible resources to manage peaks and mitigate 

upgrade costs across PGE’s system. We see the critical role that flexible loads play clearly when 
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looking at peak impacts. The figure below shows the average, net demand impacts under each 

scenario, where peak is defined as the average over times of event dispatch in both summer and 

winter2.  

Figure 1-2. Aggregate Peak Impacts by Adoption Scenario 

 

Here we see that PGE’s continued development of its flexible load portfolio leads to a net 

decrease in peak loads, even accounting for transportation electrification. However, in outer 

years, the impact of electrification overtakes flexible load adoption. However, when comparing 

the reference to the market case we see that these programs continue to play an important role 

in mitigating these peak impacts.  

Because in the market scenario there are no flexible loads or dynamic rates, we see changes in 

peak load are driven almost entirely by electrification3, leading to steady and eventually large 

long-term increases. In the programmatic scenarios, these programs and rates help to reduce 

peak load to such an extent that in the early years of the planning period their effect is greater 

than total additions from electrification. However, as transportation electrification becomes 

near-universal in the out-years, there becomes a net positive impact on peak load. Because 

programs encourage both flexible loads and transportation electrification, the high scenarios 

 
2 This analysis is merely meant to be indicative and is not a replacement for a full ELCC analysis through 

the IRP.  
3 There is some reduction in peak load from behind-the-meter solar, but not that storage here is un-

managed, so is only used for backup. 
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shows both greater negative impacts in the early years and high positive impacts in the later 

years of the planning period.  

We explore each set of technologies and their expected adoption and impacts under different 

scenarios in greater detail below.  

1.2.1 Solar and Storage 

Despite a very large technical potential for both solar and storage, we expect approximately 926 

MWdc of combined nameplate solar and storage across residential and commercial applications.  

Based on our analysis of the forecasts from NREL’s DGEN model, we expect a large increase in 

residential solar in the later years, driven by declining costs of solar installations. We expect, as is 

the case in PGE’s service area today, that residential will dominate the behind the meter solar 

market in PGE’s service area. We forecast a small, but growing market for storage, with 

approximately 72 MW in residential and another 21 MW in nonresidential, largely driven by 

expected increases in solar attachment rates.  

Figure 1-3. Projected Solar + Storage Adoption (MWdc, Reference Case) 

 

We expect relatively modest microgrid adoption on average, though this is highly uncertain due 

to the bespoke design and needs of each project and increasing requirements for resiliency in 

the face of extreme weather events.  
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Figure 1-4. Projected Microgrid Adoption (Reference Case) 

 

1.2.2 Transportation Electrification 

We forecast much higher levels of adoption for electric vehicles than in the previous IRP study, 

consistent with industry consensus around pending market transformation, particularly in the 

light duty segment. By 2027, we expect 141,000 electric light duty vehicles on the road, 

dominated by the residential sector, and 2,100 medium and heavy duty EVs. By 2050, we expect 

nearly 80% of the vehicle market to be electric in all weight classes, with 1.4 million light duty 

vehicles (LDV) and 33,000 medium (MDV) and heavy-duty vehicles (HDV).  
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Figure 1-5. LDV Adoption by Adoption Scenario 

 

Figure 1-6. MDV Adoption by Adoption Scenario 

 

By 2050, we forecast an increase in annual consumption of 9.1 million MWH (at generation) to 

serve electric vehicle charging. Of that, nearly 80% will come from charging not dedicated to a 
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single residence. Our forecast explicitly accounts for constraints to home charging due to lack of 

panel ampacity and/or dedicated off street parking, thus we find that only a fraction of 

residential customers at the high expected levels of adoption can charge with personal EVSEs. 

Often, forecasts in the industry have relied on historical charging patterns as a guide to future 

behavior. However, this extrapolation of early adopters’ charging patterns while neglecting to 

account for existing building stock can underestimate the needs for publicly available charging 

infrastructure in the long term. Our analysis assumes that sites will only install L2 charging if they 

have available panel ampacity and personal off-street parking, which leaves many residential 

sites without charging. Further research on streamlining panel/service upgrades and providing 

charging solutions for residents with only on-street parking could help to expand potential for 

home charging. There remains, regardless, a tremendous need in the long term for shared 

charging solutions. 

The figure below shows this increased consumption, broken out by high level category. 

Nonresidential L2 charging — which includes multifamily, workplace, public, and fleet — 

becomes the dominant segment in the long run due to the need for charging beyond the home.   

Figure 1-7. Projected Transportation Electrification Consumption (Reference Case) 

 

1.2.3 Building Electrification 

We expect only modest adoption of building electrification measures, largely concentrated in 

the residential sector. Though our AdopDER model can do so, this study does not simulate the 

impacts of local building codes (current or future) on the adoption of building electrification 

measures. Still, we project load growth from building electrification from new construction 
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trends, where there is a small increase in the adoption of heat pumps to meet energy efficiency 

requirements. However, compared to transportation, these impacts are quite low.  

Figure 1-8. Building Electrification Consumption (Reference Case) 

 

1.2.4 Demand Response  

In aggregate, we expect approximately 169 MW of economic achievable demand response 

(including behind-the-meter storage enrolled in a program) by 2027. We expect PGE’s portfolio 

to be dominated by peak time rebates, Energy Partner, and the thermostat programs in the near 

term (as it is today). By 2050, we expect 495 MW of summer DR, dominated by EV TOU due to 

near-universal adoption of light duty electric vehicles in the residential sector.  

Additionally, tech-enabled TOU becomes a bigger portion of the portfolio. In this study, we 

considered TOU programs specifically targeted at customers with smart thermostats, storage, 

connected water heaters, or smart EVSE equipment. These options assume that customers 

purchase the enabling equipment on their own and self-select into a TOU option that offers 

automated routines for managing against that rate.  
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Figure 1-9. Summer Economic Achievable Demand Response (Reference Case) 

 

As in previous studies, we expect slightly lower demand response in the winter season due to 

lower levels of electric heating relative to cooling in both residential and commercial. In 2027, 

we expect 134 MW of winter demand response, comprised of a mix of multifamily, thermostats, 

and the Energy Partner program (as shown in the Flex 1.0 evaluation, PTR and TOU rates have 

lower per-unit impacts in winter). In 2050, we forecast 344 MW of demand response. As in 

summer, EV TOU dominates due to its low level of seasonality, high impacts on peak, and high 

level of adoption.  
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Figure 1-10. Winter Economic Achievable Demand Response (Reference Case) 

 

Table 1-1 provides a breakdown of expected MW impacts across different scenarios for both 

economic and achievable potential. In most scenarios, most of the demand response is 

economic in terms of total MW. Those measures that are not cost-effective remain relatively low 

in adoption regardless, even out to 2050. The range of potential impacts is broad, reflecting the 

still high level of uncertainty around adoption of these measures, with ranges in the +/- 50% 

range.  
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Table 1-1. Demand Response Results (MW at generation) for 2027 and 2050 by 

Season and Scenario 

Adoption  

Scenario 
Season 

2027 2050 

All Achievable Economic Achievable All Achievable Economic Achievable 

Reference 
Summer 207 169 598 495 

Winter 162 134 452 344 

Low 
Summer 133 117 399 327 

Winter 100 91 310 235 

High 
Summer 298 261 912 735 

Winter 240 204 703 506 

 

1.2.5 Cost-Effectiveness 

While AdopDER screens cost-effectiveness at the measure bundle level, we also calculate 

economics at the program level. Here we see that PGE’s residential programs, particularly those 

that use price signals, are the most cost-effective. While the largest measure today for PGE’s 

Energy Partner program (Schedule 26) is cost-effective, our inclusion of other measures such as 

agriculture, cold storage, and smart thermostats drags down program cost effectiveness. 

Interestingly, nonresidential storage appears to be marginally cost-effective due to its high 

availability and ELCC.  
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Figure 1-11. Cost-Effectiveness by Program 

 

Because we model economics and impacts down to the site and annual level, we are able to 

develop supply curves for capacity resources at this level. Figure 1-12 shows levelized cost of 

capacity plotted against average 2027 peak MW impacts (average of summer and winter). Given 

the ability of some measures to provide services beyond generation capacity (such as energy, 

flexibility, and transmission capacity), we find that there are several measures that in fact have 

net levelized costs below zero. Interestingly, we see an inflection point in the supply curve to at 

approximately $100/kw-yr (roughly PGE’s avoided cost of capacity), above which there are a 

handful of measures with very high costs and relatively low near term potential. 
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1.3 Conclusions 

The tools developed and results generated from this analysis provide a foundation for PGE to 

build upon as it embarks on its efforts to create an integrated planning framework across 

Distribution System, Flexible Loads, Electrification, and Integrated Resource Planning. We find 

that PGE has a wide array of resources at their disposal as they seek to create value for their 

customers on the distribution grid.  

We see several trends interacting in our forecast: 

• Dramatically increasing adoption of residential solar is expected to increase needs on the 

distribution system and encourage adoption of storage; 

. Supply Curve of Demand Response Resources Figure 1-12. Supply Curve of Demand Response Resources 
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• Electrification of transportation will create unprecedented impacts on the energy system 

and present growing opportunities for flexible loads; 

• Flexible loads are becoming increasingly cost-effective and there are new opportunities 

to integrate them with new DERs; 

• DERs of all sorts create new constraints on the built infrastructure: an integrated 

approach to their deployment will be critical.  

1.3.1 Actionable Insights 

We see several ways in which the results of this study can be used to inform future work by PGE 

planning and programs staff. 

 We find that there are likely 169 MW of summer and 134 MW of winter economic and 

achievable demand response in PGE’s service area by 2027, made up largely of programs 

they are already well into piloting. Continued focus on streamlining and scaling these 

programs will be critical to achieving these goals.  

 Time of use rates, particularly when paired with increasingly prevalent enabling 

technology, show tremendous promise to manage peak demands, especially as 

transportation electrification becomes more prevalent. Further demonstration of how 

these rates might be deployed more rapidly could help to accelerate progress toward 

their goals.  

 Storage programs appear to be within the grasp of cost-effectiveness and program 

incentives will be critical to stimulating this market in Oregon. PGE should explore new 

opportunities to find cost savings in program delivery and/or capture new value streams 

to further improve economics. 

 While we did not explicitly model a service area-wide program in the scope of this study, 

our analysis of smart water heater adoption and controls shows that there is a rapidly 

growing opportunity for taking a market transformation approach to water heaters. We 

find that PGE’s multifamily water heater program is already cost-effective and expect a 

program utilizing CTA-2045 more broadly would be as well.  

1.3.2 Areas for Further Research 

While the research here provides a robust foundation for understanding future DER adoption, 

we see a few areas where further research might be warranted. 

 We modeled panel constraints statistically in our analysis and their impact on home 

charging, building electrification, solar, and storage could be significant. We recommend 

further and possibly primary research on the existing panel configurations in PGE’s 

service territory and possible solutions to overcome these challenges more cost-

effectively.  

 Our analysis took a relatively simple approach to DER dispatch, calling the fleet of 

dispatchable assets in aggregate based on a forecasted LOLP. A more integrated 
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optimization of the fleet as a single Virtual Power Plant may more accurately reflect the 

full co-optimized value of these assets.  

 Our analysis shows that different segments of the population have lower adoption rates 

simply due to differences in the built infrastructure, existing equipment in place, and 

programs available to them. As we move toward locational analysis, the bottom-up 

approach that we use in this study could also be used to better understand the equity 

impacts of DER adoption today and under different portfolios of interventions. 

 Building electrification measures show large potential in the commercial HVAC space, as 

analyzed in this study. A deeper investigation of these emerging technologies and 

potentially, industrial loads may be useful in allowing PGE to understand where greater 

carbon impacts may be possible.  

1.3.3 Next Steps 

 The Cadeo team will work with PGE to develop locational forecasts based on this work to 

further advance their Distribution System Planning efforts; 

 We have already begun the process of transferring code base, results, and inputs to PGE 

internal analysts to ensure that they can replicate and advance this work; and 

 Results from this study will serve as an input to PGE’s 2021 Integrated Resource Plan. 
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Section 2 Glossary 

This section contains a glossary of acronyms and other terms that we use throughout this 

report: 

aMW: Average megawatt (8760 megawatts of energy) 

AEU: Avoided Energy Use 

ASHP: Air-Source Heat Pump 

BE: Building Electrification 

BEV: Battery Electric Vehicle 

BTM: Behind-the-Meter 

BYOT: Bring Your Own Thermostat 

CBSA: Commercial Building Stock Assessment 

CDF: Cumulative Distribution Function 

DCQC: Direct Current Quick Charger 

DER: Distributed Energy Resource 

DGEN: Distributed Generation Market Demand 

DHP: Ductless Heat Pump 

DLC: Direct Load Control 

DOAS: Dedicated Outdoor Air System 

DR: Demand Response 

DSP: Distribution System Planning 

ERWH: Electric Resistance Water Heater 

EVSE: Electric Vehicle Supply Equipment 

FLP: Flexible Load Plan 

HDV: Heavy Duty Vehicle 

HPWH: Heat Pump Water Heater 

ICE: Internal Combustion Engine 

IRP: Integrated Resource Plan 
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LDV: Light Duty Vehicle 

LOLP: Loss of Load Probability 

MDV: Medium Duty Vehicle 

NREL: National Renewable Energy Laboratory 

PAC: Program Administrator Cost 

PDF: Probability Distribution Function 

PHEV: Plug-in Hybrid Electric Vehicle 

PTR: Peak Time Rebate 

PV: Photovoltaic 

RASS: Residential Appliance Saturation Survey 

RBSA: Residential Building Stock Assessment 

RTF: Regional Technical Forum 

RTU: Rooftop Unit 

T&D: Transmission and Distribution 

TE: Transportation Electrification 

TMY3: Typical Meteorological Year, version 3 

TOU: Time of Use  

TRC: Total Resource Cost 

UMP: Uniform Methods Project 

VIN: Vehicle Identification Numbers 

VRF: Variable Refrigerant Flow Heat Pump 

ZEV: Zero-Emission Vehicles 
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Section 3 Introduction 

This report outlines work conducted to understand the potential adoption and impacts of 

distributed energy resources, flexible loads, and electrification for Portland General Electric (PGE) 

in support of its 2021 Integrated Resource Plan and ongoing Distribution System Planning as 

outlined in UM 2005. This work was undertaken by Cadeo in close collaboration with Ethan 

Goldman (independent), the Brattle Group, and Lighthouse Consulting (hereafter, the “Cadeo 

team”).  

To meet the evolving needs of PGE and its stakeholders, the Cadeo team worked closely with 

PGE to develop an open modeling framework.  The framework integrates true bottom-up 

modeling of the building and vehicle stock with market-level adoption forecasts to create a rich, 

integrated view of how different DER and electrification technologies complement and compete 

under different conditions. The AdopDER model we developed with PGE represents a 

paradigmatic shift in how potentials are modeled and lays the foundation for continued 

evolution in planning processes across the energy system. 4 

This report outlines Phase I of a two-phase process to estimate potentials. In this phase, we 

estimated system-wide potential to inform the integrated resource plan. In Phase II, we will 

estimate locational adoption of these resources, fine-tune adoption models to account for 

different demographics, energy use patterns, built infrastructure, and cluster effects that are 

known to impact the distribution of DERs on the system. PGE will use the Cadeo team’s Phase II 

results to inform its forthcoming Distribution System Plan and program planning efforts. 

This study presents results following estimated adoption, peak impacts (by season), and energy 

impacts for 2021-2050 from the following adoption pathways: 

• Programmatic adoption: simulates measure adoption through PGE programs. 

• Market adoption: simulates naturally occurring measure adoption for building 

electrification, transportation electrification, solar, storage, and smart devices 

technologies. 

We modeled this adoption for the following technology groups: 

• Flexible loads: programmatic adoption of opt-in direct load control and pricing 

measures, including peak time rebates, smart water heater controls, smart thermostats, 

and curtailable tariffs.  

• Solar and storage: market and programmatic adoption of behind-the-meter solar and 

battery energy storage in residential, commercial, and industrial, including applications 

of microgrids for critical facilities.  

 
4 For a review of the AdopDER system see Chapter X section X of this report.  
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• Transportation electrification: market and programmatic adoption of electric vehicles 

and accompanying charging infrastructure across all sectors and vehicles classes.  

• Building electrification: market adoption of heat pumps, electric water heaters, and 

induction cooking technologies by residential and commercial sites either to increase 

electric efficiency or to replace the direct use of fossil fuels.  

We estimated forecast adoption and potential for the following categories: 

• Market forecast: represents the expected adoption of resources given no programmatic 

intervention from PGE. This forecast excludes purely programmatic measures, such as 

demand response and pricing (excepting some enabling technologies, like smart 

thermostats, that might be adopted without intervention).  

• Technical potential: provides a theoretical upper limit of adoption, showing what would 

happen if all feasible technologies were adopted in each year.  

• Achievable technical potential: represents the maximum reasonably expected adoption 

of programmatic measures unconstrained by cost-effectiveness criteria, using a mix of 

benchmark programs and historical participation in PGE programs.   

• Achievable economic potential: provides the subset of achievable potential that we 

determined to be cost-effective.  

For achievable technical and economic achievable potential, we estimated adoption and impacts 

under 9 different scenarios, looking at each possible combination of 3 load and 3 DER adoption 

scenarios. This provides us with a range of potential impacts and grounds the analysis in similar 

assumptions to those being used by the broader Integrated Resource Planning (IRP) effort.  

Our final analysis outputs provide a rich view of different possible net load conditions. AdopDER 

provides hourly load and measure shapes down to the site level for each scenario and year over 

the 30-year planning horizon between 2021 and 2050. It additionally provides anticipated costs 

and benefits for programmatic measures and estimated cost-effectiveness ratios using the Total 

Resource Cost (TRC) and Program Administrator Cost (PAC) tests, using an approach consistent 

with that proposed within PGE’s Flexible Load Plan5. AdopDER also provides levelized costs and 

supply curves for dispatchable resources at the measure and program levels, to provide a more 

nuanced input into portfolio construction.  

3.1 The AdopDER Model 

The AdopDER model is a comprehensive modeling framework built in Python that is used to 

estimate the adoption of distributed energy resources, electrification, and flexible loads 

dynamically and stochastically under different programmatic and market conditions. AdopDER 

differs from traditional potentials analysis in several ways: 

 
5 https://edocs.puc.state.or.us/efdocs/HAS/um2141has132229.pdf  

https://edocs.puc.state.or.us/efdocs/HAS/um2141has132229.pdf


  DER and Flexible Load Potential – Phase 1 

Introduction 

 

  PAG E  26 

• Open framework: The AdopDER model is built using open-source tools and the entire 

codebase has been provided to PGE to be used in perpetuity, including components that 

were previously proprietary to the Cadeo team. The inputs to the model are all either 

internal to PGE or publicly available, so that PGE is empowered to share and engage with 

commission staff, stakeholders, and communities wherever possible.  

• Scalable granularity: While there is often a debate between bottom-up and top-down 

approaches, there is almost always a mix of the two based on the appropriateness of the 

model and the availability of data. Where more granular data is available and needs 

warrant, AdopDER can model down to the individual site level. However, where that is 

not available, it augments missing data stochastically, simulating missing fields or 

applying average values, as necessary.  

• Agent-based approach: AdopDER is natively agent-based, meaning that it starts with 

the individual site as the unit of analysis and models its feasibility and adoption decisions 

over time, considering outside system-level factors such as weather, rates, costs, and 

product availability. This is critical for an integrated view of DER adoption as many 

resources compete or complement each other for limited customer spending, available 

site ampacity, or program participation opportunities. 

• Explicit, time-variant modeling of feasibility: AdopDER uses a stock turnover 

approach to update site-level characteristics over time, which in turn updates the site-

level feasibility for each technology over time. The dynamic nature of feasibility in 

AdopDER leads to findings that would be missed in a study that holds current trends 

static. For instance, forecasts for Level 2 home charging often assume that current trends 

hold through the forecast period. However, when looking at high levels of EV adoption 

that the Cadeo team expects in later years, it becomes apparent that a large portion of 

the residential population cannot install this charging due to lack of available parking 

and/or panel ampacity.  

• Differentiation of technologies and programs: The model explicitly models the 

hierarchy that exists between measures, programs, and specific bundles of measures 

delivered through a program. For instance, smart thermostats can be adopted either in 

the market or through a program, but the latter has a timeline and specific set of criteria 

around it. By decoupling program delivery from specific measures, AdopDER allows PGE 

to model specific program portfolios and see how that changes adoption in the market 

and between different program offerings.  

• Integration of industry-leading tools: Because AdopDER is built on an open 

framework, we can readily incorporate other open tools into the model framework. For 

instance, for this study, we incorporated NREL’s REOpt Lite, PVWatts, DGen, and EVI-Pro 

Lite tools into AdopDER to provide a robust set of adoption forecasts for solar, storage, 

microgrid, and EV charging measures.  

A critical element of this work is the flexibility it provides PGE to respond to changing 

conditions. As system planning relies increasingly on the distribution system and communities, 
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while technology and regulation are rapidly evolving, it is critical that utilities can rapidly update 

their models with new information. In creating an open codebase upon which PGE can develop 

new tools, we have enabled PGE and its communities to capitalize on new opportunities more 

rapidly for shared benefits on the distribution system. 
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Section 4 Methodology 

This section outlines our approach to modeling the adoption and impacts of DERs, flexible 

loads, and electrification for PGE.  

4.1 Potentials Modeling Process 

Figure 4-1 illustrates our approach to estimating technical, achievable technical, and achievable 

economic potential in PGE’s service territory. We define these three types of DER potential as 

follows: 

Figure 4-1. High Level Diagram of Potentials Estimation Step 

 

Technical Potential assumes all customers adopt every DER measure their premise is eligible 

for, regardless of cost. As such, technical potential represents a theoretical upper bound rather 

than a practical upper bound. In some cases, where there are competing measures, we assume 

the customer adopts the technology with the most advanced DER (i.e., we assign a heat pump 

water heater instead of a smart electric resistance water heater, or smart L2 EVSE instead of L1 

EVSE).  

Mathematically, we express technical potential at any given hour t as follows, where Eligibility is 

a binary variable for measure eligibility at a given site and load impact is the kW impact of that 

measure, per unit size for a given site. 

Equation 1. Technical Potential Formula 

𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑡 = ∑ ∑ 𝐸𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑠𝑚𝑡 ∗ 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑆𝑖𝑧𝑒𝑠𝑚 ∗ 𝐿𝑜𝑎𝑑 𝐼𝑚𝑝𝑎𝑐𝑡𝑠𝑚𝑡
𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑚𝑠𝑖𝑡𝑒 𝑠

 

Achievable Technical Potential is the portion of technical potential that is available after 

accounting for market barriers (i.e., technology costs, customer awareness) and programmatic 
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constraints (i.e., incentives, program budgets). We express achievable technical potential 

mathematically in Equation 2, which adds a term to Equation 1 to account for measure adoption. 

Equation 2. Achievable Technical Potential Formula 

𝐴𝑐ℎ𝑖𝑒𝑣𝑎𝑏𝑙𝑒 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑡

= ∑ ∑ 𝐸𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑠𝑚𝑡 ∗ 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑠𝑚𝑡 ∗ 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑆𝑖𝑧𝑒𝑠𝑚
𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑚𝑠𝑖𝑡𝑒 𝑠

∗ 𝐿𝑜𝑎𝑑 𝐼𝑚𝑝𝑎𝑐𝑡𝑠𝑚𝑡 

Achievable Economic Potential is the subset of achievable technical potential that is 

economically cost-effective relative to other supply-side resources. In this study, we evaluated 

cost-effectiveness for programmatic measures with a TRC test using a methodology that follows 

guardrails established by PGE’s flexible load plan. We express achievable economic potential 

mathematically in Equation 3, which adds a term to Equation 2 to account the cost effectiveness 

of each measure. 

Equation 3. Achievable Economic Potential Formula 

𝐴𝑐ℎ𝑖𝑒𝑣𝑎𝑏𝑙𝑒 𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑡

= ∑ ∑ 𝐸𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑠𝑚𝑡 ∗ 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑠𝑚𝑡 ∗ 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑆𝑖𝑧𝑒𝑠𝑚
𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑚𝑠𝑖𝑡𝑒 𝑠

∗ 𝐿𝑜𝑎𝑑 𝐼𝑚𝑝𝑎𝑐𝑡𝑠𝑚𝑡 ∗ 𝐶𝑜𝑠𝑡 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑚 

Our estimates of these DER potentials for PGE follow a process with six discrete steps, as follows. 

Each step is elaborated in the following sections. 

• Stock Assessment. Use PGE-specific and other data sources to determine site-level 

characteristics that influence DER measure eligibility and/or measure adoption. 

• Measure Eligibility. Apply criteria to determine which sites are eligible for each 

measure. 

• Measure Adoption. Determine how, when, and which eligible sites adopt each measure. 

• Load Impacts. For each adopter determine the hourly load impacts of each DER 

measure and aggregate to a system level. 

• Economic Screening. Determine, at a system level, which programs of DER measures are 

cost-effective based on a set of cost and benefit assumptions. 

• Adoption and Load Scenarios. Determine, at a system level, how adoption and load 

impacts vary under certain conditions.    

4.2 Stock Assessment  

Our DER potentials estimation in AdopDER begins with a comprehensive stock assessment. The 

purpose of the stock assessment is to create a time-variant set of site characteristics that we use 

to inform DER measure eligibility, adoption, and load impacts over the study period between 

years 2020 and 2050. 
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In this section, we present a description of each of the four steps in our stock assessment: 

• Sampling 

• Site-Level Characteristics 

• Stock Turnover 

• New Construction 

4.2.1 Sampling 

At the core of our stock assessment is a sample of PGE premises. Our modeling approach 

utilizes a ten percent sample of residential, and small commercial and industrial premises, along 

with a census of large commercial and industrial premises (Table 4-1). The dynamic way in which 

we forecast measure eligibility and measure adoption requires knowledge of characteristics at 

individual premises, rather than system-level averages.  

Many premises in PGE service territories have multiple associated service points. If a premise in 

our sample has multiple service points, we include information for all service points in our 

assessment. Additionally, we have excluded direct access customers and customers in a street 

lighting revenue class from our sample. 

Table 4-1. Customer Sampling Summary 

Customer Segment Revenue Classes Sampling Rate 

Residential 7 10% 

Small C&I 32, 47 10% 

Large C&I 38, 49, 83, 85, 89, 90 100% 

 

Note: We excluded rate codes that are not eligible for DER measures: lighting (schedules 15, 91, 

92, and 95) and direct access customers. 

4.2.2 Site Level Characteristics 

After developing our sample, we leveraged numerous data sources listed in Table 4-2 to 

develop a rich set of characteristics for each premise that we used to represent its state during 

the first year of our study (2020). In addition to listing sources, Table 4-2 also provides a high-

level description of the characteristics that we acquired from each source. Appendix E lists each 

characteristic in detail. 

Table 4-2. Stock Assessment Data Sources 

Source Description Characteristics 

PGE Residential Appliance 

Saturation Survey 

Survey of end-use equipment for 

PGE residential customers, 

conducted Q2-Q3 2020. 

Residential water heater types, heating 

systems, cooling system, EVSE type (L1, 
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Source Description Characteristics 

L2), hot tub, pool pump, smart 

thermostat type  

PGE Customer Care & Billing 

Database (CC&B) 
PGE customer information. 

Residential and non-residential building 

type, billed kWh and kW, revenue class, 

service point and premise IDs 

PGE Outside Data Subscriptions 

(ODS) 

Data from Acxiom and InfoUSA, 

associated with PGE service points. 

Residential and non-residential 

demographic and firmographic 

attributes, residential building size and 

cooling systems 

PGE Active Generator File 
Current file of solar and storage 

installations in PGE territory. 

Current residential and non-residential 

solar and storage adopters, nameplate 

kW 

PGE GIS Data Geolocation of PGE service points. Input to Project Sunroof 

PGE DMV Data 

Vehicle Identification Numbers 

(VIN)6 for all vehicles registered 

associated with PGE service points – 

residential and non-residential. 

Residential and non-residential vehicle 

stock assessment (age, weight class, and 

fuel type) 

NEEA Commercial Building Stock 

Assessment7 

Pacific Northwest regional study 

that characterizes energy-

consuming equipment within 

commercial buildings, conducted in 

2019. 

Use to impute non-residential measure 

eligibility criteria where no other 

sources available: heating system, 

cooling systems, hydronic systems, on-

site parking,  

NEEA Residential Building Stock 

Assessment8 

Pacific Northwest regional study 

that characterizes energy-

consuming equipment within 

residential dwelling units (single-

family homes, manufactured homes, 

and multifamily buildings), 

conducted in 2016 

Use to impute residential measure 

eligibility criteria where no other 

sources available: existence of parking, 

breaker size, clothes washer, dryer, 

water heater location 

Project Sunroof (Google)9 

Publicly available website that 

estimates building-level rooftop 

solar potential 

Residential and non-residential PV 

panel nameplate kW, panel tilt, and 

panel orientation  

NREL Alternative Fuels Data 

Center10 

Publicly available website that 

houses a database of public 

charging infrastructure. 

Non-residential EVSE (L1, L2, and DCQC) 

 
6 For this study, the Cadeo team uses the first 8 digits of VIN to determine the make, model, weight rating, 

and fuel type for each vehicle. The team did not use the full 17-digit VIN to preserve customer anonymity. 
7 NEEA CBSA available at https://neea.org/data/residential-building-stock-assessment  
8 NEEA RBSA II available at https://neea.org/data/residential-building-stock-assessment  
9 Project Sunroof available at https://www.google.com/get/sunroof  
10 NREL Alternative Fuel Data Center available at https://afdc.energy.gov/  

https://neea.org/data/residential-building-stock-assessment
https://neea.org/data/residential-building-stock-assessment
https://www.google.com/get/sunroof
https://afdc.energy.gov/
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Source Description Characteristics 

NREL ReOPT11 

Publicly available website with an 

API that estimates the economic 

viability of microgrid installations. 

Microgrid size and loadshapes. 

 

In some cases, we have data for all or nearly all customer sites while other characteristics (i.e., 

residential water heating equipment) have incomplete coverage. Regardless, where site-level 

data is not available, we use aggregate statistics to predict that field stochastically. This allows us 

to generate a full population of sites using the best available data and leaves open the 

possibility to update with more site-specific data in future iterations. 

Some characteristics listed in Table 4-2, such as building type or availability of parking, are time 

invariant; we hold the value of those constant throughout the study period (i.e., building type = 

Single Family). Other characteristics, such as heating system and vehicle type, are time variant 

which means that the value of those characteristics is subject to change during the study period; 

we describe this approach in Section 4.2.3 of this document.  

Finally, there are some characteristics that we derive, as no primary or secondary data is 

available. The two characteristics to which this applies most critically for this study are maximum 

solar nameplate capacity (residential and non-residential) and available panel space (residential 

only). We discuss these fields in more detail below.  

4.2.2.1 Maximum Solar Nameplate Capacity 

We define maximum solar nameplate capacity as the most solar generation that can be hosted 

on a given rooftop that achieves a solar resource fraction greater than 75% (considered best 

practice for solar installations and a requirement for Energy Trust incentives). While these data 

can be purchased from proprietary sources, we opted instead to derive these amounts using 

data sources that are publicly available to increase transparency and preserve our ability to 

update our assumptions in the future at no cost.  

We calculate solar technical potential for each site as follows: 

• We first extract the total square footage available for panels, recommended nameplate 

kW at an assumed $500 monthly electricity bill, and the panel square footage associated 

with the recommended nameplate kW from Google’s Project Sunroof.12 

• Next, we calculate the technically feasible nameplate kW and bill savings for the site, 

based on the ratio of total, available square footage to Project Sunroof’s recommended 

square footage. 

 
11 NREL ReOPT calculator available at https://reopt.nrel.gov/tool  
12 Project Sunroof recommends nameplate kW subject to a user-entered billing amount, which cannot 

exceed $500 month.  

https://reopt.nrel.gov/tool
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• Finally, we scale down the technically feasible nameplate kW by the ratio of the site’s 

average electricity bill (from PGE CC&B) to bill savings from above. We apply this scaling 

factor because bill savings from the technically feasible nameplate kW may exceed that 

site’s average, actual electricity bill and PGE’s solar tariffs do not permit net export to 

grid from solar resources. 

• Project Sunroof does not return a result for all sites; for missing sites, we impute 

nameplate kW based on census tract averages.  

4.2.2.2 Available Panel Space  

For residential sites, we modeled available panel space using a heuristic model using RBSA II 

data on panel ampacity and configuration. While actual panel loading calculations are specific to 

the mix of end uses and their nameplate ratings, we simplified this calculation by assuming that, 

on average, a residential panel could bear up to the number of available poles allotted to it. 

While a specific site may be able to host more (using split breakers) or less (due to high 

amperage end uses), this method allows for a straight-forward approximation of available panel 

ampacity using available data sources.  

First, we assigned a panel size to each site. Examining panel sizes and configurations in RBSA II, 

we found that most residential electrical panels were either 100, 200, or 400A, and largely varied 

only by building type (surprisingly, building size was not very predictive of panel size). Rounding 

the RBSA sites to the nearest of these three sizes and binning by breaker vs non-breaker (i.e., 

fuse boxes), we arrived at distribution shown in Table 4-3 below. Based on engineering 

judgment and a review of products currently available, we assumed that a 100A panel has 20 

poles, a 200A panel has 30 poles, and a 400A panel has 40 poles.  

Table 4-3. Residential Electrical Panel Distribution 

Building Type 100 A, w/ Breaker 200 A, w/ Breaker 400 A, w/Breaker No Breaker 

SF 13.2% 84.6% 0.6% 1.5% 

MF 86.9% 11.2% 0.0% 1.9% 

MH 7.4% 91.9% 0.2% 0.5% 

 

Further, we assume that a site needs one 15-20A (single pole) per 100 sq ft for small end uses 

such as lights, plugs, and most kitchen appliances. We then allocate two poles for each 30+A 

(220V) circuit required for large end uses, including: 

• Electric furnace (or Heat Pump with auxiliary heat) 

• AC/heat pump compressor 

• Hot tub 

• Sauna 

• Pool pump 
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• Electric water heater 

• Baseboard heater 

• Solar 

• Storage 

• L2 EV charger 

• Clothes washer and dryer 

• Electric range 

Using simulated data on panel size configuration and estimated end-use/measure adoption for 

each site, we calculate the number of available poles and divide by two to determine the 

potential number of 220V breakers that could be added. We then use this field to determine 

eligibility for measures that require a dedicated 220V breaker (such as Level 2 EVSEs). For the 

purposes of this analysis, we assumed that sites would not upgrade their panel to accommodate 

measure adoption. 

4.2.3 Stock Turnover 

We use a stock turnover model to dynamically change the time-variant site characteristics.  Our 

model, illustrated by Figure 4-2, includes a stochastic element to turnover where, for each 

premise, time-variant characteristic, and year, AdopDER does the following:  

• Use a probability13 distribution to calculate retirement probability psct for premise s, 

characteristic c, and year t. 

• Generate random number xsct1 

• Retire premise s, characteristic c if xsct1 ≤ psct 

• If premise s, characteristic c retires, generate another random number xsct2, use it to 

probabilistically select replacement from alternatives.  

• Increment year from t to t+1 

Figure 4-2. Stock Turnover Illustration

 

Table 4-4 lists the time-variant characteristics in our analysis for both residential and non-

residential premises. Generally, these characteristics are related to vehicles and systems that are 

 
13 The Cadeo team uses a Weibull distribution for measure lives. The Weibull is a probability distribution 

allow for failure rates to vary over time and is commonly used to simulate the failure time in a product’s 

lifespan. 
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impacted by building electrification. For each characteristic, we replace retired equipment with 

an alternative based on a set of conditional probabilities.  

Table 4-4. Time-Variant Site Characteristics 

Characteristic Alternatives Conditional Probability Sources 

LDV  ICE, BEV, PHEV Brattle LDV forecast 

MDV, HDV  ICE, BEV, PHEV Brattle MDV/HDV forecast 

Residential Water Heat 
ERWH, Smart ERWH, HPWH, 
Non-Electric 

Energy Trust ramp rates (ERWH to 
HPWH), Cadeo Analysis (ERWH to 
Smart ERWH), NREL Electrification 
Futures (Fuel Conversion) 

Residential Space Heat (Non-
Ducted) 

Resistance Heat, DHP, Non-
Electric 

Energy Trust ramp rates (DHP), 
NREL Electrification Futures (Fuel 
Conversion) 

Residential Space Heat (Ducted) 
Electric Furnace, ASHP, Non-
Electric Furnace 

Energy Trust ramp rates (ASHP), 
NREL Electrification Futures (Fuel 
Conversion) 

Residential Cooking Equipment 
Electric Cooktop, Induction 
Cooktop, Non-Electric 

Cadeo analysis (Electric to 
Induction), NREL Electrification 
Futures (Fuel Conversion) 

Rooftop New Rooftop N/A 

Non-Residential Space Heat 
(Ducted) 

RTU, VRF, Other Electric, Non-
Electric 

Energy Trust ramp rates (RTU to 
VRF), NREL Electrification Futures 
(Fuel Conversion) 

Non-Residential Hydronic System 
Standard hydronic, Centralized 
hydronic  

Energy Trust ramp rates (standard 
to centralized hydronic), NREL 
Electrification Futures (Fuel 
Conversion) 

4.2.4 New Construction 

The sample described above characterizes PGE’s customer base in the first year of the study. We 

add premises so our total number of sites in any given year aligns with a customer forecast 

provided by PGE (Figure 4-3).14 

 
14 PGE customer forecast is at revenue class level; we use historic data to allocate to rate schedules. 
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Figure 4-3. PGE Customer Forecast 

 

However, we cannot simply look up characteristics for sites that get added to our forecast in 

future years with existing data sources. Thus, we use the following process to simulate new sites 

for years 2021 through 2050: 

1. Determine the number of new sites to create for the specific year based on PGE 

customer forecast. 

2. Create a unique identifier for each new site. 

3. Set the site vintage (year of construction) equal to the specific year. 

4. Randomly select an existing site that is less than 10 years old, apply that existing site’s 

characteristics to the new site. 

4.3 Measure Eligibility 

In this study, we examine the load impacts of the 44 DER measures, each with its own eligibility 

criteria determined by some combination of site characteristics and the adoption of other DER 

measures. We describe the eligibility criteria in the following four categories: 

• Building Electrification (8 measures) 

• Demand Response (16 measures) 
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• Solar and Storage (6 measures) 

• Transportation Electrification (14 measures) 

This section introduces the eligibility criteria for each measure; subsequent sections describe the 

processes by which we estimate adoption (with and without program activity) and load impacts. 

4.3.1 Building Electrification 

We included eight building electrification measures in this study, listed in Table 4-5. As building 

electrification measures, many of these have end-of-life equipment (i.e., heating system or water 

heating system) in their eligibility criteria. We also assume that residential customers have 

constraints on panel size and have included the availability of a breaker as eligibility criteria.  

Table 4-5. DER Measure Eligibility - Building Electrification 

Measure Eligibility Criteria Measure Size Programmatic Measure 

Ductless Heat Pump 
Residential, non-ducted heat, SF or 

MF homes, has available breaker 

Total conditioned space 

of building 
No 

Ducted Heat Pump 
Residential, ducted heat, SF or MF 

homes, has available breaker 

Total conditioned space 

of building 
No 

Central Variable 

Refrigerant Flow (VRF) 

Heat Pump 

Schedule 83, 85, or 89, has end-of-

life RTU or is new construction 

Total conditioned space 

of building 
No 

Dedicated Outdoor Air 

System (DOAS) and High 

Efficiency Heat Pump 

Schedule 83, 85, or 89, has end-of-

life RTU or is new construction  

Total conditioned space 

of building 
No 

Smart Electric Water 

Heater 

Residential, end-of-life water 

heater, has available breaker 

Number of water 

heating tanks 
No 

Heat Pump Water 

Heater 

Residential, New construction or 

end-of-life water heater, has 

available breaker 

Number of water 

heating tanks 
No 

Centralized Hydronic 

(Water and Space Heat) 

Non-residential, Schedule 

83/85/89, New construction, or 

end-of-life boiler 

Total conditioned space 

of building 
No 

Residential Induction 

Cooking 

Residential, has end-of-life 

cooking or new construction 

N/A No 

  

4.3.2 Demand Response 

We included sixteen demand response measures in this study, listed in Table 4-6. As demand 

response measures, these typically require some sort of enabling technology and are deployed 

in a program managed by PGE. Many of these enabling technologies are other measures 
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included in our study. For instance, the residential low voltage thermostat controls measure 

requires a low voltage thermostat. 

Table 4-6. DER Measure Eligibility – Demand Response 

Measure Eligibility Criteria Measure Size Programmatic Measure 

Residential High 

Voltage Smart 

Thermostat 

Residential, has electric 

non-ducted HVAC 

system. 

If building sqft > 1000 then 3  

else if building sqft >500 then 2 

else 1 

Yes 

Residential High 

Voltage Smart 

Thermostat Controls 

Residential, has high 

voltage smart 

thermostat 

N/A Yes 

Residential Low 

Voltage Smart 

Thermostat 

Residential, has ducted 

HVAC system 

Generate random number 

between 0 and 1. If random 

number > .2 then 1, else 2. 

No 

Residential Low 

Voltage Smart 

Thermostat Controls 

Residential, has low 

voltage smart 

thermostat  

N/A Yes 

Time-of-Use Residential N/A Yes 

Electric Vehicle TOU 
Residential, has LDV 

EVSE 
N/A Yes 

Peak-Time Rebates Residential N/A Yes 

Residential DHP 

controls 
Residential, has DHP N/A Yes 

ERWH Smart Controls 
Residential, has smart 

ERWH 
N/A Yes 

ERWH Retrofit Switch Residential, has ERWH N/A Yes 

HPWH Smart Controls 
Residential, has smart 

HPWH 
N/A Yes 

Commercial Low 

Voltage Smart 

Thermostat 

Has ducted HVAC, 

Schedule 32 or 83 

if conditioned space <2000, 1  

else if 15000 > conditioned 

space>2000, 4 

else if conditioned space>= 

15000, 10 

No 

Commercial Low 

Voltage Smart 

Thermostat Controls 

Has smart thermostat, 

Schedule 32 or 83 

if conditioned space <2000, 1  

else if 15000 > conditioned 

space>2000, 4 

else if conditioned space>= 

15000, 10 

Yes 

Cold Thermal Storage 
Non-Residential, has 

campus, has chiller 

if peak kW is missing then set 

peak kW = 50, else size = peak 

kW*.50 

No 
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Measure Eligibility Criteria Measure Size Programmatic Measure 

Irrigation DLC Schedule 49 N/A Yes 

Large C&I Curtailable 

tariff 

Has curtailable load 

(HVAC, pumping, 

refrigeration, industrial 

process) and Peak Load 

>50 kW 

if peak kW is missing then set 

peak kW = 50;  

else if Grocery then 0.252* peak 

KW;  

else if Large Office then 0.320* 

peak KW; 

else if Wastewater/water utilities 

then 0.05*peak KW;  

else if industrial then 0.15 * peak 

KW. 

Yes 

 

4.3.3 Solar and Storage 

We included six solar and storage measures in this study, listed in Table 4-7. In addition to 

standalone storage and standalone solar, this category of measure includes microgrids – a 

resilience measure that has critical facilities (e.g., hospital, law enforcement, fire station, 

emergency operation center, public school, or water treatment facility) as eligibility criteria. 

 

Table 4-7. DER Measure Eligibility – Solar and Storage 

Measure Eligibility Criteria Measure Size Programmatic Measure 

Solar PV 

Residential or Non-

Residential, Roof ≤ 15 years 

old, owns property, solar 

potential from Project 

Sunroof > 0 

Project Sunroof kW No 

Behind-the-Meter 

(BTM) Energy Storage 

Residential SF or MH 

homeowner, or Non-

Residential 

Residential & commercial 

with peak load < 50kW: 5 

kW  

Commercial, with peak load 

≥50kW: 50 kW 

No 

BTM Energy Storage 

Controls 
Has Storage 

size of storage unit * (1 - 

reserve capacity). Reserve 

capacity = 20% 

Yes 

Single-Site Microgrid 

(solar, storage, and 

genset) 

Critical facility, single site, 

owns property, no solar, no 

solar + storage 

ReOpt Solar Size Yes 
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Measure Eligibility Criteria Measure Size Programmatic Measure 

Campus Microgrid 

(solar, storage, and 

genset) 

Critical facility, campus, 

owns property, no solar, no 

solar + storage, all sites 

belong to same customer 

ReOpt Solar Size Yes 

Single and Campus 

Microgrid Controls 

Has single site or campus 

microgrid 
ReOpt Storage Size Yes 

 

4.3.4 Transportation Electrification 

We included fourteen transportation electrification measures in this study, listed in Table 4-8. 

These measures include both vehicles and various configurations of EVSE. We treat vehicles only 

as enabling technologies in our analysis – a premise is only eligible for EVSE if it has a battery 

electric or plug-in hybrid electric vehicle.15 In addition to vehicles and EVSE, the transportation 

electrification measures include three direct load control measures, which require a smart 

(internet-enabled, connected) EVSE for eligibility. 

 

 
15 We introduce additional public charging as a program in subsequent steps or our analysis, these public 

chargers do not require the premise to have associated vehicles. 
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Table 4-8. DER Measure Eligibility – Transportation Electrification 

 

Measure Eligibility Criteria Measure Size 
Programmatic 

Measure 

Residential L1 EVSE 
Residential, has LDV or MDV 

EV 
N/A No 

Non-Residential L1 EVSE 
Non-Residential, has 

LDV/MDV EV fleet 

max (0, number of EVs (of any class) - 

number of Public/Non-residential DCQC 

EVSE - Public/Non-residential DCQC EVSE)  

No 

Residential L2 EVSE 

Residential, has LDV/MDV EV, 

has spare 220V breaker, has 

parking  

min(round(number of EVs/2), number of 

available 220V circuits) 
No 

Smart Residential L2 EVSE 

Residential, has LDV/MDV EV, 

has spare 220V breaker, has 

parking  

min(round(number of EVs/2), number of 

available 220V circuits) 
No 

Non-residential/Public L2 

EVSE 

Non-residential, has parking, 

has fleet EV or is public site 

if no fleet, poisson(4) 

 

if fleet, round(number of EVs/2)*14 

No 

Smart non-

residential/Public L2 EVSE 

Non-residential, has parking, 

has fleet EV or is public site 

if no fleet, poisson(4) 

 

if fleet, round(number of EVs/2)*14 

No 

Public/Non-residential 

DCQC EVSE 

Non-residential, has parking, 

has fleet EV or is public site 

if fleet, round (number of medium and/or 

heavy duty EVs/4)* DCQC Nameplate 

Ratings 

 

If public, 4* DCQC Nameplate Ratings   

No 

Battery Electric Vehicle 

(BEV) 

Has ICE LDV or end-of-life 

Electric LDV (personal or fleet) 
number of EOL vehicles No 

Plug-in Hybrid Electric 

Vehicle (PHEV) 

Has ICE LDV or end-of-life 

Electric LDV (personal or fleet) 
number of EOL vehicles No 

Electric Medium-Duty 

Vehicle (MDV) 

Has ICE MDV or end-of-life 

Electric MDV (personal or 

fleet) 

number of EOL vehicles No 

Electric Heavy-Duty Vehicle 

(HDV) 

Has ICE HDV or end-of-life 

Electric HDV 
number of EOL vehicles No 

Residential L2 EVSE DLC Residential, has Smart L2 EVSE N/A Yes 

Non-residential L2 EVSE 

DLC  

Non-Residential, has Smart L2 

EVSE 

size of Smart non-residential/Public L2 

EVSE  
Yes 

Non-residential DCQC EVSE 

DLC 

Non-Residential, has DCQC 

EVSE 
size of Public/Non-residential DCQC EVSE  Yes 
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4.4 Measure Adoption 

After determining eligibility for each DER measure at each site, AdopDER then applies a set of 

conditional probabilities that simulate measure adoption. Fundamentally, each site adopts each 

measure probabilistically using a framework like that shown in Figure 4-4. 

Figure 4-4. Measure Adoption Framework 

 

The approach by which we determine the probability of adoption, conditioned on eligibility, 

varies by measure. We separate measure adoption into two categories: 

• Programmatic adoption simulates measure adoption through PGE programs, mapping 

each measure to a bundle delivered through a given program(s) with its own parameters 

around timing and eligibility.   

• Market adoption simulates naturally occurring measure adoption for building 

electrification, transportation electrification, solar, and storage measures in absence of 

program incentives (though there are interactions in some cases between programs and 

the market due to competing/complementary measures). 

4.4.1 Programmatic Adoption 

For programmatic adoption, we bundle measures described above into programs. Table 4-9 

(Residential) and Table 4-10 (Non-Residential) list each program that we considered in our 

analysis and describes how we bundled DER measures within each program. Table 4-9 and Table 

4-10 also indicate which programs PGE is currently running. We have supplemented the 

portfolio’s current programs with other programs of interest to PGE for this analysis.  

Table 4-9. Residential Programs  

Program Name Measure Bundle Name Measure Bundle Description 
Current PGE 

Program Offering 

Residential Opt-in PTR Peak time rebates Peak time rebates measure adopted in isolation Yes 

Residential Storage Res BYO-Battery Bundle 
Storage controls for customers that already have 

storage 
Yes 
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Program Name Measure Bundle Name Measure Bundle Description 
Current PGE 

Program Offering 

New Battery Bundle 
Storage and controls for customers that do not 

already have storage 
Yes 

Single Family Smart 

Charging 

Standalone L2 EVSE 
Residential L2 EVSE installed in a SF residence 

without DR  
Yes 

L2 EVSE + DR 
Residential L2 EVSE installed in a SF residence 

with DR enrollment 
Yes 

Multifamily Demand 

Response 

MF ERWH DLC retrofit 
Retrofit switch added to basic electric resistance 

water heater for DR 
Yes 

MF ERWH Smart ERWH 
Installation of new smart ERWH, with DR 

enrollment 
Yes 

MF Full Retrofit 

(baseboard) 

Full retrofit of MF premise with baseboard heat 

and ERWH. Adds switch and smart thermostat 

and enrolls in DR. 

No 

MF Full Retrofit (DHP) 
Full retrofit of MF premise with DHP and ERWH. 

Adds switch and DHP controls and enrolls in DR. 
No 

MF ERWH DLC retrofit 
Controls added to smart electric resistance water 

heater for DR. 
No 

Residential Smart 

Thermostat 

BYOT-SF LV Space Heat 

Only 

BYOT for customers with a low voltage 

thermostat and electric heat w/o CAC 
Yes 

BYOT-SF LV Cooling 

Only 

BYOT for customers with a low voltage 

thermostat and CAC w/o electric heat 
Yes 

BYOT-SF LV Space Heat 

and Cooling 

BYOT for customers with a low voltage 

thermostat, electric heat w/ CAC 
Yes 

Direct install-SF LV 

space heat only 

Direct install thermostat DR for customers with 

electric heat w/o CAC 
Yes 

Direct install-SF LV 

cooling only 

Direct install thermostat DR for customers with 

CAC, no electric heat 
Yes 

Direct Install-SF LV 

space heat and cooling 

Direct install thermostat DR for customers with 

CAC and electric heat 
Yes 

Direct Install-MF HV 

space heat only 

Direct install thermostat DR for customers with 

baseboard electric heat  
No 

Residential Smart 

Water Heating 

Residential HPWH 

retrofit 
BYO program for customers with existing HPWH  No 

Residential HPWH direct 

install 
Direct install HPWH with DR enrollment No 

Residential Opt-in 

TOU 

Standalone TOU Time-of-use without device optimization Yes 

TOU-optimized 

thermostat 
Time-of-use with thermostat optimization No 
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Program Name Measure Bundle Name Measure Bundle Description 
Current PGE 

Program Offering 

TOU-optimized storage Time-of-use with storage optimization No 

TOU-optimized WH Time-of-use with water heater optimization No 

TOU-optimized EV 

charging 

EV specific time-of-use rate with optimized 

charging16 
No 

EV TOU without smart 

charging 

EV specific time-of-use rate without optimized 

charging 
No 

 

Table 4-10. Non-Residential Programs 

Program Name Measure Bundle Name Measure Bundle Description 

Current PGE 

Program 

Offering 

Nonresidential 

Storage 

Nonres BYO-Battery Bundle 
Storage controls for customers that already 

have storage 
No 

New Battery Bundle 
Storage and controls for customers that do not 

already have storage 
No 

Energy Partner 

Thermostats 

Smart thermostat DR for small-medium 

commercial customers that don’t have an 

existing building management system 

Yes 

ADR 

Standard option for Energy Partner using either 

manual process or integrated controls through a 

gateway. Typical end uses: HVAC, industrial 

process, refrigeration, pumping 

Yes 

Agriculture 

Energy Partner option for irrigation customers, 

utilizing communicating controls to throttle 

pumping loads 

No 

Cold Thermal storage Energy Partner option for cold thermal storage No 

Nonresidential 

Microgrid 

Microgrid-Single site Single site microgrid Demonstration 

Microgrid-Campus Campus microgrid Demonstration 

Nonresidential 

Smart Charging 

Workplace L2 - No DR Workplace EV charging installed without DR Yes 

Workplace L2 - with DR 
Workplace EV charging installed with DR 

enabled 
No 

 
16 We include a device-enabled option for EVs as well as a rate-only option. These differ in that all EV 

owners can participate in the rate-only option, while only customers with smart EVSEs can participate in 

the device-enabled option. It should also be noted that these don’t consider potential impacts on 

distribution peaks that might occur due to simultaneous scheduling of EV loads to system peaks. 
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Program Name Measure Bundle Name Measure Bundle Description 

Current PGE 

Program 

Offering 

Public L2 
Public L2 charging installed at a nonresidential 

site with utility assistance 
Yes 

Public DCQC 
Public DCQC charging installed at a 

nonresidential site with utility assistance 
No 

Nonresidential 

Fleet17 

Nonresidential Fleet Smart 

Charging 

L2 EV charging installed with DR enabled for 

servicing fleets 
No 

Fleet DCQC 
DCQC EV charging installed with DR enabled for 

servicing fleets 
No 

 

Each program consists of one or more bundles. Each bundle is a set of one or more DER 

measures. The eligibility criteria for our programs are compound - they may include both the 

criteria of the measures that the program includes and some other criteria specific to the 

program itself (for more details see Appendix F - Measure and Program Eligibility). 

We primarily bundle measures into programs to assess cost-effectiveness, for which we describe 

our approach in section 4.6. We also use a specific approach for programmatic measure 

adoption18 in our model: a bass diffusion function19 (see Equation 4). In Equation 4, the 

probability of program adoption at year t is a function of two parameters: M, which represents 

the maximum adoption rate, and T, which represents the number of years to arrive at 99% of 

maximum adoption rate.  

Equation 4. Bass Cumulative Distribution Function 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑦(𝑡)  ≈ 𝑀 ∗ 
1 − 𝐸𝑥𝑝 (−14 ∗

0.5
𝑇 ∗ 𝑡)

1 + 13 ∗ 𝐸𝑥𝑝 (−14 ∗
0.5
𝑇
∗ 𝑡)

 

Figure 4-5 shows an illustration of annual adoption probabilities for a hypothetical program with 

parameter M = 20% and T = 10 years.  

 
17 As of the time when this document was written, OPUC had approved PGE’s fleet pilot tariff, effective 

July 1, 2021. 
18 The new battery bundles do not use bass diffusion framework. See market adoption section below for 

further discussion. 
19 We use an alternate parameterization of bass model 

(https://en.wikipedia.org/wiki/Bass_diffusion_model) that fixes the traditional innovation and imitation 

parameters (p and q) at typical values where q = 13*p based on a lit review of the relationship of p and q 

for new consumer products.  

https://en.wikipedia.org/wiki/Bass_diffusion_model
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Figure 4-5. Example of Bass Diffusion Curve (M=20%, T=10) 

 

Many of PGE’s existing programs are early in their lifetime and may have elements of pilot 

programs that do not necessarily represent long-term design. As such, the Cadeo team used a 

three-step process to estimate the M and T parameters for each program by balancing past PGE 

program activity with the performance of other, similar programs.  

• Estimate empirical M and T parameters by using historic PGE program participation data.  

• Conduct a literature review to find the M and T parameters from similar programs. 

• Average the empirical and literature review to determine the final M and T parameters, 

which we list in Appendix C – Adoption Curves. 

Equation 4 above is a cumulative distribution function (CDF) and thus represents total adoption 

as a percentage of eligible population. We used the CDF for programs that include lost 

opportunity measures (i.e., a DER measure replaces end-of-life equipment or is installed 

concurrent with a lost opportunity measure). Programs that include discretionary, retrofit 

measures (i.e., the DER measure could be adopted at any time, such as demand response 

program participation) use the probability distribution function (PDF) of the bass curve shown in 

Equation 4. To obtain the PDF in year t, we simply take the difference of the CDF between year t 

and year t-1 (Equation 5). 

Equation 5. Bass Probability Distribution Function 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑦(𝑡)  ≈ 𝑀 ∗ 

(

 
 1 − 𝐸𝑥𝑝 (−14 ∗

0.5
𝑇 ∗ 𝑡)

1 + 13 ∗ 𝐸𝑥𝑝 (−14 ∗
0.5
𝑇 ∗ 𝑡)

− 

1 − 𝐸𝑥𝑝(−14 ∗
0.5
𝑇 ∗ (𝑡 − 1))

1 + 13 ∗ 𝐸𝑥𝑝 (−14 ∗
0.5
𝑇 ∗ (𝑡 − 1))

)
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4.4.2 Market Adoption 

We model the naturally occurring (market) adoption for three families of DER measure: solar and 

storage, transportation electrification, and building electrification20. Each family uses a different 

approach; we describe these approaches in this section using the framework that we show in 

Figure 4-6 below. 

Figure 4-6. Measure Adoption Framework 

 

4.4.2.1 Solar and Storage 

We leverage multiple sources to inform our adoption estimate for the non-programmatic solar 

and storage measures in our study.  

Initial Site Characteristics 

We use PGE’s “active generators” file, a listing of existing solar and storage installations to 

identify the sites in our sample that have existing installations (i.e., have already adopted the 

measures) as of October 2020.  

Eligibility Criteria 

For sites that do not already have installed solar and/or storage, we determine the site’s 

eligibility and nameplate size per the criteria described in Table 4-11 below. Thus, our estimate 

of solar and storage technical potential includes all sites that meet the eligibility criteria and with 

an installation size listed in Table 4-11. 

Table 4-11. DER Measure Eligibility – Solar and Storage 

Measure Eligibility Criteria Measure Size 

Solar PV Residential or Non-Residential, Roof ≤ 10 

years old, owns property, solar potential from 

Project Sunroof > 0, has available breaker 

Project Sunroof kW, scaled such that 

annual generation = annual 

consumption 

Behind-the-

Meter (BTM) 

Energy Storage 

Residential SF or MH homeowner, or Non-

Residential. Residential must have available 

breaker. 

Residential & non-res with peak load < 

50kW: 5 kW  

Non-res, with peak load ≥ 50kW: 50 kW 

 
20 We also modeled market adoption of smart thermostats, which for our purposes are categorized as a 

demand response measure. 
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We keep a running tally of breaker availability for residential sites, which changes over time as 

sites adopt other DER measures. This is one of our eligibility criteria for residential solar and 

storage. 

Probability of Adoption 

We use NREL’s DGEN, an open-source, agent-based simulation model that NREL has developed 

to estimate solar and storage adoption,21 to determine the solar and storage adoption 

probabilities for PGE as follows: 

• Run DGEN model. The DGEN model’s inputs are extensive and include solar and 

storage cost technology forecasts from NREL, assumptions for utility rates, consumption, 

sizing, and geospatial information for each agent (i.e., a site) in its simulation model. For 

our DER potentials analysis, we used NREL’s agent file for the state of Oregon and did 

not modify any of NREL’s open-source data in our DGEN runs to characterize market 

adoption for solar and storage.  

• Extract DGEN model results. The DGEN model produces a bi-annual forecast that 

indicates which agents have adopted solar and storage measures. We transformed this 

result set into a data set that contains the probability that an eligible site adopts solar 

and the probability that an eligible site adopts storage. Figure 4-7 shows the reference 

case adoption probabilities for solar and storage. 

 
21 See https://www.nrel.gov/analysis/dgen/ for DGEN documentation, and https://github.com/NREL/dgen 

to access the open-source DGEN model. 

https://www.nrel.gov/analysis/dgen/
https://github.com/NREL/dgen
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Figure 4-7 Solar and Storage Adoption Rates from DGEN Model 

 

• Apply Probabilities to PGE sites. We use the annual probabilities from the DGEN 

analysis to simulate which eligible sites in our model adopt solar and storage over time. 

This simulation produces our achievable technical potential estimate for solar and 

storage.  

4.4.2.2 Transportation Electrification-Vehicles 

Our approach for modeling adoption of electric vehicles blends a top-down statistical forecast 

of electric vehicles developed by the Brattle Group for PGE’s service territory with a bottom-up 

accounting of the vehicle stock associated with each PGE premise. 

Initial Site Characteristics 

Our approach to characterizing the vehicle stock began with a dataset that contained VIN 

information for all vehicles (light, medium, and heavy duty) registered in a ZIP code served by 

PGE. We conducted an analysis of this VIN information and determined that PGE had mapped 

approximately 80% of these vehicles to sites. For our potentials estimate, we grossed up the 

vehicle counts across the service territory to account for the missing 20%. Additionally, we use 

PGE’s RASS and NREL’s AFDC database to inform our estimate of EVSE equipment in the first 

year of the study. 
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Eligibility Criteria 

We apply the stock turnover approach described above to the known PGE vehicle stock, which 

changes site-level eligibility for EVSE over time. In addition to conditioning EVSE adoption on 

the presence of an EV, we have two other criteria for residential EVSE adoption. 

• Has available parking. This is the most restrictive criteria for residential EVSE adoption; 

our analysis of NEEA’s 2016 residential building stock assessment found that 

approximately 40 percent of single-family homes do not have appropriate parking for an 

L2 EVSE.  

• Have an available breaker. We keep a running tally of breaker availability for residential 

sites, which changes over time as sites adopt other DER measures and is one of our 

eligibility criteria for residential level 2 EVSE measures. 

Probability of Adoption 

Over time, we simulate the adoption of electric vehicles upon turnover by using the electric LDV 

market shares from two sources. For light duty vehicles, we use the results of Brattle’s 

econometric model trained on historical results from all 50 states and calibrated to PGE’s service 

territory. For MDV and HDV market shares, we use the results from a Delphi panel of experts in 

the sector to generate likely scenarios based on different expected conditions. We provide a 

detailed account of these approaches in Appendix A: Electric Vehicle Adoption Estimation 

Methodology.  

After calibrating these modeled results to the vehicle stock assessment data, we derive the 

following probabilities (Figure 4-8) that we use as AdopDER input. 
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Figure 4-8. Electric Vehicle Market Share from Brattle Econometric Forecast 

 

4.4.2.3 Transportation Electrification-Charging Infrastructure 

Once we estimate the number of electric vehicles that we expect to be adopted, we then 

estimate the required charging infrastructure at each charging level and use case.  

Initial Site Characteristics 

There are three levels of charging infrastructure in our model: Level 1, Level 2, and DCQC. We 

further break these down in to private (home or fleet) and public. In AdopDER, public charging is 

simply any charging not associated with a vehicle registered to the customer site. In this sense, 

we consider multifamily charging and non-fleet workplace charging to be public. 

We identify the presence of public charging using a combination of PGE’s customer data and 

NREL’s AFDC database. We estimate existing home charging stochastically for sites with EVs 

based on survey data provided by PGE. 

Eligibility Criteria 

For private charging, we determined eligibility based on an assumed ratio of vehicles to plugs, 

and in the case of residential, available panel ampacity and parking onsite. Given the short 

historical record on the relationship between increasing EV penetration, EV charger utilization, 

and infrastructure adoption, we chose to hold this relationship constant through the analysis 

period. Over time, there may a move toward adopting multiple chargers at a single residence 

but currently the data suggests that it is exceedingly rare. We determined eligibility 
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hierarchically based on charge rate (i.e., if a customer site already had Level 2 charging for all 

EVs on site, then it was ineligible for Level 1 charging). 

Table 4-12. Private EV Charging Eligibility 

Measure Eligibility Criteria Measure Size 

All Level 1 Residential or Non-Residential, has EVs not 

addressed by other onsite charging, has driveway 

or garage 

Number of plugs 

Residential Level 2 

(smart and standard) 

Residential, has EV, has spare 220V breaker, has 

driveway or garage 

Number of plugs: 

minimum of number of 

EVs/2, number of available 

220V breakers available 

Nonresidential Level 

2 (smart and 

standard) 

Nonresidential, has EVs not served by DCQC Rated capacity multiplied 

by number of plugs 

(number of EVs/2) 

DCQC Nonresidential, has MDV/HDV Rated capacity multiplied 

by number of plugs 

(number of MHDVs/4) 

 

To account for all vehicles that could not charge onsite, and some amount of public charging 

expected from all vehicles, AdopDER generates new public charging sites to meet total energy 

demand by electric vehicles. These are new sites, and thus do not have specific eligibility criteria.  

Adoption Probability 

After generating a vehicle forecast for each vehicle weight class, we use NREL’s EVI-Pro Lite tool 

to determine the required total charging energy for all vehicles and across segments. EVI-Pro 

Lite relies on historical charging behavior and as such assumes that a much higher proportion of 

charging takes place at home for residential customers than is feasible in the general population 

(in 2050, we estimate there will be approximately 1.3 million residential EVs under the reference 

scenario but only 150,000 customers can feasibly install Level 2 charging at home). Where 

feasible, we first model adoption probability based on the anticipated splits from EVI-Pro Lite. 

Where a higher charger rate is not feasible, but a lower charge rate is, we model adoption of the 

lower charge rate. We then calculate the remaining unmet energy for vehicles.  

To meet that remaining energy, AdopDER generates new public charging sites that contain a 

mix of Level 2 and DCQC. We scale the number of sites generated to match aggregate 

consumption of “missing” charging sites. We do this assuming a ratio of 8:1 for L2 to DCQC 

chargers (consistent with EVI-Pro assumptions). Given the typical consumption of residential EV 

owners, we generate 8 L2s and 1 DCQC charger for every 36 residential EVs without access to 

home charging. We group chargers into sites by fours, with four 7kW L2s and four DCQC’s sized 

by their expected nameplate capacity per charging site. 
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We developed our nameplate charging speed forecast by pegging relative near-term growth 

rate differentials between charging rate categories and projecting them forward in the planning 

period22. When AdopDER generates a new DCQC charging measure, it randomly selects a 

nameplate rating for the charger with probabilities based on the projected market shares (see 

Figure 4-9). 

Figure 4-9. Nameplate DCQC Forecast (% of Chargers by kW) 

  

4.4.2.4 Building Electrification 

Our approach to modeling building electrification is complex because these measures are also 

energy efficiency measures that overlap with Energy Trust’s energy efficiency potential study. As 

we describe below, we take steps to avoid double counting the load impacts of building 

electrification in PGEs IRP while still preserving the ability to use building electrification as 

eligibility criteria for other DER measures. 

Initial Site Characteristics 

We leverage multiple data sources (PGE’s RASS, PGE’s ODS, NEEA CBSA) to impute the type and 

fuel for heating, cooling, water heating, and cooking equipment at each residential site and the 

type and fuel of HVAC systems at each non-residential site for the start year of our study.  

 
22 For this analysis, we extrapolated trends found in NREL’s most recent EV infrastructure market report:  

Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: First Quarter 

2020 (nrel.gov) 

https://www.nrel.gov/docs/fy20osti/77508.pdf
https://www.nrel.gov/docs/fy20osti/77508.pdf
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Eligibility Criteria 

We apply the stock turnover approach that we describe above to the heating, cooling, water 

heating, and cooking equipment at each site, which changes site-level eligibility over time. We 

also keep a running tally of breaker availability for residential sites, which changes over time as 

sites adopt other DER measures and is one of our eligibility criteria for building electrification 

measures. 

Adoption Probability 

We segment the PGE customer base into three groups and apply a different adoption 

probability to each group.  

• Electric-to-Electric Upgrades. We use the ramp rates (the rate at which customers 

adopt energy-efficiency measures over time) in Energy Trust’s energy-efficiency potential 

study for PGE as adoption probabilities for the segment of customers that begin with an 

inefficient, electric technology. The adoption probability represents the site’s probability 

of converting to an efficient, electric technology (i.e., convert from electric resistance 

water heat to a heat pump water heaters). Though we do not assign load impacts for 

inefficient electric to efficient electric conversions to avoid double counting savings from 

the Energy Trust energy-efficiency potential study, we still track adoption for this 

segment, because their measure adoption is part of the eligibility criteria for other 

measures (i.e., heat pump water heater is a requirement for the HPWH Smart Controls 

DR measure). 

• New construction. Like the electric-to-electric upgrade segment, we use Energy Trust’s 

energy efficiency measure ramp rates as adoption probabilities for this segment, in both 

residential and non-residential markets. 

• Fuel Switching. Building electrification measures can also be adopted under fuel 

switching - that is, a customer could switch from a gas-fired furnace to air source heat 

pump or from a gas-fired water heater to a heat pump water heater. Population data is 

very scare on the incidence rate of fuel switching to electric equipment; therefore we use 

NREL’s Electrification Futures study to derive our fuel switching assumptions. Our load 

impacts, which we describe in the next section of this document, include the load growth 

associated with fuel switching. Figure 4-10 and Figure 4-11 show the Electrification 

Futures study fuel conversion probabilities that we use in this study. 
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Figure 4-10. Electrification Futures Fuel Conversion Rates (Reference Case) 

 

Figure 4-11. Electrification Futures Fuel Conversion Rates (High Case)
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4.5 Load Impacts 

Once the stock assessment model has estimated which customers will adopt which measures in 

which years, we determine system-level load impacts. We estimate these impacts by combining 

baseline loadshapes for all customers with passive (year-round) and dispatch (event-based) 

measure shapes. AdopDER then forecasts these aggregate shapes for all years and scenarios 

and calculates impacts in the following steps: 

• Forecast gross loadshapes across the study period; 

• Calculate passive measure shapes for all years; 

• Calculate likely event dispatch periods;  

• Calculate event-based impacts; and 

• Aggregate the customer-level hourly impact for each forecast year and summarize by 

the many reporting dimensions. 

4.5.1 Develop Baseline Loadshapes 

First, we model typical-year baseline loadshapes for each sector using a time-of-week and 

outdoor temperature model. Our key assumption for this analysis is that each customer has the 

average loadshape for the customer’s sector (rate code and revenue class).23 We derived these 

average loadshapes by starting with 2019 sector averages provided by PGE as the baseline year. 

We then used CalTRACK24 standard methods to model each sector against month, hour-of-

week, occupancy, and outdoor air temperature. The figures below compare actual 2019 sector-

level energy trends versus the CalTRACK models’ estimated energy, given 2019 weather data.  

Figure 4-12. Average kW Per Residential Customer, 2019 

 

 
23 This assumption is appropriate for system-level estimates of DER potential, which are the scope of this 

study; we will revise this approach to use a more individualized loadshape during Phase 2 the study. 
24 CalTRACK is a set of methods for estimating avoided energy use (AEU), related to the implementation 

of one or more energy efficiency measures, such as an energy efficiency retrofit or a consumer behavior 

modification.  It uses an approach that follows ASHRAE Guideline 14, IPMVP Option C, and the Uniform 

Methods Project (UMP), and uses segmented regression models to estimate whole-building energy 

consumption. 
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Figure 4-13. Average kW Per Non-Residential Customer (Rate Class 32-3), 2019 

 

We then ran the sector-level CalTRACK models against the Portland TMY3 (NREL’s Typical 

Meteorological Year) data to create a typical year’s loadshape, not biased by the 2019 weather. 

While the same TMY3 weather data is used to model every year from 2022 to 2050, each year 

uses the actual calendar days, which means that TMY3 extremes do not always fall on the same 

day of the week. 

Finally, we scale each sector’s baseline loadshape to match PGE’s monthly load growth forecast, 

so that the sector’s per-customer TMY3 monthly energy use is equal to the load forecast, while 

preserving the hourly dynamics of the CalTRACK-model. 

4.5.2 Define Measure Impact Loadshapes  

We create hourly loadshapes for each measure from the most appropriate data source available 

for the measure type. Each family of measures (building electrification, demand response, solar 

and storage, and transportation electrification) requires a different approach to loadshape 

development; we describe each category at a high level in the subsections below. 

4.5.2.1 Building Electrification 

Building electrification measures are passive, though their adoption can in some cases lead to 

changes in the shape of demand response measures. For nearly all measures, we modeled 

8,760-hourly impacts for TMY3 using EnergyPlus and assumed baselines consistent with RTF 

assumptions. As an illustration, Figure 4-14 shows a portion of an 8,760-hourly impact 

loadshape for our Centralized Hydronic measure in a particular forecast year (2030), scaled by 

the number of non-residential customers that adopted this measure.  
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Figure 4-14. Central Hydronic Measure Shape for 2030 

 

As discussed in Section 4.4, the building electrification measures are also energy efficiency 

measures. Thus, we only apply load impacts to fuel-switching adopters and new construction. As 

a result, the building electrification measures principally show load growth rather than savings 

relative to less-efficient electric end uses. However, our models net out any electric loads from 

the baseline fossil-fuel system such as pumps and fans as well as cooling savings, which can 

result in load reductions for some hours of the year. 

For residential water heating, we used measured 8760 loadshapes taken from the RBSA I 

metering data.   

4.5.2.2 Demand Response 

We modeled the impacts of DR using program evaluation results and literature review. These 

measures can produce passive loadshapes from TOU rates, as well as event-driven loadshapes 

from dispatchable devices and PTR rates. 

We define dispatchable loadshapes in terms of hourly impacts in pre-event, event, and post-

event periods for each applicable month, day of week, time-of-day (AM or PM), and event 

duration (number of hours the event is called for). If the exact duration of a called event is not 

defined for a particular measure, we will use the loadshape with the closest duration for that 

month and day, but the event period will be truncated if needed (i.e., impacts for a 2 hour event 

would use the first 2 event hours of a 3 hour event loadshape if no 2 hour event loadshape was 

provided.) Non-dispatchable loadshapes can be defined with an explicit 8,760 loadshape (should 

be modeled for TMY3) or with a 24-hr loadshape for each month and day. Again, categories of 

month and day (e.g., summer weekdays) can be specified.  

Table 4-13. Demand Response Loadshape Sources 

Measure Segments Source 

Residential high voltage Smart 

thermostat 
TOU, non-TOU BC Hydro Evaluation25 

 
25 https://www.aceee.org/files/proceedings/2016/data/papers/1_88.pdf  

https://www.aceee.org/files/proceedings/2016/data/papers/1_88.pdf
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Measure Segments Source 

Residential high voltage Smart 

thermostat controls 
All BC Hydro Evaluation 

Residential low voltage smart 

thermostat 
TOU, non-TOU 

Cadmus PGE flex 1.0 pilot evaluation, 

Arcterus 2.0 database26  

Residential low voltage smart 

thermostat Controls 

Cooling only, Heating only, 

Heating and cooling, 

DI/BYOT 

Cadmus DI Evaluation Reports Winter 

2018, Summer 2019; Cadmus BYOT 

Evaluation Reports Winter 2019/2020, 

Summer 2020  

Cold thermal storage 
Cold Storage Thermal, 

Storage Chiller 

Viking Cold Solutions case study27, 

LBNL simulations28 

Irrigation DLC  All Engineering calculation 

Large C&I ADR/curtailable tariff 
Refrigeration, HVAC, 

Pumping, Industrial Process 

Guidehouse 2020 Energy Partner 

Evaluation, NREL Paper on Water 

Facilities29, RMI Demand Response 

Overview30 

Electric Vehicle TOU All 
Research paper on CA/PGE EV-TOU 

response31 

Peak-time Rebates All Cadmus Flex 2.0 Year One Evaluation 

ERWH smart controls All 
BPA CTA-2045 Demonstration 

report32 

ERWH retrofit switch All BPA CTA-2045 Demonstration report 

Residential DHP controls All PGE Testbed work papers33 

HPWH smart controls All BPA CTA-2045 Demonstration report 

 
26https://www.cpuc.ca.gov/uploadedFiles/CPUC_Website/Content/Utilities_and_Industries/Energy/Energy_

Programs/Electric_Rates/2017%20Arcturus%202%200%20(10-12-2017).pdf  
27https://vikingcold.com/downloads/Viking-Cold-Case-Study_Ammonia-Warehouse+TES.pdf  

control_of_thermal_energy_storage_in_commercial_buildings_for_california_utility_tariffs_and_demand_res

ponse_lbnl-1003740.pdf (lbl.gov)  
28https://simulationresearch.lbl.gov/sites/all/files/t_hong_-_electric_load_shape_benchmarking_for_small-

_and_medium-sized_commercial_buildings.pdf  
29 Opportunities and Challenges for Water and Wastewater Industries to Provide Exchangeable Services 

(nrel.gov) 
30https://www.swenergy.org/data/sites/1/media/documents/publications/documents/Demand_Response_

White_Paper.pdf  
31 https://gib.people.uic.edu/Electric%20Cars%20and%20Charging.pdf  
32 https://www.bpa.gov/EE/Technology/demand-response/Documents/Demand%20Response%20-

%20FINAL%20REPORT%20110918.pdf  
33https://assets.ctfassets.net/416ywc1laqmd/6Ojz70LC2Vzb55noURmiCD/ed29676a4eb5df55c988e6e581b

d12c8/PGE_Advice_No_20-23_Sch_13_Residential_Testbed_Pilot_OL_082520.pdf  

https://www.cpuc.ca.gov/uploadedFiles/CPUC_Website/Content/Utilities_and_Industries/Energy/Energy_Programs/Electric_Rates/2017%20Arcturus%202%200%20(10-12-2017).pdf
https://www.cpuc.ca.gov/uploadedFiles/CPUC_Website/Content/Utilities_and_Industries/Energy/Energy_Programs/Electric_Rates/2017%20Arcturus%202%200%20(10-12-2017).pdf
https://vikingcold.com/downloads/Viking-Cold-Case-Study_Ammonia-Warehouse+TES.pdf
https://eta-publications.lbl.gov/sites/default/files/control_of_thermal_energy_storage_in_commercial_buildings_for_california_utility_tariffs_and_demand_response_lbnl-1003740.pdf
https://eta-publications.lbl.gov/sites/default/files/control_of_thermal_energy_storage_in_commercial_buildings_for_california_utility_tariffs_and_demand_response_lbnl-1003740.pdf
https://simulationresearch.lbl.gov/sites/all/files/t_hong_-_electric_load_shape_benchmarking_for_small-_and_medium-sized_commercial_buildings.pdf
https://simulationresearch.lbl.gov/sites/all/files/t_hong_-_electric_load_shape_benchmarking_for_small-_and_medium-sized_commercial_buildings.pdf
https://www.nrel.gov/docs/fy16osti/63931.pdf
https://www.nrel.gov/docs/fy16osti/63931.pdf
https://www.swenergy.org/data/sites/1/media/documents/publications/documents/Demand_Response_White_Paper.pdf
https://www.swenergy.org/data/sites/1/media/documents/publications/documents/Demand_Response_White_Paper.pdf
https://gib.people.uic.edu/Electric%20Cars%20and%20Charging.pdf
https://www.bpa.gov/EE/Technology/demand-response/Documents/Demand%20Response%20-%20FINAL%20REPORT%20110918.pdf
https://www.bpa.gov/EE/Technology/demand-response/Documents/Demand%20Response%20-%20FINAL%20REPORT%20110918.pdf
https://assets.ctfassets.net/416ywc1laqmd/6Ojz70LC2Vzb55noURmiCD/ed29676a4eb5df55c988e6e581bd12c8/PGE_Advice_No_20-23_Sch_13_Residential_Testbed_Pilot_OL_082520.pdf
https://assets.ctfassets.net/416ywc1laqmd/6Ojz70LC2Vzb55noURmiCD/ed29676a4eb5df55c988e6e581bd12c8/PGE_Advice_No_20-23_Sch_13_Residential_Testbed_Pilot_OL_082520.pdf
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Measure Segments Source 

Commercial low voltage smart 

thermostat 
None 

No impact modeled, just an enabling 

measure 

Commercial low voltage smart 

thermostat controls 

ASHP/ER heat/cooling only, 

pre/post-1980 envelope 

CLEAResult Measure Development 

Analysis 

TOU All Cadmus PGE flex 1.0 pilot evaluation 

 

4.5.2.3 Solar and Storage 

For the solar measure, we modeled the 8,760-hourly impact of PV systems using NREL’s 

PVWatts calculator, using separate loadshapes for both horizontal arrays and prototypical 

cardinal-direction oriented arrays (south, west, etc.), for which we assumed a tilt of 20 degrees. 

We modeled seasonal hourly impacts from battery storage measures based on available studies 

of how residential and commercial customers can achieve bill savings through load-shifting with 

battery storage systems. 

We modeled battery impacts for customers on a TOU rate, so they discharge their entire 

capacity evenly across the high peak periods, then recharge during off-peak. However, we 

allowed batteries to recharge during the winter mid-peak period after discharging during the 

morning peak, since that would make economic sense for customers. We modeled commercial 

non-TOU customer batteries to operate during their likely bill peak periods and recharge 

overnight. We assumed a round-trip efficiency of 90% for all batteries. 

Since microgrids act like the combination of PV and batteries when they are connected to the 

grid, we modeled them as the sum of those two measures. More complicated interactions 

between the PV and storage during times when they are islanded are ignored since that does 

not impact the grid during normal operations. Similarly, we do not model blackouts and any 

battery-recharging behavior that might follow them. 

4.5.2.4 Transportation Electrification 

While increased adoption of electric vehicles is the cause of transportation electrification load 

growth, the grid will experience that load via the chargers (EVSE). We started using modeled EV 

adoption and the seasonal weekday/weekend charging patterns at residential, public, and fleet 

EVSE using EVI Pro. We then augmented these shapes with primary data provide by PGE, 

including loadshapes from their Electric Avenue public charging sites and the Tri-met 

demonstration project.  

For the direct load control (DLC) measures, we assumed that 50% of the load during DR event 

hours would be shifted to post-event hours, and that recharging would consume the same 

energy over the same duration as it would have during the event hours. Since the vehicles are 

not discharged and the event only delays their charging behavior, there are no round-trip 

energy penalties. 
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Table 4-14. Transportation Electrification Loadshape Sources 

Measure Segments Source 

All Level 1 Residential, Fleet EVI-Pro Lite 

Residential Level 2 (smart and standard) 
TOU, Non-TOU 

EVI-Pro Lite, IEEE Paper on EV TOU 

in PGE and PG&E34 

Nonresidential Level 2 (smart and 

standard) 
Fleet, Public EVI-Pro Lite 

DCQC HDV Fleet, MDV 

Fleet, School Bus, 

Public 

EVI-Pro Lite, PGE Electric Avenue 

data, Tri-Met Demonstration data, 

Engineering analysis 

Smart Charging L2, Fleet DCQC, 

Public DCQC 
Engineering analysis 

 

For DCQC measures, we normalize loadshapes to their nameplate capacity and dynamically 

model changes in capacity over time.  

4.5.3 Define Demand Response Events 

We estimate the load impacts for dispatchable measures over a 

schedule of simulated demand response events, over our 

study’s time horizon (2020 through 2050). We established this 

schedule of events by analyzing the intersection of high loss-of-

load probability hours and high demand days.  

First, we looked at the top 5% of hours in the PGE loss of load 

probability (LOLP) dataset. Each hour in the top 5% was a 

weekday (no weekend days were within that threshold); these 

hours included evenings in August and both mornings and 

evenings in January and December. To allow the peak demand 

response impacts to coincide with the high LOLP hours, we 

timed our events start one hour before the peak LOLP. Table 

4-16 shows our selected event start times and durations for 

each month where events could be called. 

While these high LOLP hours indicate the likely timing and 

duration of demand response events, we did not assume that 

there would be a DR event called on every weekday August 

evening. To determine which day would have a DR event in 

January, August, and December of each modeled year, we 

 
34  https://gib.people.uic.edu/Electric%20Cars%20and%20Charging.pdf  

Table 4-15. High Loss of Load 

Probability Hours 

Month 
Hour 

Beginning 

Loss of Load 

Probability 

Jan 18 4.5% 

Jan 19 4.4% 

Dec 18 4.1% 

Dec 16 4.0% 

Jan 8 3.9% 

Aug 20 3.7% 

Dec 19 3.6% 

Dec 8 3.6% 

Jan 20 3.2% 

Jan 7 3.0% 

Jan 17 2.9% 

Jan 9 2.8% 

Aug 14 2.7% 

Jan 16 2.7% 

 

https://gib.people.uic.edu/Electric%20Cars%20and%20Charging.pdf
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selected the day with the highest weekday peak in each of the forecast years. This allows the 

event day-of-month to change by year to match our estimated peak (sum of the population-

scaled, sector-level loadshapes with TMY3 weather). In addition, the magnitude of the peak 

varies due to the coincidence of TMY3 weather and weekend days in different calendar years.  

These high LOLP hours simulate both the timing and 

duration of five demand response events. To allow the 

peak demand response impacts to coincide with the high 

LOLP hours, we timed our events to start one hour before 

the peak LOLP. Table 4-16 shows our selected events and 

durations. 

While these peak event hours are constant, the event 

day-of-month changes by year to match our estimated 

peak (sum of the population-scaled, sector-level 

loadshapes with TMY3 weather). In addition, the 

magnitude of the peak varies due to coincidence of TMY3 

weather and weekend days in different calendar years.  

4.5.4 System Load Impacts 

To calculate system level load impact, we apply all adopted measures to each customer (or 

group of customers who share the same set of relevant characteristics), and generate measure 

impact loadshapes specific to each customer as follows:  

• For each customer in our sample and adopted measure, we apply the measure 

loadshape associated with that customer’s individual attributes (revenue class, building 

type, roof orientation, etc.) 

• Our measure impact loadshape definitions are expressed in terms of per-unit hourly 

impacts, and are scaled based on the attributes defined for each customer in each year: 

o Some measures are either absent or present, and simply have a size of 1. 

o Some measures can represent the number of installed measures (such as hot 

water tanks or thermostats) for that customer, and could have an integer size (i.e. 

1, 2, 3, …). 

o Other measures are scaled with continuous factors that represent the physical 

characteristic that drives energy impacts, such as the DC rating of a PV array, the 

kWh capacity of a battery, or the conditioned floor area of a building. 

• Some measures are scaled as a percentage of load; for these, we first calculate the 

baseline load using the sector loadshape plus all the non-dispatchable measure impacts 

that apply to that customer, then use the net loadshape and the 8,760 percent-of-load 

factors to calculate the hourly measure impact in kW. 

• If the loadshape was calculated for a customer from a statistically sampled population 

(such as residential customers, which are sampled from 1% of the population), then the 

loadshape is multiplied by the weighting factor to get the full population impact. 

Table 4-16. Weekday Event Timing 

 Month 

Event 

Start 

Hour 

Duration (Hours) 

August 17 4 

December 8 3 

December 16 4 

January 7 3 

January 16 4 
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We use these measure impact loadshapes to calculate 8,760-hourly impacts for each forecast 

year, using the actual calendar days and TMY3 weather data. For stipulated measures that are 

defined as 24-hr profiles, they are mapped to the actual calendar days for each forecast year. For 

dispatchable measures, we only trigger the impact loadshape according to the forecasted event 

hours from the DR event schedule for each year.  

Once we calculate the 8,760 hourly measure impacts for all customers in all years, we can then 

aggregate (typically a sum, average, minimum or maximum) results as needed. For this report 

and the corresponding analysis for PGE’s IRP, we group by various combinations of customer 

revenue class, time period (month, year, hour, DR event period, and NERC-defined on/off peak 

hour) measure, and program. 

4.6 Economic Screening 

Once we have technical achievable potential for all measures and programs, we screen these 

measures based using a TRC test. To the extent possible, we aligned our cost-effectiveness 

approach with principles outlined in PGE’s Flexible Load Plan (FLP)35. This approach generally 

follows the approach used by the Energy Trust in its evaluation of energy efficiency measures, 

with some adjustments to account for the unique nature of flexible loads: 

• Use an Effective Load Carrying Capacity (ELCC) adjustment to avoided capacity costs for 

each measure; 

• Exclude some T&D avoided capacity costs;36 

• Use Value of Lost Service to account for customer impacts of events; 

• Exclude risk reduction and Regional Act Credits. 

 
35 UM 2141 Portland General Electric Company Flexible Load Plan available at 

https://edocs.puc.state.or.us/efdocs/HAS/um2141has132229.pdf  
36 We include transmission avoided cost in all scenarios, but include distribution costs only in the high 

DER adoption scenarios. 

https://edocs.puc.state.or.us/efdocs/HAS/um2141has132229.pdf
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Additionally, the FLP calls for programs to be 

evaluated for cost-effectiveness only once they 

have exited the pilot phase, while Energy Trust 

has a more nuanced set of rules for cost-

effectiveness exemptions that includes 

research needs, potential for market 

transformation, and programs focused on 

underserved communities. The FLP contains a  

table that compares cost-effectiveness 

parameters FLP and Energy Trust energy 

efficiency study. For context, we have copied 

this content from the FLP into Table 4-17. 

Using the FLP cost-effectiveness approach as a 

starting point, we made adjustments and  

clarified details based on feedback from PGE 

program and planning staff, a review of best 

practices, and a desire to capture some 

impacts that are expected in the future but 

may not be realized in the near term.  

Specifically, we: 

• Add transmission capacity to all 

capacity impacts (split evenly between 

summer and winter); 

• Add distribution capacity in the high 

adoption scenario; 

• Incorporate flexible capacity value (based on the Blue Marble Analytics analysis in the 

2019 IRP) for programs that respond to sub-hourly signals; 

• Explicitly parameterized a pilot period (5 years) for all programs based on their start year 

and evaluated cost-effectiveness over a standard program period (10 years); 

• Assume that revenue lost from time-of-use rates at scale is recovered through a recovery 

mechanism 

• Do not value fuel savings benefits from electrification measures or environmental 

benefits not already captured within PGE’s avoided cost of energy.  

We calculate a set of program and measure costs based on a review of PGE’s own cost-

effectiveness workbooks used in regulatory filings, benchmark data from other utilities, and 

interviews with PGE program staff. In many cases, we used adjusted cost data from similar PGE 

programs that are already in the field to ground-truth to real-world experience in PGE’s service 

area.  

Table 4-17. Comparison of Flex Load and Efficiency 

Cost-Effectiveness Parameters (from FLP) 
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Table 4-18. Key Cost Effectiveness Assumptions 

Variable Value Units Source 

Avoided cost of generation 

capacity 
109.74 $/kW-yr 2021 IRP Update 

Avoided cost of transmission 

capacity 
9.5737 $/kW-yr 2020 Flexible Load Plan 

Avoided cost of distribution 

capacity 
24.39 $/kW-yr 2020 Flexible Load Plan 

Incremental avoided cost of 

flexible capacity 
25.4 $/kW-yr 

Using a 2.7-hour battery value (via res 

storage, interpolated from 2019 IRP) 

Distribution losses 4.74% 

  

PGE staff 

Distribution marginal-to-average 

line loss ratio 
70% PGE staff 

BPA line factor 1.90% PGE staff 

Reserve margin requirement 15% PGE staff 

Real discount rate 4% PGE staff 

Inflation rate 2% PGE staff 

Pilot life 5 Years Analytical assumption 

Program life 10 Years Analytical assumption 

 

By default, AdopDER screens cost-effectiveness at the measure bundle level, as this is the 

smallest unit of program delivery. As a hypothetical example, a residential thermostat program 

could be cost-effective at the program level, but a direct install measure bundle (including a 

smart thermostat and the controls measures) for cooling-only/heating-only customers might 

not be while all other measures bundles are. In this case, the non-cost-effective bundles would 

be screened out and the remaining bundles would be added to economic potential.  

We should note that, given the focus here on generating portfolios for the IRP, our cost-

effectiveness screening was focused on the acquisition of resources programmatically for energy 

and capacity purposes. We did not include non-programmatic measures not currently offered or 

planned for PGE’s program portfolio (such as residential solar or building electrification) and did 

not tailor our cost-effectiveness to pure transportation electrification measures such as charger 

rebate programs that do not include demand response. Where a measure had multiple impacts, 

such as smart thermostat direct install programs that include DR and EE, we only assessed the 

incremental costs and benefits of the DR portion of the intervention.  

 
37 We include distribution avoided costs only in the high DER scenarios. 
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4.7 Adoption and Load Scenarios 

We use scenario analysis to place bounds on how achievable potential (both technical and 

economic) varies under different DER adoption rate and load forecast scenarios. Our analysis 

consists of eleven unique scenarios that we derive from a matrix of five adoption scenarios and 

three load scenarios (Table 4-19). 

Table 4-19. DER Potentials Analysis Scenarios  

    Load 

    Low Reference Hi 

Adoption 

Low x x x 

Reference x x x 

Hi x x x 

Market Only  x  

Technical Potential  x  

4.7.1 Adoption Scenarios 

The number of factors that influence adoption in our analysis are plentiful, thus the number of 

scenarios that we would need to isolate each of their measure adoption and load impacts is 

impractically large. Given that our interest is in bounding the amount of achievable potential, we 

simplified this complexity into the five adoption scenarios that we describe below. 

Reference Adoption. This scenario represents our “most likely” adoption scenario, which is 

generally an extension of past trends in technology prices and adoption trends. Table 4-20 

describes the input parameters in detail.  

Low Adoption. This scenario is a pessimistic adoption scenario, where we decrease program 

incentives, increase technology costs, and parameterize the bass curves as follows: long-term 

adoption rates are lower (decrease M parameter), and the curve takes more time to reach its 

maximum adoption rate (increase T parameter). In addition to creating a headwind for measure 

adoption, we also dampen the cost-effectiveness benefits for programs (see Table 4-20).  

High Adoption. This scenario is an optimistic adoption scenario, where we boost measure 

adoption by increasing program incentives, decreasing technology costs, and parameterize the 

bass curve as follows: long-term adoption rates are higher (increase M parameter), and the 

curve takes less time to reach its maximum adoption rate (decrease T parameter). In addition to 

increasing measure adoption, we also increase the cost-effectiveness benefits for programs (see 

Table 4-20). 
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Table 4-20. Adoption Scenario Summary (Reference, Low, and High Scenarios) 

Assumption Reference Adoption Low Adoption High Adoption 

Technology Costs       

Solar  NREL DGEN open-source 

data: pv_price_atb19_mid 

NREL DGEN open-source 

data: pv_price_atb19_high 

NREL DGEN open-source 

data: pv_price_atb19_low 

Storage NREL DGEN open-source 

data: batt_prices_FY20_mid 

NREL DGEN open-source 

data: batt_prices_FY20_mid 

NREL DGEN open-source 

data: batt_prices_FY20_low 

Building Electrification        

Electric-to-Electric Upgrade Energy Trust EE ramp rates Energy Trust EE ramp rates Energy Trust EE ramp rates 

Fuel Conversion NREL Electrification 

Futures: Reference case 

NREL Electrification 

Futures: Reference case 

NREL Electrification 

Futures: High case 

EV Adoption Drivers       

LDV: Additional Total 

Incentive 

$0  $0 $2,000  

LDV: Additional Battery Price 0% 25% -10% 

LDV: Relative Fuel Price 0% 25% -10% 

LDV: Chargers in Range On Off On 

LDV: Vehicle Cost Decline On On Exogenous impact of 

declining non-battery EV 

costs reduced by 50% 

MDV: Adoption Rate Expert Panel - most likely Expert panel - lower bound Expert panel - upper 

bound 

Programmatic Adoption       

Bass Curve M parameter Cadeo analysis of PGE and 

similar programs 

50% lower than reference 

case 

50% higher than reference 

case 

Bass Curve T parameter Cadeo analysis of PGE and 

similar programs 

50% lower than reference 

case 

50% higher than reference 

case 

Cost Effectiveness       

Program Incentives  Cadeo analysis  25% lower than reference 

case 

25% higher than reference 

case 

Retail Rates Current PGE residential, 

non-residential rates 

TOU rate range 13% 

narrower than reference 

case 

TOU rate range 13% wider 

than reference case 

Distribution Avoided Cost None None Include for all measures 

Flexibility Avoided Cost  Include for DR/storage 

programs 

None Include for DR/storage 

programs 

 

Technical Potential. This scenario aligns with the definition of technical potential described in 

section 4.1 in that our analysis forces all customers to adopt all measures their premise is 

eligible for. In the context of adoption, this means that we set the adoption probability to 100% 

for each measure. In some cases, measures compete for the same end-use, such as DCQC versus 

Level 2 EVSE for fleet charging, and smart ERWH versus HPWH in residential premises. In these 
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cases, we select the measure with the highest DER potential, i.e., DCQC and HPWH in the 

example above. 

Market-Only Scenario. This scenario is a special case of the reference case scenario in which we 

only analyze naturally occurring (non-programmatic) adoption of DER measures. As such, this 

scenario includes only building electrification measures, solar, storage, and transportation 

electrification measures. The load impacts from adoption in the market-only scenario represent 

zero-cost resources to PGE. Levelized costs and cost effectiveness ratios (e.g., TRC and PAC) for 

measures under the market scenario are not applicable since PGE does not have to expend any 

capital to acquire these resources. Consequently, for the purpose of PGE’s integrated resource 

plan, these resources are a “must take” and often include load growth. 

4.7.2 Load Scenarios 

We used three load “need” scenarios provided by PGE in our scenario analysis: reference, low, 

and high. Figure 4-15 shows how these three forecasts relate to the reference case over time at 

a system level. In 2030, the high need forecast is approximately 9% higher than the reference 

case forecast, and the low need forecast is approximately 10% lower than the reference forecast. 

Individual sectors have different variances relative to their reference forecasts: residential has the 

largest variance (+/- 15% in 2030), while industrial has the smallest variance (+/- 5%). 

Figure 4-15. Load Scenarios Relative to Reference Case 

 

We calculate load impacts for the low and high scenarios at a sector level using the following 

four steps. These steps describe the low need forecast; the high need forecast follows an 

identical process. 
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1. For each sector, calculate the reference case loadshapes; 

2. For each year within sector, determine the annual ratio of PGE’s low need load forecast 

to its reference case load forecast; 

3. Use the annual ratio from step 2 to scale the reference case forecast from step 1 to 

obtain the low case forecast; and 

4. Apply load impacts. 



  DER and Flexible Load Potential – Phase 1 

Findings 

 

  PAG E  70 

Section 5 Findings 

5.1 Overall Impacts 

This section describes the results of the Phase I potential analysis. These results will be used to 

inform PGE’s subsequent IRP analysis. 

In aggregate, under the confluence of solar, storage, transportation and building electrification, 

and flexible loads is set to have a dramatic impact on PGE’s system and its customers. The graph 

below shows the expected energy impacts (in aMW at generation) through 2050 under the 

different adoption scenarios.  

Figure 5-1. Aggregate Energy Impacts by Scenario 

 

Even after accounting for increased solar adoption, transportation electrification (and to a much 

lesser extent, naturally occurring building electrification) is set to increase load by over 1,000 

aMW in the reference case adoption scenario. The market scenario in Figure 5-1 provides an 

idea of what we expect to see absent programmatic activity. In outer years, we see the impact of 

PGE’s transportation electrification programs on the adoption of electric vehicles and greater 

utilization of charging infrastructure (we do not model building electrification programs in this 

analysis).  

This increase in load points to the need for flexible resource to manage peaks and mitigate 

upgrade costs across PGE’s system. We see the critical role that flexible loads play clearly when 
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looking at peak impacts. The figure below shows the average net demand impacts under each 

scenario, where peak is defined as the average over times of event dispatch in both summer and 

winter38.  

Figure 5-2. Aggregate Peak Impacts by Scenario 

 

Here we see that PGE’s continued development of its flexible load portfolio leads to a net 

decrease in peak loads in the early years of our study, even accounting for transportation 

electrification. However, in outer years, the impact of electrification overtakes flexible load 

adoption. When comparing the reference to the market case we see that these programs 

continue to play an important role in mitigating these peak impacts.  

In the market scenario there are no flexible loads or dynamic rates; we see changes in peak load 

are driven almost entirely by electrification.39 This leads to steady, and eventually large long-

term increases. In the programmatic scenarios, these programs and rates help to reduce peak 

load to such an extent that in the early years of the planning period their effect is greater than 

total additions from electrification. However, as transportation electrification becomes near-

universal in the out-years, there becomes a net positive impact on peak load. Because programs 

encourage both flexible loads and transportation electrification, the high scenarios shows both 

 
38 This analysis is merely meant to be indicative and is not a replacement for a full ELCC analysis through 

the IRP.  
39 There is some reduction in peak load from behind-the-meter solar, but not that storage here is un-

managed, so is only used for backup. 
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greater negative impacts in the early years and high positive impacts in the later years of the 

planning period.  

We explore each set of technologies and their expected adoption and impacts under different 

scenarios in greater detail below.  

5.2 Solar and Storage  

Despite a very large technical potential for both solar and storage, we expect approximately 926 

MW of combined nameplate solar and storage across residential and commercial applications.  

As reflected in the forecasts from DGEN, we expect a large increase in residential solar in the 

later years, driven by declining costs of solar installations. We expect, as is the case in PGE’s 

service area today, that residential will dominate the behind the meter solar market in PGE’s 

service area. We forecast small, but growing market for storage, with approximately 72 MW in 

residential and another 21 MW in nonresidential, largely driven by expected increases in solar 

attachment rates.  

Figure 5-3. Projected Solar + Storage Adoption (Reference Case) 

 

We expect relatively modest microgrid adoption on average, though this is highly uncertain due 

to the bespoke design and needs of each project and increasing requirements for resiliency in 

the face of extreme weather events.  
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Figure 5-4. Projected Microgrid Adoption (Reference Case) 

 

Technical potential for solar and storage is quite high, with gigawatts of nameplate capacity 

available. However, our analysis only accounts for building hosting capacity and does not 

account for distribution and transmissions constraints that would be expected at even a fraction 

of these adoption levels.  

 

Figure 5-5. Technical Potential for Solar + Storage in 2050 
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Figure 5-6 presents adoption under different modeled scenarios for solar. There is a small 

negative impact on solar adoption in the reference scenario relative to market due to the 

increased adoption of competing measures (largely L2 charging) that lowers the available panel 

hosting capacity on site.  

Figure 5-6. Solar Adoption by Sector and Scenario 

 

The figure below presents adoption under different modeled scenarios for storage. Here we see 

that residential storage adoption is largely driven by programmatic activity. This is consistent 

with what we have seen in more mature markets.  
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Figure 5-7. Storage Adoption by Sector and Scenario 

 

5.3 Transportation Electrification  

We forecast much higher levels of adoption for electric vehicles than in the previous IRP study, 

consistent with industry consensus around pending market transformation particularly in the 

light duty segment. By 2027, we expect 141,000 electric light duty vehicles on the road in 2027, 

dominated by the residential sector, and 2,100 medium and heavy duty EVs. By 2050, we expect 
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nearly 80% of the vehicle market to be electric in all weight classes, with 1.4 million LDVs and 

33,000 MHDVs.  

Figure 5-8. LDV Adoption by Scenario 

 

Note: In Figure 5-8, the reference case LDV curve and market case LDV curve overlap one another. 
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Figure 5-9. MDV Adoption by Scenario 

 

By 2050, we forecast an increase in annual consumption of 9.1 million MWH (at generation) to 

serve electric vehicle charging. Of that, nearly 80% will come from charging not dedicated to a 

single residence. Our forecast explicitly accounts for constraints to home charging due lack of 

panel ampacity and/or dedicated off street parking, thus we find that only a fraction of 

residential customers at the high expected levels of adoption can charge with personal EVSEs. 

Often, forecasts in the industry have relied on historical charging patterns as a guide to future 

behavior. However, this extrapolation of early adopters’ charging patterns and neglecting to 

account for existing building stock can dangerously underestimate the needs for publicly 

available charging infrastructure in the long term.  

This analysis assumes that sites will only install L2 charging when they have available panel 

ampacity and personal off-street parking, which leaves many residential sites without charging. 

Further research on streamlining panel/service upgrades and providing charging solutions for 

residents with only on-street parking could help to expand potential for home charging. There 

remains, regardless, a tremendous need in the long term for shared charging solutions. 

The figure below shows this increased consumption, broken out by high level category. 

Nonresidential L2 charging - which includes multifamily, workplace, public, and fleet- becomes 

the dominant segment in the long run due to the need for charging beyond the home.   
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Figure 5-10. Projected Transportation Electrification Consumption (Reference 

Case) 

 

5.4 Building Electrification  

We expect only modest adoption of building electrification measures, largely concentrated in 

the residential sector. This is largely driven by new construction trends, where there is a small 
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increase in the adoption of heat pumps to meet energy efficiency requirements. However, 

compared to transportation, these impacts are quite low.  

Figure 5-11. Building Electrification Consumption (Reference Case) 

 

The set of charts below outline the adoption of different end use technologies under each 

scenario. These charts include both efficiency upgrades and fuel conversions to provide a sense 

of the total addressable market for these technologies. For instance, while water heating and 

cooking present near term opportunities, they are expected to be nearly 80% transformed by 

2050. Nonresidential HVAC, however, is expected to remain a larger opportunity for 

decarbonization.   
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5.5 Demand Response  

In aggregate, we expect approximately 169 MW of economic achievable demand response 

(including behind-the-meter storage enrolled in a program) in 2027. We expect PGE’s portfolio 

to be dominated by peak time rebates, Energy Partner, and the thermostat programs in the near 

term (as it is today). By 2050, we expect 495 MW of summer DR, dominated by EV TOU due to 

near-universal adoption of light duty electric vehicles in the residential sector. Additionally, tech-

enabled TOU becomes a bigger portion of the portfolio.  

Figure 5-12. Building Electrification by End Use and Scenario (inclusive of electric-electric upgrades) 
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Figure 5-13. Summer Economic Achievable Demand Response (Reference Case) 

 

As in previous studies, we expect slightly lower demand response in the winter season due to 

lower levels of electric heating relative to cooling in both residential and commercial. In 2027, 

we expect 134 MW of winter demand response, comprised of a mix of multifamily, thermostats, 

and the Energy Partner program (as shown in the Flex 1.0 evaluation, PTR and TOUs have lower 

per-unit impacts in winter). In 2050, we forecast 344 MW of demand response. As in summer, EV 

TOU dominates due to its low level of seasonality, high impacts on peak, and high level of 

adoption.  



  DER and Flexible Load Potential – Phase 1 

Findings 

 

  PAG E  82 

Figure 5-14. Winter Economic Achievable Demand Response (Reference Case) 

 

Table 5-1 provide a breakdown of expected MW impacts across different scenarios for both 

economic and achievable potential. In most scenarios, most of the demand response is 

economic in terms of total MW. Those measures that are not cost-effective remain relatively low 

in adoption regardless, even out to 2050. The range of potential impacts is broad, reflecting the 

still high level of uncertainty around adoption of these measures, with ranges of approximately 

+/- 50% relative to the reference case forecast. 
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Table 5-1. Demand Response Results (MW at generation) for 2027 and 2050 by 

Season and Scenario 

Scenario Season 
2027 2050 

All Achievable Economic Achievable All Achievable Economic Achievable 

Reference 
Summer 207 169 598 495 

Winter 162 134 452 344 

Low 
Summer 133 117 399 327 

Winter 100 91 310 235 

High 
Summer 298 261 912 735 

Winter 240 204 703 506 

 

As shown in the figures below, the load forecast has a very small impact on DR forecasts relative 

to the impact of adoption.  

Figure 5-15. Summer Economic Achievable DR by Scenario 
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Figure 5-16. Winter Economic Achievable DR by Scenario 

 

5.6 Cost-Effectiveness 

While AdopDER screens cost-effectiveness at the measure bundle level, we also calculate 

economics at the program level for this study and present the findings from our analysis in this 

section. Though we applied a cost-effectiveness approach that we adapted from PGE’s FLP, this 

study is independent of the FLP and its results may differ due to our selection of input values 

(see section 4.6 for more detail on this study’s cost-effectiveness methodology) 

Figure 5-17 shows the cost-effectiveness ratios that AdopDER calculated for each program in 

the study.  PGE’s residential programs, particularly those that use price signals, are the most 

cost-effective. While the largest measure today for the Energy Partner program, Schedule 26, is 

cost-effective, our inclusion of other measures such as agriculture, cold storage, and smart 

thermostats drags down program cost effectiveness.  
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Figure 5-17. Cost-Effectiveness by Program 

 

Figure 5-18 shows cost-effectiveness at the measure bundle level. Interestingly, due to its high 

ELCC and dual season availability, we find that BYO-nonresidential storage appears to be 

potentially cost-effective at scale. New nonresidential storage and campus microgrids are nearly 

cost-effective as well, with TRCs around 0.98. While we do not expect particularly high adoption 

(driven largely by low expected solar adoption by nonresidential customers), these measure 

shows promise long term particularly if costs can be brought down. We expect that further cost 

declines and a leaner program design for residential storage could expect the same result. 
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Figure 5-18 Cost-Effectiveness by Measure Bundle 

 

Because we model economics and impacts down to the site and annual level, we are able to 

develop supply curves for capacity resources at this level. Figure 5-19 shows levelized cost of 

capacity plotted against average 2027 peak MW impacts (average of summer and winter). Given 

the ability of some measures to provide services beyond generation capacity (such as energy, 

flexibility, and transmission capacity)40, we find that there are several measures that in fact have 

 
40 The Cadeo team and PGE are engaged in ongoing discussion about cost-effectiveness methodology 

following the acceptance of PGE’s Flex Load Plan. As such, the methodology that this study used will 

evolve in future iterations of this analysis. 
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net levelized costs below zero. Interestingly, we see an inflection point in the curve at 

approximately $100/kw-yr (roughly PGE’s avoided cost of capacity). This inflection is driven by a 

set of measures that have very high costs and relatively low near-term potential. 

 

Figure 5-19. Supply Curve of Demand Response Resources 
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Section 6 Conclusions 

The Cadeo team developed tools and generated results in the study that provide a foundation 

for PGE to build upon as it embarks on its efforts to create an integrated planning framework 

across Distribution System, Flexible Loads, Electrification, and Integrated Resource Planning. We 

find that PGE has a wide array of resources at their disposal as they seek to create value for their 

customers on the distribution grid.  

We see several trends interacting in our forecast: 

• Dramatically increasing adoption of residential solar is expected to increase needs on the 

distribution system and encourage adoption of storage; 

• Electrification of transportation will create unprecedented impacts on the energy system 

and present growing opportunities for flexible loads; 

• Flexible loads are becoming increasingly cost-effective and there are new opportunities 

to integrate them with new DERs; 

• DERs of all kinds create new constraints on the built infrastructure: an integrated 

approach to their deployment will be critical.  

Actionable Insights 

We see several ways in which the results of this study can be used to inform future work by PGE 

planning and programs staff. 

 We find that there are likely 169 MW of summer and 134 MW of winter economic and 

achievable demand response by 2027 in PGE’s service area, made up largely of programs 

they are already well into piloting. Continued focus on streamlining and scaling these 

programs will be critical to achieving these goals.  

 Time of use rates, particularly when paired with increasingly prevalent enabling 

technologies, show tremendous promise to manage peak demands, especially as 

transportation electrification becomes more prevalent. Further demonstration of how 

these rates might be deployed more rapidly could help PGE accelerate progress toward 

its goals.  

 Storage programs appear to be within the grasp of cost-effectiveness and program 

incentives will be critical to stimulating this market in Oregon. PGE should explore new 

opportunities to find cost savings in program delivery and/or capture new value streams 

to further improve economics. 

 While we did not explicitly model a service area-wide program in this study, our analysis 

of smart water heater adoption and controls shows that there is a rapidly growing 

opportunity for taking a market transformation approach to water heaters. We find that 

PGE’s multifamily water heater program is already cost-effective and expect a program 

utilizing CTA-2045 more broadly would be as well.  
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Areas for Further Research 

While the research here provides a robust foundation for understanding future DER adoption, 

we see a few areas where further research might be warranted. 

 We modeled panel constraints statistically in our analysis and their impact on home 

charging, building electrification, solar, and storage could be significant. We recommend 

further and possibly primary research on the existing panel configurations in PGE’s 

service territory and possible solutions to overcome these challenges more cost-

effectively.  

 Our analysis took a relatively simple approach to DER dispatch, calling the fleet of 

dispatchable assets in aggregate based on a forecasted LOLP. A more integrated 

optimization of the fleet as a single Virtual Power Plant may more accurately reflect the 

full co-optimized value of these assets.  

 Different segments of the population have lower adoption rates simply due to 

differences in the built infrastructure, existing equipment in place, and programs 

available to them. As the Cadeo team moves toward locational analysis, the bottom-up 

approach that we used in this study could also be used to better understand the equity 

impacts of DER adoption today and under different portfolios of interventions. 

 Building electrification measures show large potential in the commercial HVAC space, as 

analyzed here. A deeper investigation of these emerging technologies as well as 

potentially industrial loads may be useful to understand where greater carbon impacts 

may be possible.  

Next Steps 

 The Cadeo team will work with PGE to develop locational forecasts based on this work to 

further advance their Distribution System Planning efforts; 

 We have already begun the process of transferring code base, results, and inputs to PGE 

internal analysts to ensure that they can replicate and advance this work; and 

 Results from this study will serve as an input to PGE’s 2021 Integrated Resource Plan. 
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Appendix A. Electric Vehicle Adoption 

Estimation Methodology 

The following appendix outlines our approach to modeling electric vehicle adoption across each 

vehicles class.  

Light-Duty Vehicles 

The electric light-duty vehicle (LDV) forecast relies upon Brattle’s econometric electric vehicle 

(EV) adoption model. Leveraging an econometric approach enables allows us to identify the 

relative importance of the many drivers of EV adoption. The model is estimated using historical 

state-level, monthly independent variables from all 50 states and Washington DC between 2011 

and 2019. These variables are:  

• Purchase Incentives: the sum of state-level and national rebates or tax credits that offset the 

purchase price of a new BEV or PHEV. 

• EV Battery Price: the per-kWh price of electric vehicle batteries, used to capture the 

declining costs of electric vehicles. 

• Relative Fuel Price: defined as the ratio of the cost to drive 100 miles in an EV to the cost to 

drive 100 miles in an ICE vehicle, used to capture the importance of the varying costs of 

electricity and gasoline and the relative fuel savings from an EV. 

• Available Models: the number of different plug-in hybrid EV (PHEV) and battery EV (BEV) 

models that are available for purchase in a given state. 

• ZEV State: a binary variable if the state has a Zero-Emission Vehicles (ZEV) target. 

• Vehicle Miles Traveled: state-level annual average vehicle miles traveled to capture impact 

of driving patterns. 

• Green Views: the state-level score provided by the League of Conservation Voters scorecard 

intended to capture a state’s environmental preferences. 

• Charging Rate: a binary variable if the state has a utility that offers a charging rate. 

By using the forecast values of these drivers in the econometric estimation time frame, the 

model produces a monthly forecast of electric vehicles (i.e., BEVs and PHEVs) in Oregon on a per 

million people basis that we scale to monthly sales using a forecast of Oregon’s population.  
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While the econometric modelling approach is attractive because it allows us to decompose the 

impact of drivers of adoption, it is unable to account for certain key drivers of adoption that may 

not be readily captured in the econometric model, most importantly declining non-battery EV 

costs and range anxiety. We account for these drivers missing from our econometric forecast 

with exogenous impact forecasts:  

• Non-battery EV costs: we employ a forecast of non-battery EV cost component declines (i.e., 

R&D, EV powertrain, and assembly cost declines). We then transform the battery price 

coefficient from the econometric model using historical battery capacity to determine the 

increased adoption due to non-battery cost decline.  

• Range anxiety: we developed a framework to evaluate “chargers in range,” or the total 

chargers an EV can encounter on its entire battery capacity. Using this framework, we can 

account for the impact that improvements in battery range as well as increased charging 

infrastructure have on addressing range anxiety and boosting adoption. We have a forecast 

for increases in range, while we tie the level of charging infrastructure to the amount of EVs 

on the road using a constant ratio. The impact of this “chargers in range” variable increases 

over time, but its marginal increases begins to decline as the amount of EV charging 

infrastructure approaches that of current ICE fueling infrastructure (i.e., gas pumps). 

After incorporating the exogenous impacts to finalize our state-level forecast, we scale the 

Oregon EV sales forecast to the PGE service territory using the historical ratio of PGE sales to 

Oregon sales.  

Because we calibrated our econometric model is using historical sales, it does not include the 

impact of LDV electric trucks because such vehicles have not yet become available. To account 

for these LDV electric trucks, we shift and scale our LDV EV forecast. First, we shift our LDV 

forecast out until we assume LDV electric trucks will fully enter the market (2023), and then we 

scale our forecast by the share of the current market that is LDV trucks (14%). We then add 

together the LDV electric truck forecast to the LDV EV forecast. Finally, to account for EV 

retirements, we assume a 10-year vehicle lifetime for EVs, so monthly retirements trail monthly 

sales by ten years. 

 

Medium and Heavy-Duty Vehicles 

While there is now significant historical and survey data to develop trajectories on personal U.S. 

electric light-duty vehicle adoption, similar data is not yet available on the commercial/fleet 

medium-duty and heavy-duty electric vehicle categories. Therefore, we have decided to leverage 
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the “Delphi Method”, which is a well-established forecasting method that relies on the expertise 

of a panel, for developing forecasts for medium- and heavy-duty electric vehicles. 

The survey consists of two stages: 

1. First, we emailed experts a list of questions to capture their vision of how MDV and HDV 

adoption will play out in the U.S. in the future. All vehicles are divided into six groups: 

weight class 2-3, class 4-6, class 7-8 regional vehicles, class 7-8 long-haul vehicles, city 

transit bus, and school bus.  In each group, the expert was asked to provide a lower 

bound, an upper bound, and their best estimate for the national electric vehicle share by 

2025, 2035, and 2050. 

2. After analyzing the responses, we developed a consensus projection to share with all 

survey participants. At this stage, the experts had an opportunity to update their previous 

projections and provide reasoning for keeping the original forecasts or updating them. 

The first phase took place in December, and we concluded the second phase in mid-January. All 

surveys were conducted via email. Overall, we recruited 15 experts, spanning research/non-

profit organizations, government, utilities, and industry (Figure A-1). Three groups of experts 

provided joint responses, and there are 12 responses in total. Note that participation was 

anonymous.   

Figure A-1. Participating Experts and their Backgrounds 
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Results for all vehicle weight classes are shown in Figure A-2 through Figure A-7 below. Each 

figure shows the average and median of the best estimates as well as the 10th and 90th 

percentile values.  Here are the key takeaways: 

• In general, near-term adoption of MHDEV is expected to be limited. Across all classes, less 

than 10 percent of new MHDV sales is expected to be electric by 2025.  Adoption of electric 

city and school buses are expected to be higher, primarily because of the advantageous total 

cost of ownership compared to their diesel or gasoline counterparts.  

• According to the experts, adoption will increase across all vehicle classes will 2035, and will 

be close to universal adoption by 2050 for Class 2-6 vehicles as well as city and school buses.  

• Significant uncertainty exists in deployment of class 7-8 electric vehicles.  

• Participants anticipate that because of favorable policies, the adoption rate of MHDEV in 

Oregon will be higher than the national adoption rate. For simplicity, we will assume that the 

adoption rate in Oregon will be the same as the national adoption rate.41 

 

Figure A-2. Forecasted National Share of Class 2-3 Electric Vehicles 

 

 

 

 

 

 
41 We did not elicit responses for Oregon-specific adoption because the majority of experts focus on 

national developments and trends. 
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Figure A-3. Forecasted National Share of Class 4-6 Electric Vehicles 

 

 

Figure A-4. Forecasted National Share of Class 7-8 Regional Electric Vehicles 

 

 

Figure A-5. Forecasted National Share of Class 7-8 Long-Haul Electric Vehicles 
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Figure A-6. Forecasted National Share of Electric City Bus  

 

 

Figure A-7. Forecasted National Share of Electric School Bus 

 

 

Historical MHDV Sales  

We obtained historical registration data for MHDVs in Oregon from IHS Markit. The dataset 

covers the number of registered vehicles from 2017 to September 2020 for vehicle weight 

classes 2-8. Figure A-8.  below provides a summary of the registration data.  

Next, we determine the total number of future registered across all classes. We first estimate the 

average annual growth rate of vehicle registration for each class between 2017 and 2019. The 

2020 data was partial and subject to Covid-19 pandemic impacts, therefore was excluded from 

the analysis. For example, the average annual increase in registration for class 2-3 vehicles 
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increased from 952,940 in 2017 to 1,026,264 in 2019, an average increase of 3.85 percent.42 

Figure A-9.  below provides a summary of the average increase in annual registered vehicles by 

class. We then estimate the total number of registered vehicles for each class to 2050 using the 

corresponding annual growth rate, using 2019 as the base year. 

We define the number of new vehicle sales in a particular year as the difference in total 

registered vehicles between that year and the following year.43  

 

Figure A-8. Number of Total Registered MHDVs in Oregon (2017 to September 

2020) 

 

Notes: City and school buses were removed from their respective classes. Regional trucks include fire 

Trucks, Incomplete Vehicles with Strip Chassis, Step Van Vehicles and Glider Vehicles. Long haul trucks 

include straight Truck Vehicles, Cab Chassis Vehicles, Motor Home Vehicles and Tractor Truck Vehicles. 

Unknown vehicles are excluded. 

 

Figure A-9. Average Increase in Annual Registered MHDVs IN Oregon (2017-2019) 

 

Notes: Increase for city bus is between 2017-2018 

 

 
42  For city bus, there was a significant increase of 22 percent from 2018 to 2019, possibly from a 

major one-time purchase. For this reason, we used the 2017-2018 annual increase of 2.2 percent instead. 
43  For instance, the number of projected total registered vehicles for class 2-3 increases from 

1,287,150 in 2025 to 1,336,670 in 2026, so the total new sales in 2025 is 49,520. 

Class 2017 2018 2019 2020

Commercial Vehicles (Class 2-3) 952,940 993,994 1,026,264 1,032,400

All Commercial Vehicles (Class 4-6) 63,908 65,711 66,945 65,225

Regional Trucks (Class 7-8) 1,077 1,208 1,252 1,237

Long Haul Trucks (Class 7-8) 50,741 54,582 56,578 57,437

School Bus (All Classes) 3,681 3,939 4,103 3,942

City Transit Bus (All Classes) 1,299 1,327 1,616 1,592

Class 4-6 here excludes class 4-6 city and school buses.

Class Annual Registration Increase

Commercial (Class 2-3) 3.85%

Commercial (Class 4-6) 2.35%

Regional Trucks (Class 7-8) 8.12%

Long Haul Trucks (Class 7-8) 5.75%

School Bus (Class 7-8) 5.73%

City Transit Bus (Class 7-8) 2.16%
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Future MHDEV Sales 

The number of electric vehicles in a particular year is the product of the adoption rate (obtained 

from the expert survey) and the number of new vehicle sales in that year. To obtain the adoption 

rate for the intervening years, we scale the adoption rates obtained from the expert survey 

linearly. 

We model adoption of electric city buses based on information from TriMet, the mass transit 

agency in the Portland area. We rely on the agency’s planned progression of electric fleet to 

replace diesel fleet by end of 2040 (seeFigure A-10). About half of the agency’s fleet will be 

electric by 2031, and the transition away from diesel buses will be complete by 2040. We assume 

that the total number of registered city buses in the rest of Oregon at the same rate as TriMet’s 

growth. The share of electric buses in the rest of Oregon is the same as that share in the 

TriMet/Portland area. 

Figure A-10 below shows the 2025 results. For instance, there will be 49,520 class 2-3 vehicles 

sold in 2025. Eight percent of the new vehicle sales will be electric (3,827 vehicles), bringing the 

total number of class 2-3 electric vehicles to 14,758. Note that we assume no retirements. We 

estimate the same adoption rates for 2035 and 2050. In addition, we consider a high adoption 

scenario and a low adoption scenario using the 90th and 10th percentile adoption rates from the 

expert survey.  

Figure A-10. TriMet’s Electric Bus Adoption Plan  
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Note: We do not have the underlying data, so the exact number of electric buses is estimated. We will 

update the model once we receive the underlying data.  

 


