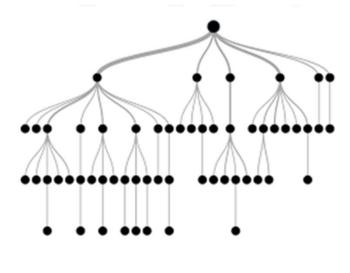

INTEGRATED RESOURCE PLAN

2016

Public Meeting #4

Friday, September 25, 2015

© 2015 Portland General Electric. All rights reserved.


Welcome: Meeting Logistics

September 25, 2015Slide 2

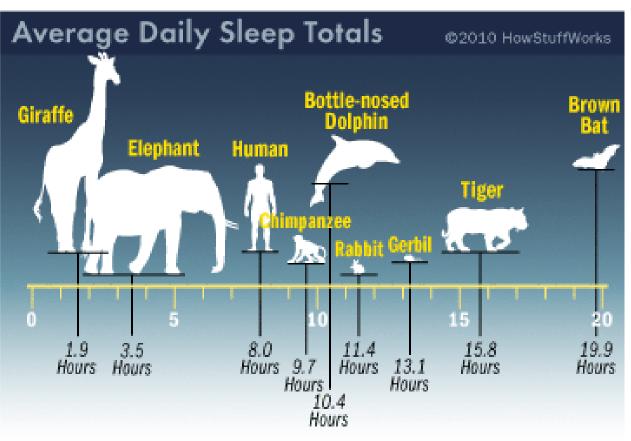
- Local Participants:
 - DoubleTree facility

- Virtual Participants:
 - Ask questions via 'chat' or 'raise hand' feature
 - Meeting will stay open during breaks, but will be muted

Welcome: Today's Topics

September 25, 2015 SI

- Welcome and safety moment
- Public process
- Clean Power Plan update
- Climate Study Review
- Conservation Voltage Reduction (CVR) update
- Dispatchable Standby Generation (DSG) update
- Resource Optimization Model (ROM) update

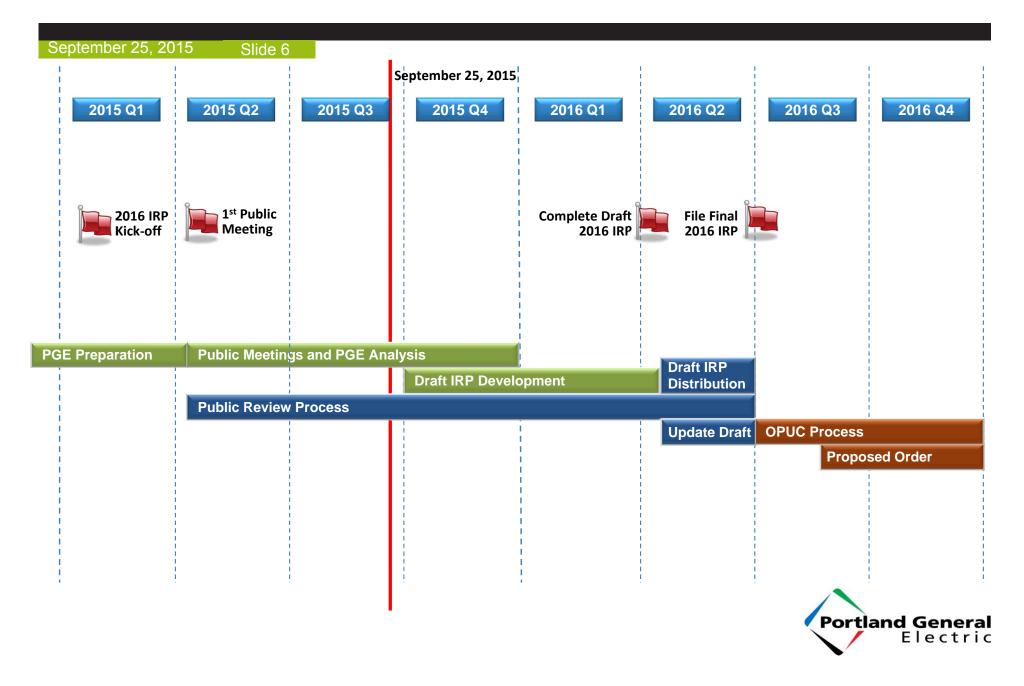

Safety Moment: Sleep

September 25, 2015

Slide 4

Benefits of getting enough sleep

- Better health 1
- 2. Stronger immunity
- 3. Lower risk of injury
- 4. Better mood
- **Clearer thinking** 5.



Public Process Overview

2016 IRP Timeline

2016 IRP: Meeting Schedule And Planned Topics

September 25, 2015

Slide 7

Q4 2015 (Tentative)

Meeting #5 December

Public

- Development
- Analysis
 - **CPP** Demonstration
 - Portfolios and Futures
 - Transmission
- Results
- Planning Reserve Margin
- Capacity Contribution
- General
- Natural Gas Hedging
- 2013 IRP Update

EIM Study

- Future meeting content is tentative, topic suggestions are welcome
- Commission suggested consolidating EIM, Portfolios, and CPP topics into single meeting, if possible

Public Meeting

Technical Workshop

Technical Workshop with Commission Present

2016 IRP: Meeting Schedule And Planned Topics

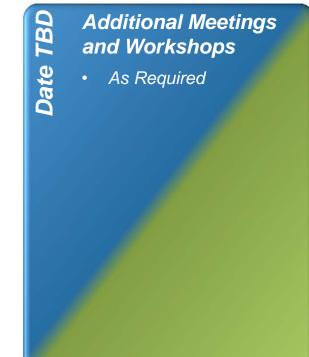
September 25, 2015

Slide 8

Q1 2016 (Tentative)

2016 Meeting #6 **Public** February 10,

- Results Colstrip Portfolios
- Variable Resource Integration
- Trigger Points
- Preferred Portfolio
- Draft 2016 IRP


Workshop #3 **Commission (Salem)**

- Development
 - Portfolios and Futures Review
- Results

TBD

Date

Clean Power Plan

Public Meeting

Technical Workshop

Technical Workshop with Commission Present

2016 IRP: Status

September 25, 2015

ltem		Status		
Meetings	6 Planned	(3 Complete, 3 Scheduled)		
Workshops	4 Planned	(2 Complete, 2 Scheduled)		
Feedback Forms	1 Received			
2013 IRP Action Plan	5 Actions (OPU)	5 Actions (OPUC Order No. <u>14-415</u>)		
Supply Side	In progress	(Hydro contracts, portfolios, no major resources)		
Demand Side	In progress	(EE, DR, CVR)		
Enabling Studies	Completed In progress	(Load forecast, Emerging EE) (DG, EIM, Capacity, Flexibility)		
Transmission	In progress			
Other	In progress	(RPS, Clean Power Plan)		
Related Topics	In progress	[UM1713 (IEE); UM 1716 (VoS); UM 1719 (VER CC)]		
2016 IRP Development	~13 Chapters			
Draft	Content outli	ne under development		
Final	Not Started			

2013 IRP Update

September 25, 2015 SI

Slide 10

Table of Contents:

- 1. EXECUTIVE SUMMARY
- 2. 2013 ACTION PLAN UPDATE
 - 2.1 SUPPLY-SIDE ACTIONS
 - 2.2 DEMAND-SIDE ACTIONS
 - 2.3 STATUS OF COMMISSION ACKNOWLEDGED ENABLING STUDIES
 - 2.4 STATUS OF ADDITIONAL COMMISSION REQUIREMENTS

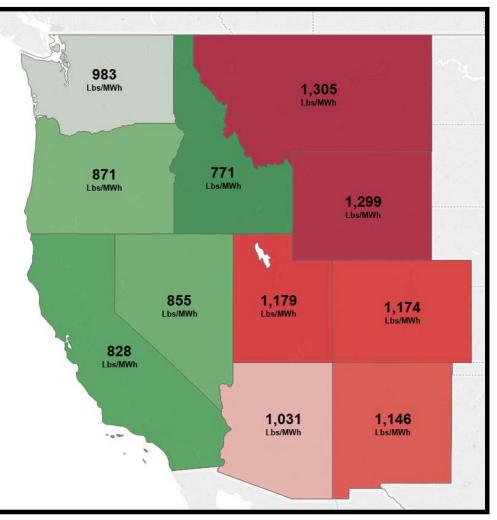
3. RESOURCE INPUT UPDATES

- 3.1 DEMAND
- 3.2 RESOURCES UPDATE
- 3.3 LOAD-RESOURCE BALANCE
- 3.4 RESOURCE COSTS
- 3.5 OTHER UPDATES
 - 3.5.1 FUEL PRICES
 - 3.5.2 CLEAN POWER PLAN
 - 3.5.3 LONG-TERM WHOLESALE ELECTRICTY PRICES

4. RENEWABLE PORTFOLIO STANDARD

- 4.1 OPTIONS FOR ACHIEVING RPS COMPLIANCE
- 4.2 RPS SCENARIO ANALYSIS
- 4.3 RPS RECOMMENDATION

Clean Power Plan Update

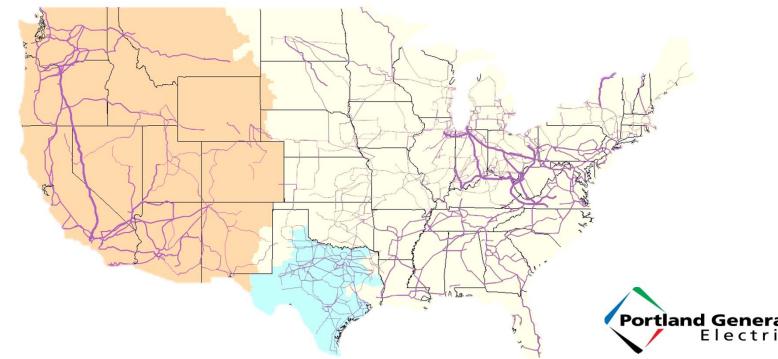


Clean Power Plan - Final Rule

September 25, 2015

- On August 3rd, President Obama announced the release of the final Clean Power Plan
- Significant changes relative to the proposed rule
- Oregon's target less stringent, Montana's more stringent

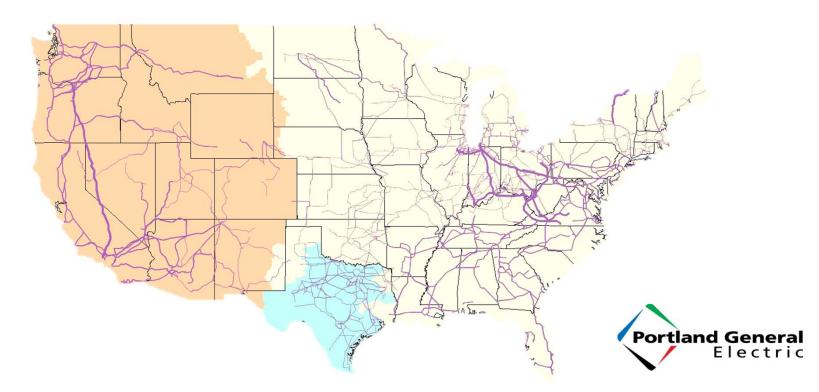
State	Rate Based	Mass Based
Oregon	871 Lbs/MWh	8,118,654 Tons
Montana	1305 Lbs/MWh	11,303,107 Tons



Clean Power Plan - BSER

September 25, 2015

- For each interconnection, apply building blocks:
 - 1) Regional specific coal plant efficiency improvements (2.3%-4.3%).
 - 2) CCCT displacement of coal up to a 75% capacity factor.
 - 3) New renewables extrapolated from development history.
- BSER for coal and CCCT calculated separately.
- Pick least stringent target from each interconnect for each year.

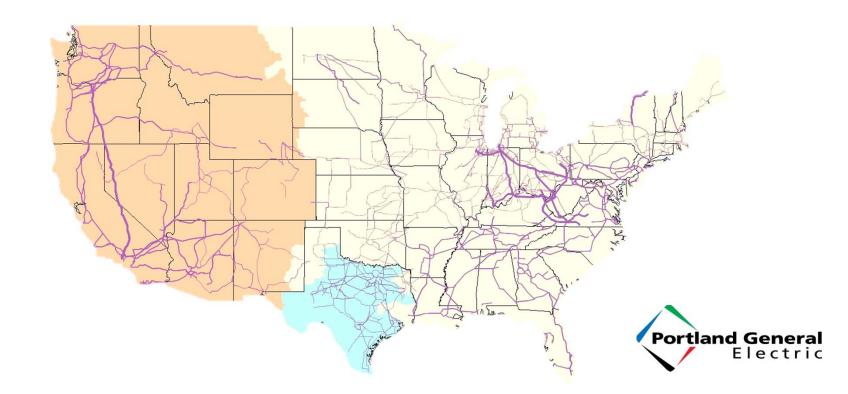

Clean Power Plan – BSER Coal

September 25, 2015 Slide 14

Coal CO2 after BB2&3 + NGCC CO2 after BB2&3

Coal MWh after BB2&3 + NGCC MWh from BB3 + Coal's Renewable MWh

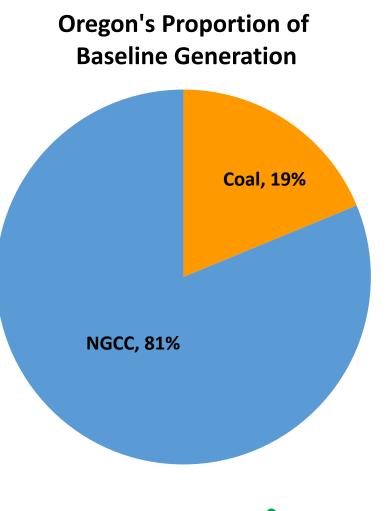
- Coal remaining after redispatch and renewables
- NGCC changes from baseline credited to numerator and denominator
 - Proportion of new renewables that displace coal


Clean Power Plan – BSER NGCC

September 25, 2015 Slide 15

NGCC CO2 after BB2&3

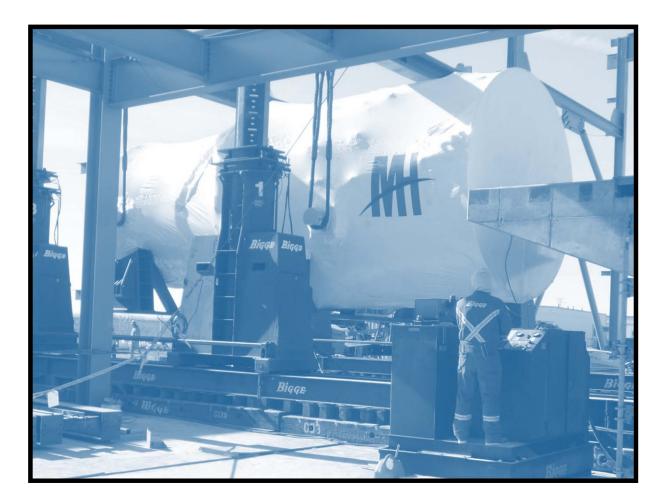
NGCC MWh after BB2&3 + NGCC's Renewable MWh


- After all building blocks, the emissions and energy from NGCC
- Proportion of new renewables that displace remaining NGCC

Clean Power Plan – State Goals

September 25, 2015

- State goals result from the baseline proportion of Coal and NGCC generation
 - Coal BSER = 1305 Lbs/MWh
 - NGCC BSER = 771 Lbs/MWh
- Oregon's State Goal:
 - 19% x Coal BSER
 - + 81% x NGCC BSER 871 Lbs/MWh



Clean Power Plan - Carty Update

September 25, 2015

- EPA has provided guidance on the applicability of the 'existing resource' standard for Carty.
- Carty will likely become an existing resource, subject to 111(d).
- Impacts to the state rate and mass based target will be explored with EPA and DEQ.

Clean Power Plan - State Plan Options

September 25, 2015

Slide 18

State Blended CO₂ Rate Limits

State CO₂ Mass Limits for **Existing Sources**

State Measures Plan Mass Limits

Subcategory CO₂ Rate Limits State CO₂ Mass Limits with New Sources

Clean Power Plant - State Plan Options

September 25, 2015

Slide 19

Requires enforceable obligations back stopped by EGU compliance

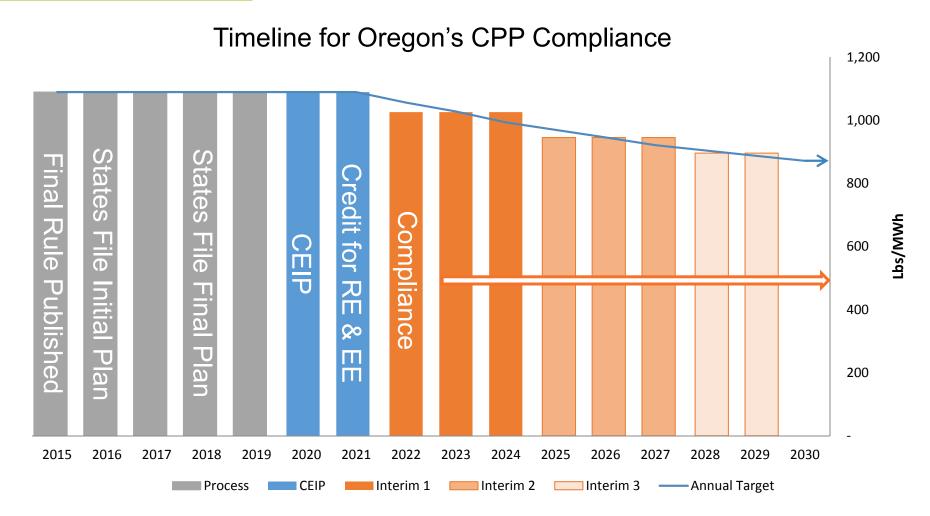
State Blended CO₂ Rate Limits

State CO₂ Mass Limits for **Existing Sources**

Subcategory CO₂ Rate Limits State CO₂ Mass Limits with New Sources

State Measures Plan

Mass Limits


Point of Regulation at the Plant (EGU) Level

Clean Power Plan – Compliance Timing

September 25, 2015

Slide 20

Oregon's specific compliance timeline may be adjusted within the state plan

Clean Power Plan - Compliance Options

September 25, 2015 Sli

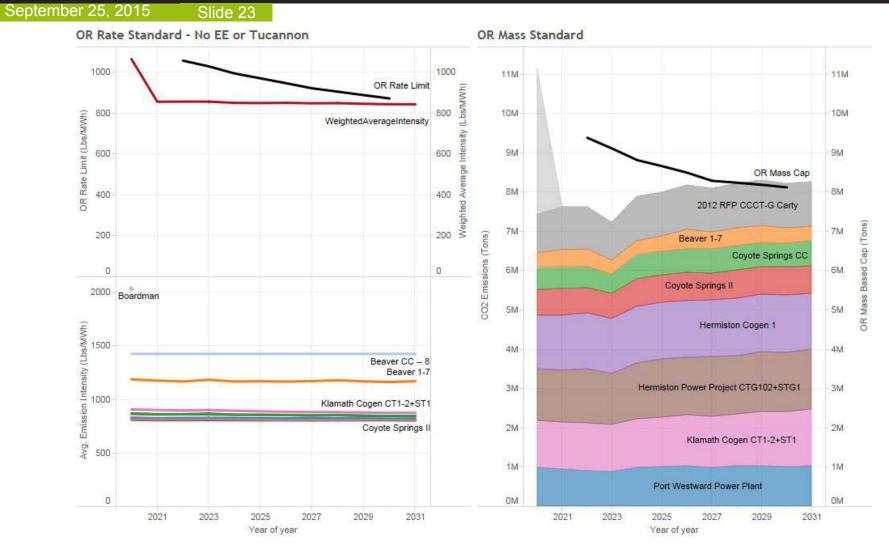
- Plant efficiency improvements
- Unit redispatch to lower carbon fuels
- Post 2012 new renewable projects
 - Tucannon qualifies
- New nuclear
- Energy efficiency measures following EM&V
- Compliance instrument trading
 - Plans allow for intrastate trading
 - Plans encouraged to be trading ready to accommodate interstate trading

Clean Power Plan – Compliance Trading

September 25, 2015

Slide 22

ERC


Allowance

- Emission Reduction Credits
- Used within a rate based plan
- Created by new carbon free generation
- EE creates ERCs after EM&V
- NGCC's create "Gas Shift ERCs" after generating beyond baseline, for steam unit compliance only
- Units with intensities lower than the standard create ERCs
- Compliance instruments can be used for interstate trading, only if states adopt equivalent standards.

- Retired in order to emit CO₂
- Allocated by the state or auctioned
- EE and RE don't create allowances, but reduce need
- Allowances cannot be converted into ERCs

OR Compliance Outlook-2013 IRP Outputs with Zero Carbon Price

MT Compliance Outlook-2013 IRP Outputs with Zero Carbon Price

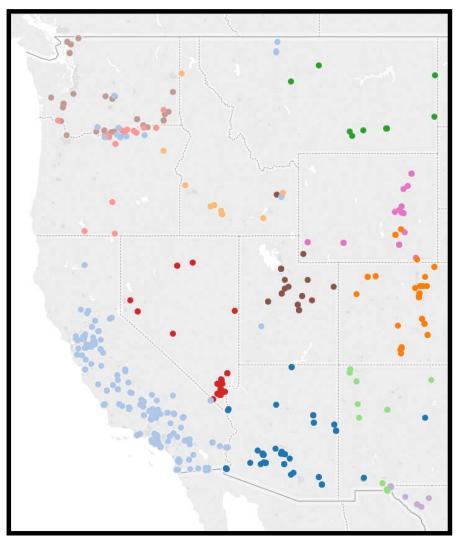
September 25, 2015 Slide 24 MT Mass Standard MT Rate Standard - No EE or Two Dot 20M 20M WeightedAverageIntensity 2000 2000 Corette 1 (HWWh) MT Rate Based Limit (Lbs/MWh) 18M 18M 2 Colstrip 1 1500 16M 16M MT Rate Limit ade 1000 Colstrip_2 14M 14M-2 Weighted (Tons) 500 500 CO2 Emissions (Tons) 12M 12M-Cap MT Mass Cap Based 0 0 Colstrip 3 10M 2500 10M Colstrip 2 Mass Corette 1 EN N 8M 8M Avg Emission Intensity(Lbs/MWh) 1200 000 Yellowstone Energy 1; BGI 1 Colstrip Energy LP (Montana One 1) 6M 6M Colstrip 4 4M 4M 500 2M 2M Hardin Generator Project 0 OM OM 2031 2027 2029 2031 2021 2023 2025 2027 2029 2021 2023 2025 Year of year Year of year

Clean Power Plan - Modeling

September 25, 2015 Slic

Slide 25

- Increasing complexity to model rate based standards.
 - Subcategory specific rate standards cannot be modeled to allow intrastate trading between subcategories.
 - Gas shift ERCs are only created after exceeding baseline generation.


CO₂ MWh

Clean Power Plan - Modeling

September 25, 2015

- 2016 IRP will continue to model rate and mass based standards, but likely with more mass based futures and less rate based futures than proposed 4/2/2015.
- CPP + CO2 prices modeled
 - Reflects allowance auctioning
- Modeling will include separate 111b and 111d programs, and "new source complements."
- Interstate trading Perform sensitivities where MT,OR & WA can trade allowances.

Clean Power Plan – Questions?

September 25, 2015

Slide 27

Thank you! Feedback Form:

https://www.portlandgen	ral.com/our_company/energy_strategy/resource_planning/irp.aspx	
Portland General Conta	t Us Careers Investors Search PGE >Go > Sign In	
Residential Renewables & Effi	ency Business Safety & Outages Economic Development Community & Environment Our Company	
Our Company	Integrated Resource Planning Preparing for Oregon's energy future	
PGE at a Glance Careers Community & Environment Corporate Information	Planning to make sure we can provide the safe, reliable and affordable electric power our customers need today, tomorrow and over the long term is a constant focus at PGE. We want your feedback on the 2016 IRP, please <u>fill out ou</u> form.	
> Energy Strategy Power Generation Power Transmission	We call this process Integrated Resource Planning, and it's guided by the Oregon Public Utility Commission with plenty of input from customer groups and other stakeholders	

Portland General Electric

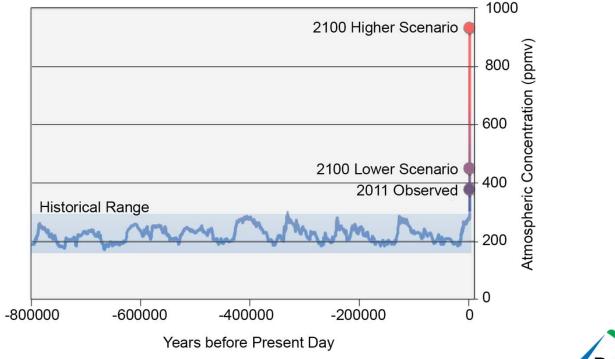
Climate Study Review

Climate Study

September 25, 2015 SI

Slide 29

Progress:


- Received draft Climate Study Report
 - Today we will share informative figures
- Received draft Climate Study Data
 - Reviewing methodology

September 25, 2015

Slide 30

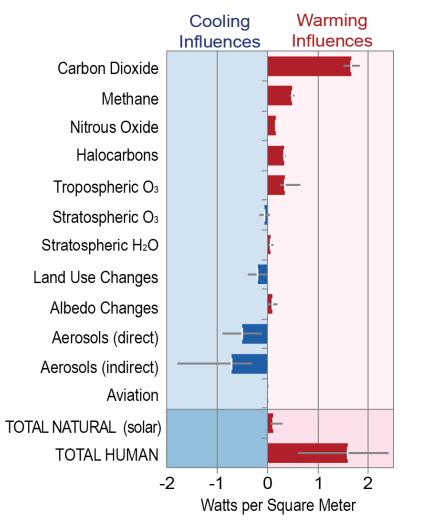
Figure 1 - Atmospheric carbon dioxide levels in the historical record and for future lower (RCP2.6) and higher (RCP8.5) emissions scenarios (Source: Walsh et al., 2014a)

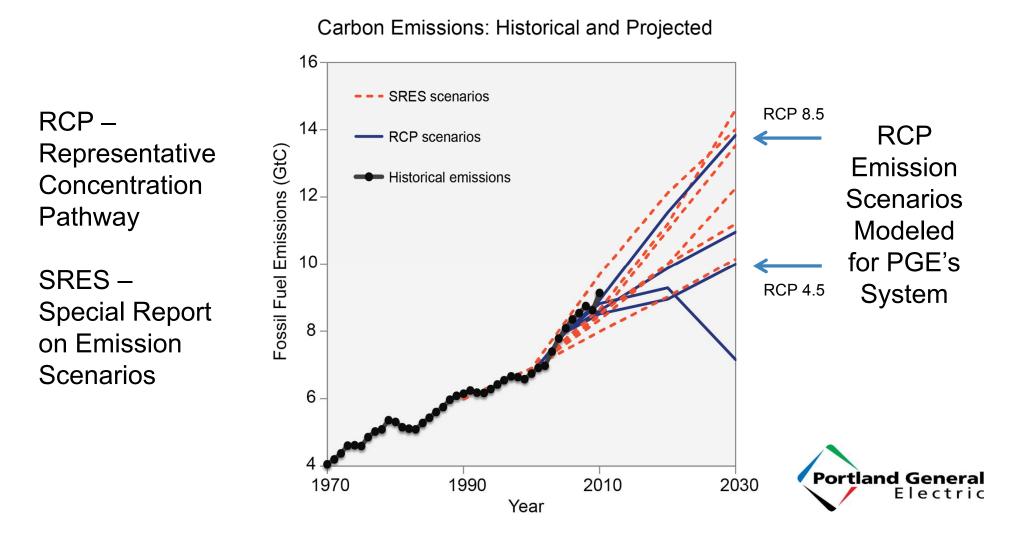
Atmospheric Carbon Dioxide Levels

September 25, 2015 SI

Slide 31

Relative Strengths of Warming and Cooling Influences




Figure 2 - Warming or cooling influences of all major humaninduced factors and the only major natural factor (solar) with a long-term effect on climate in terms of change in radiative forcing in watts per square meter by 2005 relative to 1750. (Source: Walsh et al., 2014a)

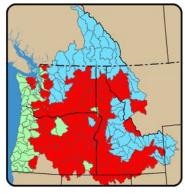
September 25, 2015

Slide 32


Figure 3 - Observed historical and projected future SRES and RCP carbon emissions from 1970 to 2030 (Source: Walsh et al., 2014a)

September 25, 2015

Slide 33


Figure 4 - Observed (1950-2011) and simulated (1950-2100) regional mean temperature for selected CMIP5 global models for two emissions scenarios. (Source: Mote et al., 2013)

September 25, 2015

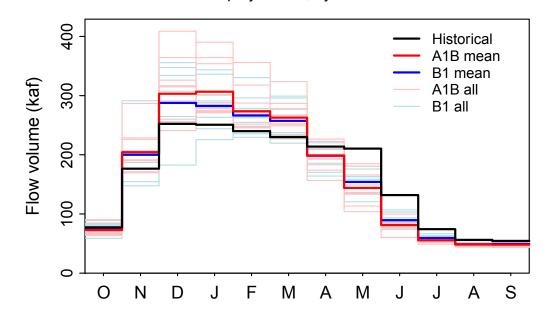
Slide 34

Historical

2080s

Ratio of Peak Snow Water Equivalent to October to March Precipitation

Figure 5 - The classification of PNW watersheds into rain dominant, mixed rain-snow, and snowmelt dominant and how these watersheds are expected to changes as a result of climate warming based on the SRESA1B emissions scenario (Source: Hamlet et al., 2013 reproduced in Dalton et al., 2013)



September 25, 2015

Slide 35

Figure 6 - Projected change in monthly flow volume by the 2040s at **Estacada (Source: David Rupp, OCCRI)**

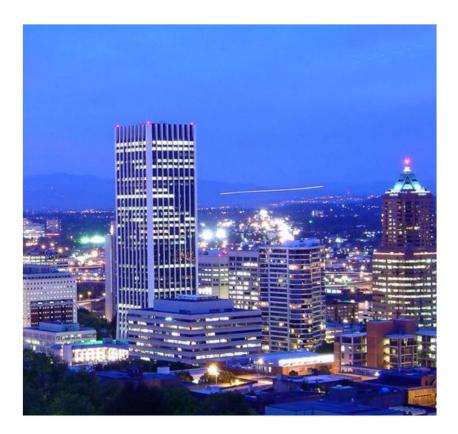
> Mean monthly flow volume at Clackamas at River Mill Dam 2040s A1B and B1 projections, hybrid-delta method

Climate Study Data

September 25, 2015 Slide 36

QA process continuing with OCCRI

Questions?

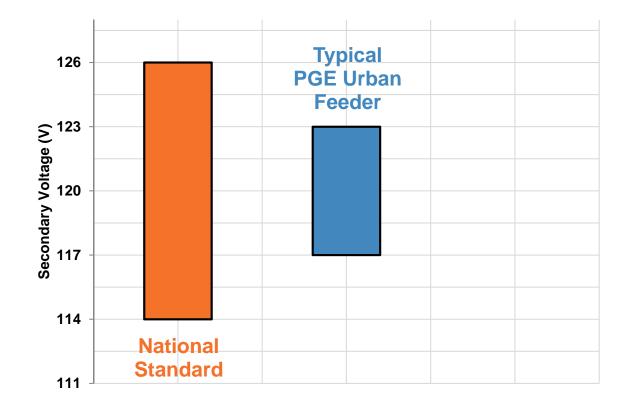

Conservation Voltage Reduction (CVR) update

Conservation Voltage Reduction (CVR) at PGE

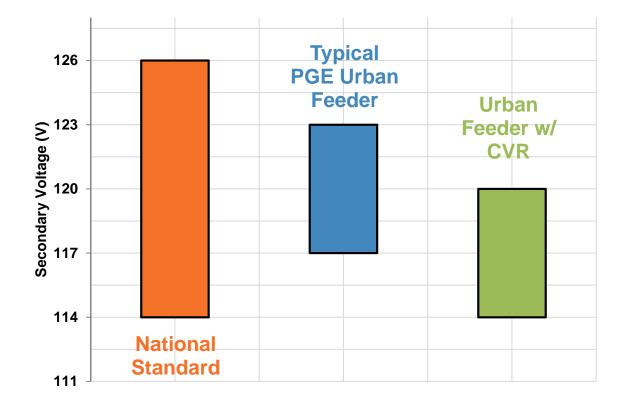
Public Meeting #4

September 25, 2015

© 2015 Portland General Electric. All rights reserved.

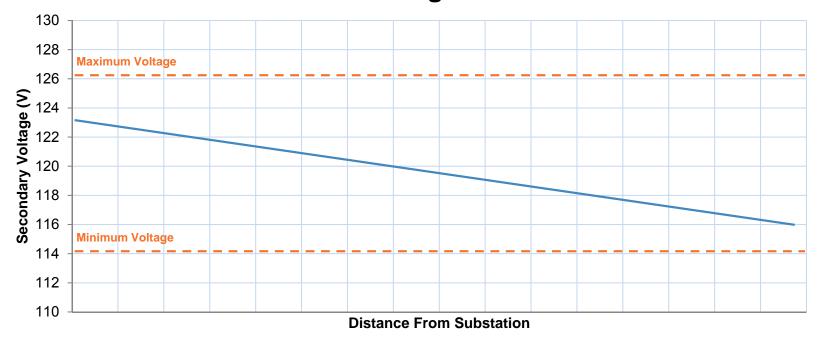

Agenda

- Background
- CVR at PGE
 - Feasibility Study
 - CVR Pilot
 - CVR Pilot Results
 - Next Steps



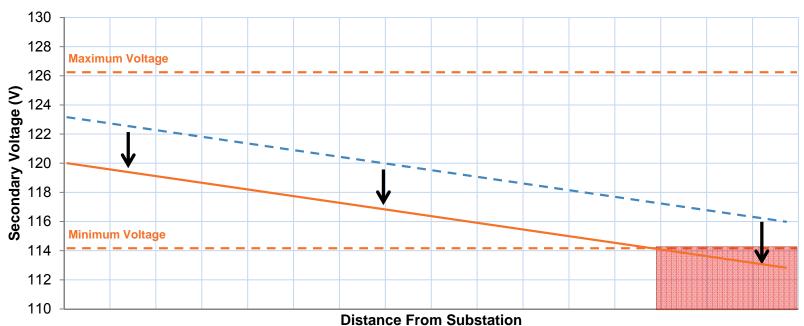
- National Voltage Standard (ANSI C84.1-1989)
 - Range A allows +/- 5% of the base voltage: 114V 126V

- National Voltage Standard (ANSI C84.1-1989)
 - Range A allows +/- 5% of the base voltage: 114V 126V
- CVR: reduce consumer power demand by operating within the lower portion of the acceptable voltage bandwidth

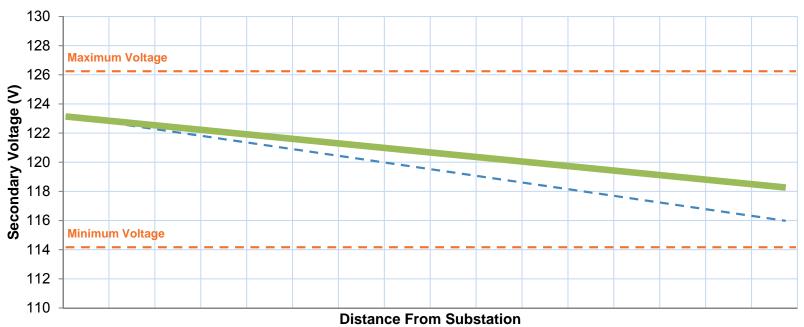

September 25, 2015 Slide 42

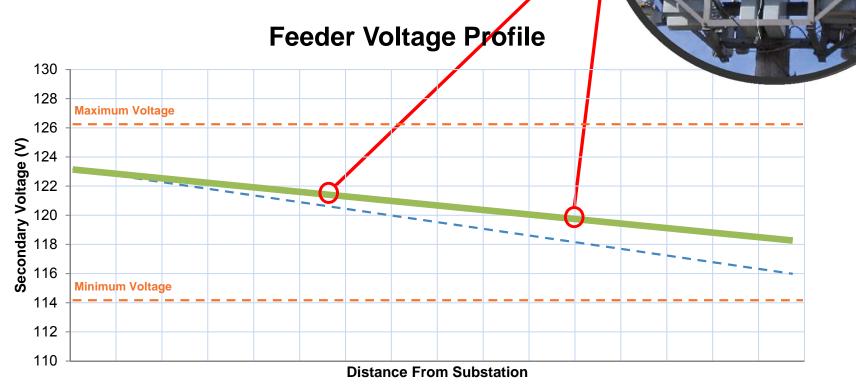
Benefits of CVR

Reduce Voltage 2-4% Reduce Demand 1-3% (MW) Reduce Consumption 1-3% (MWh)

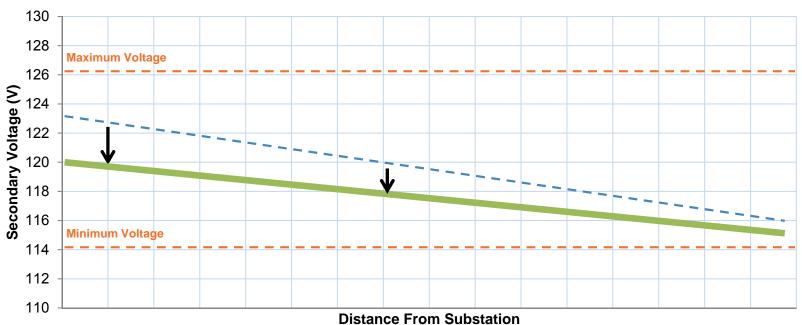

September 25, 2015 Slide 43

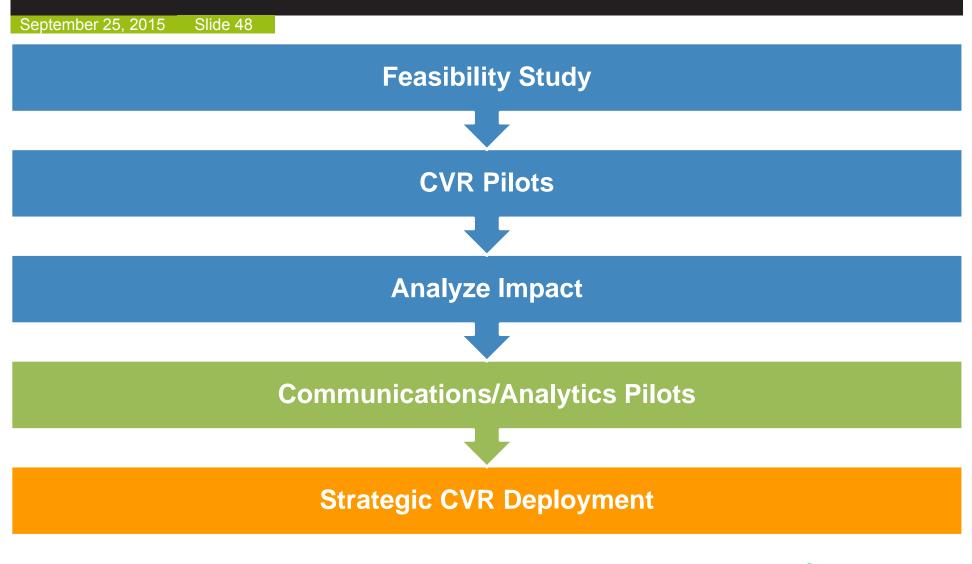
September 25, 2015 Slide 44


 Simply reducing voltage at substation can result in service voltage below ANSI standard


September 25, 2015 Slide 45

- Install Feeder Capacitor Banks
- Phase Balancing


- Install Feeder Capacitor Banks
- Phase Balancing

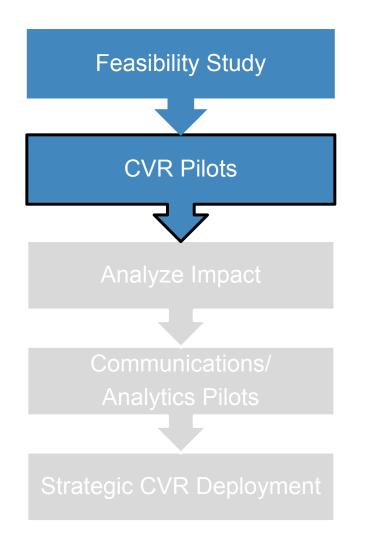

September 25, 2015 Slide 47

- Install Feeder Capacitor Banks
- Phase Balancing


CVR at PGE

CVR Feasibility Study

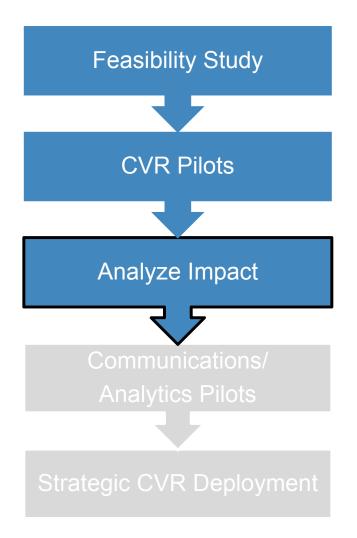
September 25, 2015 Slide 49


Feasibility Study Goals

- Evaluate what energy savings may be present
- Quantify relationship between % voltage reduction and % energy reduction
- Load Characteristics (Z/I/P)
- Greatest reduction during heavy winter loads
- Select substations for pilot

CVR Pilots

September 25, 2015 Slide 50

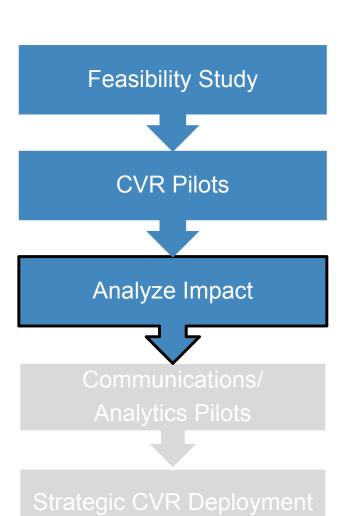

CVR Pilot Sites:

- Hogan South (Gresham)
 - Average Feeder Length: 3.4 mi
 - Customer Load Mix
 - 55/45 Residential/Commercial
- Denny (Beaverton)
 - Average Feeder Length: 2.5 mi
 - Customer Load Mix
 - 65/35 Residential/Commercial

Pilot Results

September 25, 2015 Slide 51

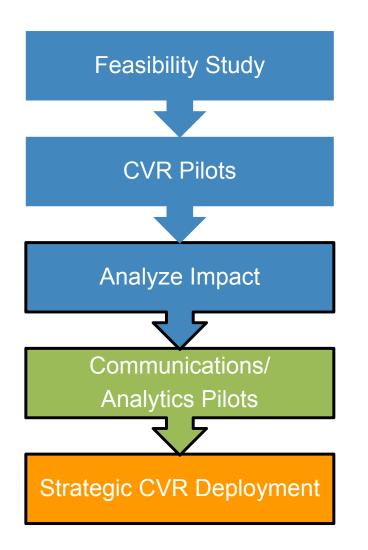
Pilot Results


Season	Site	%kWh : 1% V¹	Total % kWh ²
Winter	Hogan	0.87:1	2.17 %
	Denny	0.99 : 1	2.47 %
Summer	Hogan	0.91 : 1	1.37 %
	Denny	0.94 : 1	1.41 %

¹ Percent of kWh reduction per 1% voltage reduction ² Total percentage of kWh reduction

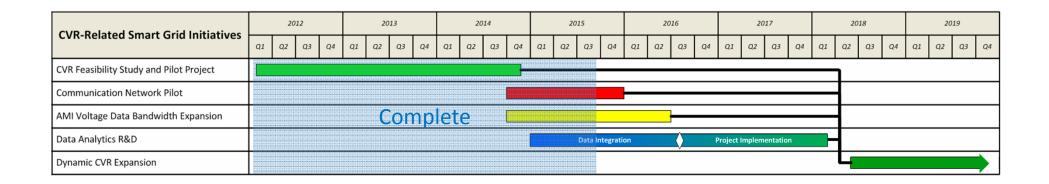
Pilot Results

September 25, 2015 Slide 52


25 Year NPV Analysis

Present Value of System Benefits		2,530,945
Present Value of Costs		(671,872)
Net Present Value ¹		1,859,073
Benefit Cost Ratio		3.77

¹ NPV Analysis was based on 25-year Study Period


Next Steps

- Communication Network Pilot
 - Compatibility with Distribution Automation
- AMI Voltage Data Bandwidth Expansion
 - Visibility Low Voltage Nodes
- BitStew Data Analytics R&D
 - Analyze AMI data
- Up to 94 candidate transformers for future CVR
 - 16 MWa annual customer energy savings

Timeline

Questions?

- CVR at PGE
- Jonathon Robinson
- **503-464-8036**

- Northwest Energy Efficiency Alliance (NEEA)
- ANSI C84.1-1989 (National Voltage Standard)
- CYME Analysis for Simplified CVR (GRIDCO Systems)
- Conservation Voltage Reduction: Initial Results (PGE)
- Conservation Voltage Reduction: Cost-Benefit Analysis (PGE)

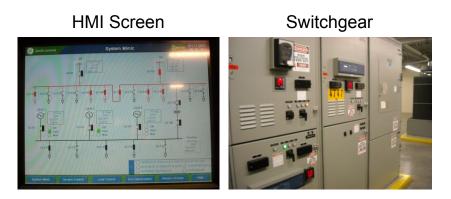
Dispatchable Standby Generation (DSG) update

Agenda

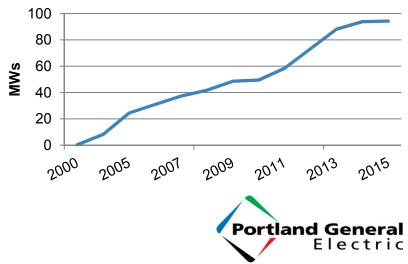
September 25, 2015

Slide 58

- How DSG Works
- **Program History**
- Typical DSG Project Timeline
- Value of DSG
- Projected Growth of DSG


How DSG Works

September 25, 2015 S


Slide 59

With PGE's Dispatchable Standby Generation (DSG), PGE puts our Customers' standby generators to work when needed by PGE.

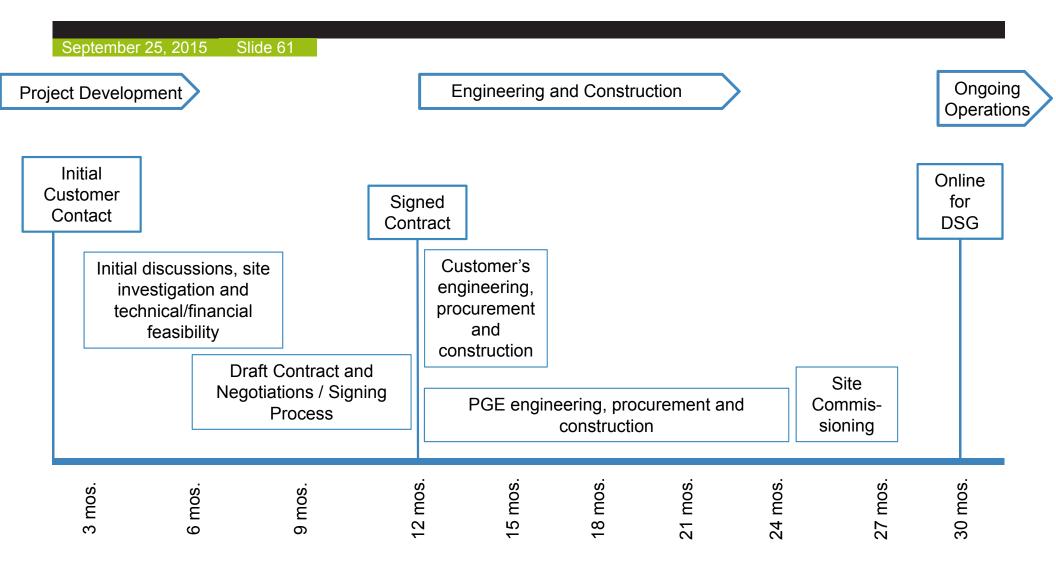
- PGE upgrades Customer system to enable parallel operation.
- PGE pays for most maintenance and operation costs.
- Customer gains reliability.
- Regular system testing under load for enhanced dependability.
- Operational support, remote monitoring, and alarming.
- Power quality monitoring.
- Improved emissions due to catalysts or other required abatement technology.

Program History

September 25, 2015 Slid

Slide 60

- 2000 Pilot Project: MacLaren Youth Correctional Facility, 0.4 MW.
- 2006: 25MW milestone with addition of Sunrise Water Authority Pump Station, 1.13 MW.
- 2011: 50MW milestone with addition of Oregon State Hospital, 3.6 MW.
- 2013: 75MW milestone with addition of ViaWest's D1 generator, 1.8 MW.
- 2014 EPA rules change to limit hours of operation.
- 2015: Expected 100 MW milestone with the addition of the Joint Water Commission Pump Station, 4.5 MW.



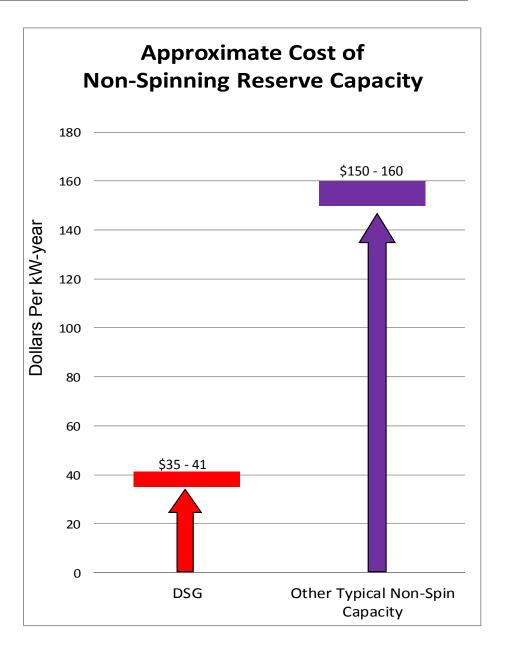
MacLaren's generator

World Trade Center brings in crane for next step in generator replacement project

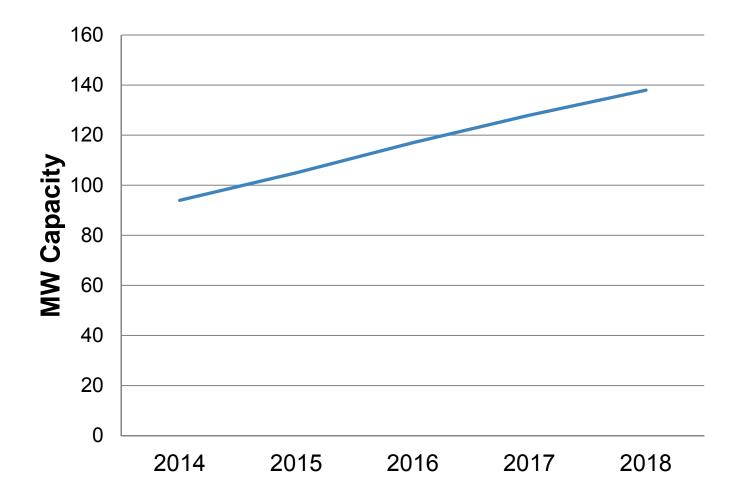
Typical DSG Project Timeline

Total Cycle Time: approximately 30 months

Value of DSG: PGE/Customer Benefit


September 25, 2015

Slide 62


- DSG cost is typically compared to the lowest cost alternative non-spinning reserve.
- A simple cycle turbine is a typical base-line for comparison.
- This comparison includes capital and O&M cost over 25 years.

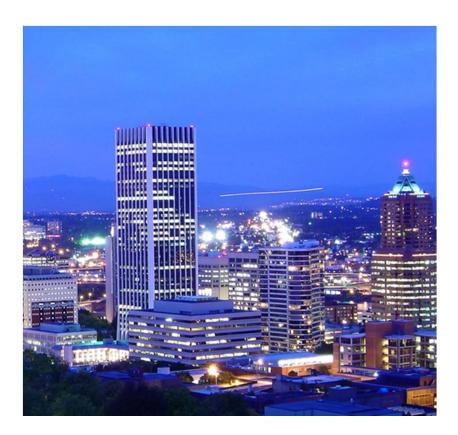
City of Hillsboro's Joint Water Commission Pump Station – generator building under construction

Projected Growth of DSG

Questions?

September 25, 2015 Slide 64

Portland General Electric


Resource Optimization Model

PGE Resource Optimization Model (ROM) Study

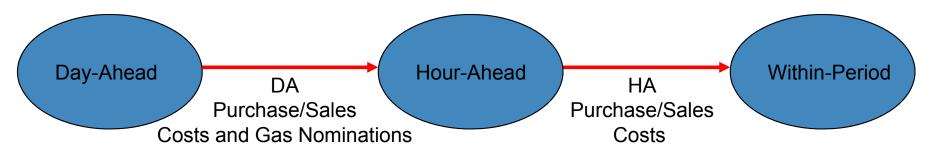
Public Meeting #4

September 25, 2015

© 2015 Portland General Electric. All rights reserved.

Agenda

- What is ROM
- How does ROM work
- History
- 2016 IRP


ROM?

QuestionAnswerPurposeROM's general goal is to estimate the incremental cost of fully self-integrating Variable Energy Resources into PGE's current or future resource portfolio.What is itA multi-stage, mixed integer optimization model that considers generation assets, fuel constraints, market availability, and reserve requirements.Model AcceptanceIndependent Technical Review Committee (TRC) and evaluation by external stakeholders in various proceedings.UniquenessROM is a PGE built model. ROM is constantly being upgraded to handle different VER integration questions. The ROM tool set includes: a virtual wind plant builder, virtual solar plant builder, reserve calculator, and optimization engine.AdvantagesROM is a PGE-centric model and that focuses on optimizing both reserves and energy, while considering operational constraints (e.g. wear & tear costs, operating limits, fuel, etc.)	September 25, 2015 Slide 68	
fully self-integrating Variable Energy Resources into PGE's current or future resource portfolio.What is itA multi-stage, mixed integer optimization model that considers generation assets, fuel constraints, market availability, and reserve requirements.Model AcceptanceIndependent Technical Review Committee (TRC) and evaluation by external stakeholders in various proceedings.UniquenessROM is a PGE built model. ROM is constantly being upgraded to handle different VER integration questions. The ROM tool set includes: a virtual wind plant builder, virtual solar plant builder, reserve calculator, and optimization engine.AdvantagesROM is a PGE-centric model and that focuses on optimizing both reserves and energy, while considering operational	Question	Answer
Considers generation assets, fuel constraints, market availability, and reserve requirements.Model AcceptanceIndependent Technical Review Committee (TRC) and evaluation by external stakeholders in various proceedings.UniquenessROM is a PGE built model. ROM is constantly being upgraded to handle different VER integration questions. The ROM tool set includes: a virtual wind plant builder, virtual solar plant builder, reserve calculator, and optimization engine.AdvantagesROM is a PGE-centric model and that focuses on optimizing both reserves and energy, while considering operational	Purpose	fully self-integrating Variable Energy Resources into PGE's
evaluation by external stakeholders in various proceedings.UniquenessROM is a PGE built model. ROM is constantly being upgraded to handle different VER integration questions. The ROM tool set includes: a virtual wind plant builder, virtual solar plant builder, reserve calculator, and optimization engine.AdvantagesROM is a PGE-centric model and that focuses on optimizing both reserves and energy, while considering operational	What is it	considers generation assets, fuel constraints, market
upgraded to handle different VER integration questions. The ROM tool set includes: a virtual wind plant builder, virtual solar plant builder, reserve calculator, and optimization engine.AdvantagesROM is a PGE-centric model and that focuses on optimizing both reserves and energy, while considering operational	Model Acceptance	
both reserves and energy, while considering operational	Uniqueness	upgraded to handle different VER integration questions. The ROM tool set includes: a virtual wind plant builder, virtual solar plant builder, reserve calculator, and optimization
	Advantages	both reserves and energy, while considering operational

Model Stages

- One-year analysis consists of 52 one-week runs.
- Model is currently capable of running on a fifteen minute scheduling interval.
- The model is run in three stages corresponding to:
 - Day-Ahead (DA)
 - Hour-Ahead (HA)
 - Within Period (WP)
- Difference between each scenario's system operating costs from the third stage are used in assessing the costs of VER integration.

What ROM Considers

Includes	Not Included
 Fuel Costs 	 Capital Costs
 O&M Costs 	 Personnel Costs
 Wear & Tear (Cycling) Costs 	 Hardware/Software Costs
 Market Purchases & Sales 	 Other Fixed Costs
 Hydro Limitations 	 Forced Outage Rates
 Plant Characteristics 	 Storage
 Market Dynamics 	 Transmission Limitations
	Portland General Electric

ROM Then and Now

- ROM Then:
 - Developed as a result of PGE's 2009 IRP.
 - Single stage production cost model built in Excel using an Add-on solver.
 - Only goal was to estimate variable wind integration costs.
- ROM Today:
 - Accepted and Used to support IRP, General Rate Case/Annual Update Tariff proceedings, conduct internal economic analysis.
 - Multi-stage, flexible modeling platform using a state-of-the-art optimization engine.
 - Considers both wind and solar integration costs.

Evolution of ROM

September 25, 2015 Slide 72		
Enhancement	Description	
Sub-Hourly Dispatch	Fully integrated the ability to run the model down to 15 minute dispatch intervals.	
Solar Plants and Reserves	Developed the ability to integrate solar generation and model unique solar sites.	
Added Day-Ahead Block Purchase	Day-ahead transactions are restricted to on- and off- peak block purchases in order to reflect operations.	
Enhanced Reserve Modeling	Inc and Dec reserves are modeled as asymmetric. Model captures associated energy that results from providing certain reserves.	
Fuel Modeling	Improved how the model purchases and uses gas to more accurately represent operational realities.	
Various Minor Updates	Upgraded from Excel to SQL Server. Added capability to feather wind economically. Model limited intra-dispatch period constraints.	

IRP 2016 Study Scope

- Goal: Determine costs of integrating wind and solar generation into PGE's system
 - Target year: 2021
 - Existing PGE generating resources
 - Thermal resources include:
 - Beaver, Colstrip, Coyote Springs, DSG, Port Westward, Port Westward 2, and Carty.
 - Boardman retired
 - Hydro resource include:
 - Mid-Columbia hydro contracts, Westside hydro (run-of-river), and Deschutes hydro.
 - Mid-Columbia contracts adjusted to reflect diminished levels.
 - Assumes 1169 MW of wind and solar resources integrated by PGE's system
 - Existing wind resources: Biglow Canyon (450MW) and Tucannon River (267MW)
 - Proxy resources: Columbia Gorge wind (317MW) and Central Oregon solar (135MW).
 - Data derived from 2005 base year
 - NREL Western Wind and Solar Integration Study data for wind and solar facilities.
 - Stream flow data for Mid-Columbia and Eastside hydro resources.
 - PGE load data.

2016 IRP Methodology

- 2016 IRP Scenarios:
 - Base case (PGE participation in 30/15)
 - PGE fully self-integrates existing wind (Biglow and Tucannon only)
 - PGE fully self-integrates existing wind and proxy wind resource
 - PGE fully self-integrated existing wind, proxy wind, and proxy solar resource
- Cost estimates from ROM are derived by computing the difference between two unique scenarios.
 - Typically, a "with" compared to "without" or "base" scenario
 - Example: Difference between scenario 1 and 2 above represents incremental variable system costs for moving from 30/15 to full self-integration of PGE's existing wind resources.
- Cost estimates are used by PGE's IRP team as a portfolio cost adder for the applicable portfolios.

Future of ROM

- ROM is a continuously evolving model.
- PGE internal ROM group is constantly assessing potential model enhancements and future applications.
- Possibilities include:
 - Developing resource technologies
 - Delivery constraints
 - Portfolio response to different resource types

External Contributors

September 25, 2015 Slide 76

Technical Review Committee:

- J. Charles Smith, Executive Director
 - Utility Variable-Generation Integration Group (UVIG)
- Michael Milligan, Ph.D.
 - National Renewable Energy Laboratory (NREL)
- Brendan Kirby, P.E.
 - Consultant with NREL
- Michael Goggin, Manager of Transmission Policy
 - American Wind Energy Association (AWEA)
- Bob Zavadil, E.E., Executive VP of Power Systems Consulting
 - EnerNex Corporation

Modeling Consultant:

- Jennifer A. Hodgdon, Ph.D.
 - Poplar ProductivityWare

Questions

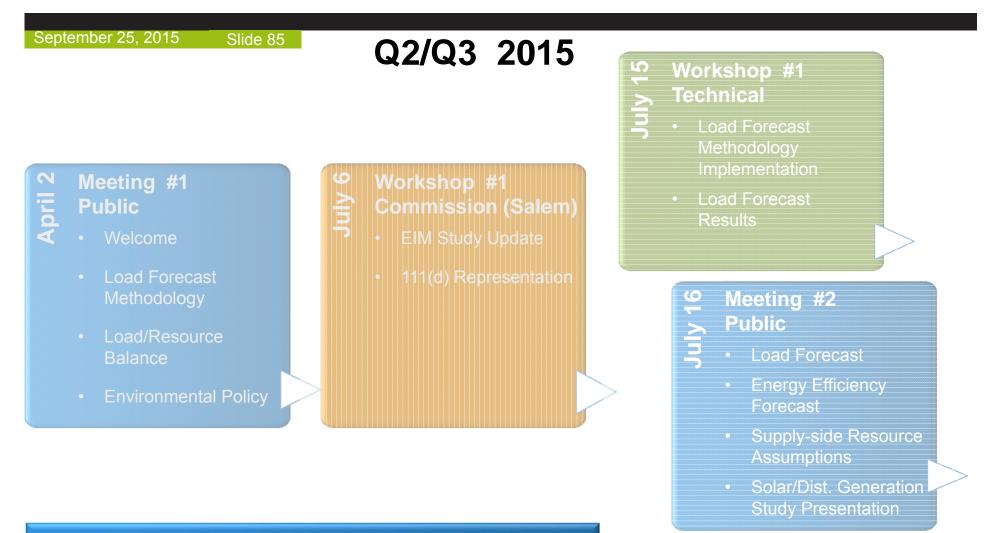
Appendix

September 25, 2015 Slide 79				
Торіс	Feedback Received	Resolution	Completed	
General	Passing the mic was cumbersome.	For stakeholder questions, provide a stationary microphone at a podium or mics at each table.	4/13/2015	
Process	Why is schedule different on handout?	Update schedule slides to account for automation. Plan to revise and post updated slide deck to website and include summary update in 'thank you' email.	4/9/2015	
Process	Is schedule firm or can the November 18th date be adjusted? (Power Council has important meeting on November 18)	Moved IRP meeting to November 20th.	4/9/2015	
Process	Can the October 23rd date be adjusted? (CUB has important meeting on October 23)	Moved IRP meeting to October 21st.	4/9/2015	
Environmental Policy	Why will climate data set be a scenario instead of a base case?	PGE to consider suggestion after vetting data.		
Environmental Policy	Does PGE place any type of weather weighting on load forecast?	PGE uses 15-year average weather, with rolling updates		

September 25, 2015 Slide 80				
Торіс	Feedback Received	Resolution	Completed	
Load Forecast Methodology	For future discussion, how is the ETO forecast in later years developed?	PGE to address questions about EE projection in the future. Refer to April 2 nd Slide 31.	Est. 7/15/15 and 7/16/15	
Load Forecast Methodology	Comment on in-fill vs. suburban sprawl – suggestion to be cautious about moving to more standard household variables	PGE to take note.	4/8/2015	
Load Forecast Methodology	Request to show load growth with and without EE.	PGE to meet this request.	Est. 8/13/2015	
Load Forecast Methodology	What % of PGE service territory is within the urban growth boundary?	90% of the UGB is within PGE Service Territory UGB is 822.7 sq. mi. PGE SVC Territory is 7532.2 sq. mi. Overlap is 741.6 sq. mi.	4/8/2015	
Environmental Policy	Will temperature data drive (1) increased cooling demand and (2) an acceleration of cooling device purchases?	PGE to follow-up internally with load forecast staff.	Est. 8/13/2015 (with scenarios and climate change weather discussion)	

September 25, 2015 Slide 81				
Торіс	Feedback Received	Resolution	Completed	
Demand Response	How is PGE using the convergence of EE and DR programs, and avoiding over- counting benefits?			
Demand Response	What happened to the EV charging pilot?			
Demand Response	What is the preferred method of evaluating the cost effectiveness of DR in Oregon?			
Demand Response	Would PGE provide a copy of the DR study, along with the assumptions (particularly materials supporting the basis for electric heating load control)?			
Flexible Capacity Study	Rather than focusing on how renewable curtailment can reduce the trough of the duck, can PGE assess how to change the slope of the neck? (Reference- "Teaching the Duck to Fly")			

September 25, 2015 Slide 82				
Торіс	Feedback Received	Resolution	Completed	
Flexible Capacity Study	Can a scenario be included where market imports are not zero in the summer?			
Flexible Capacity Study	Can the Flexible Capacity Study include a range of CO_2 prices?			
Futures	Can there be discussions about the Clean Power Plan and mass vs. rate- based modeling?			
Portfolios	How will the results of the Flexible Capacity Study inform portfolio scoring? How will REFLEX work with Aurora to help PGE insure that each type of capacity is appropriately valued? (Link between REFLEX and Aurora (i.e., adders)			
Portfolios	Can there be a consideration about the terminology of "reliable percentage" vs. "dependable capacity"?			


September 25, 2015 Slide 83				
Торіс	Feedback Received	Resolution	Completed	
Portfolios	Stakeholders would like to see portfolios that intuitively account for the geographical diversity of renewables (i.e., better examples than Gorge wind).			
PRM Study	What is PGE's definition of dependable hydro capacity or what does it mean in this context? What method was used to create PGE's estimates?			
PRM Study	When will PGE share the other portions of the reliability assessment (in addition to the statistics presented at the meeting)?			
PRM Study	How will risk adjustment measures fit in with the PRM study?			
PRM Study	What was the market import assumption?			

September 25, 2015 Slide 84				
Торіс	Feedback Received	Resolution	Completed	
PRM Study	Can PGE provide clarification on the net capacities used in winter and summer?			
PRM Study	Why does DSM not change from winter to summer?			
PRM Study	Can energy efficiency be pulled out of load forecast and shown as a capacity resource?			
Wind Integration	How does the wind integration study intersect with an EIM?			

2016 IRP: Meeting Schedule And Planned Topics

Public Meeting

Technical Workshop

Technical Workshop with Commission Present

2016 IRP: Meeting Schedule And Planned Topics

September 25, 2015

Public

Slide 86

Q3 2015 (Tentative)

ugust 13

Development

Meeting #3

- Demand Response
- Flexibility Study
- Planning Reserve Margin
- Portfolios and Futures
 Ideation
- Analysis
- Load Forecast
- Natural Gas Forecast

Meeting #4 Public

ろろ

September

Development

- 111(d) Rule update
- Climate Study review
- CVR Update
- DSG Update
- Analysis
- ROM Update
- Results
 - General Updates

Public Meeting

Technical Workshop

Technical Workshop with Commission Present

