

Summary of WECC build-out from default Wood Mackenzie 2017.H2 data base.

Summary of WECC build-out from default Wood Mackenzie 2017.H2 data base.

Reference Case:

- Approximate potential GHG policies with single carbon price for Oregon, Washington, and California.
- 2021 start year for Oregon and Washington.

Carbon cases compiled from a mix of:

- Wood Mackenzie carbon assumptions from 2017.H2 database.
- California Energy Commission (CEC) carbon price projections.

A	rea NO.		
Area from	From	To	AreaTo
California South	79	119	Lower Columbia /WA+OR
California Nord	45	96	COB (treated as California
		91	Oregon West
COB treated as California	96	48	Idaho
		55	Nevada
		45	California Nord
Lower Columbia (OR+WA)	119	48	Idaho
		79	California South
		96	COB
		91	Oregon West
		97	Washington Spokane
		92	Washington Central
Oregon West	91	45	California Nord
		96	COB
		119	Lower Columbia /WA+OR
		92	Washington Central
		95	Washington West
Washington Spokane	97	47	British Columbia
		119	Lower Columbia /WA+QR
		49	Montana
		92	Washington Central
Washington Central	92	119	Lower Columbia /WA+OR
		91	Oregon West
		97	Washington Spokane
		95	Washington West
Washington West	95	47	British Columbia
		91	Oregon West
		92	Washington Central

Wheeling Rate Adjustment for CO₂ Hurdle Rates:

In addition to regional carbon prices, AURORA inputs must account for the difference in carbon prices between zones.

- Subtract CO₂ pricing contribution to transmission wheeling rate from the Wood Mackenzie WECC base case for PNW Zones.
- Calculate new CO₂ hurdle rate for OR, WA, and CA.
- Apply new CO₂ hurdle rate to all zones exporting power to OR, WA, and CA.
- Do not apply CO₂ hurdle rate between OR, WA, and CA.

Natural Gas

Gas Reference Case:

- · 2020-2023: PGE forward market curve.
- 2024: Linear interpolation of PGE forward curve and Wood Mackenzie fundamentals forecast.
- 2025-2040: Wood Mackenzie fundamentals forecast.
- 2040-2050: Blend EIA and IHS long-term outlooks.

Gas Low Case:

 Grow at the rate of inflation starting in the linear interpolation year.

Gas High Case:

- · Near-term: reference prices.
- Mid- and long-term: AEO "High Oil" scenario prices.

PNW Hydro

- Low/High Cases
 - Annual generation varied approximately one standard deviation from reference case.
 - ~10% based on historic EIA data.

Proposed long-term expansion:

Market prices grow with inflation after 2040.

· Modeling simplification to address uncertainty.

Add a sensitivity to account for accelerated deployment of renewable energy.

- · Calculate high scenario.
 - Technological and policy potential.
 - Expanded RPS or city/county goals.
- Investigate potential future that leads to WECC-wide fleet with much higher renewable energy than the projected reference case.
 - Examine wholesale market prices in such a case.
 - What happens to prices when renewables are economically attractive for the entire region, all load-serving entities build and renewables max out?

High Renewables Test

- Double solar and wind resources in WECC.
- All other resource assumptions unchanged.
- Run under Wood Mackenzie base carbon assumptions and PGE-proposed Reference carbon case.

Stakeholder Input

When you think of a future with high renewables, what do you envision?

Stakeholder Input

Futures - combinations of variables that are compelling. What variables should we examine to compile price futures?

Stakeholder Input

Other thoughts?

AURORA Dispatch

- Resources do not dispatch in AURORA as a portfolio.
- Resources dispatch individually to market price.
- Aurora calculates market price and revenue, then dispatches according to cost.
- Portfolio value happens post aurora.
- AURORA Outputs: Capacity factor, variable operating costs by resource year future, wholesale market prices, emissions, market revenues.

PGE Zone Dispatch

- Use WECC energy prices from preliminary AURORA dispatch as inputs.
- Dispatch PGE portfolio resources against WECC market prices.

