
Distribution System Planning (DSP)

Angela Long, Manager, Distribution Resource Planning (DRP) April 14, 2021 | Workshop 4

Meeting Logistics

- We are available at: DSP@pgn.com
- Teams Meeting
 - Please click the meeting link sent to your email or <u>Click here to join the meeting</u>
 - +1 971-277-2317 (dial this number into your phone for best results)
 - PW: 885 018 032#
 - Please use Microsoft Edge or Google Chrome with Teams as it will give you the best experience
 - During the presentation, all attendees will be muted; to unmute yourself via computer, click on the microphone that appears on the screen when you move your mouse
 - To unmute yourself over the phone, press *6
 - If you call in using your phone in addition to joining via the online link, please make sure to mute your computer audio
 - There is now a meeting chat feature rather than a Q&A feature. Pull this up on the menu bar when you move your mouse and look for the little message icon

Agenda

Opening Remarks

Community Engagement Plan: Community Facilitator Scope of Work Update

Forecasting of Load Growth, DER Adoption, and EV Adoption: DER Potential & Flex Load Analysis - Phase 1

Hosting Capacity Analysis: Options Analysis

Baseline Data and System Assessment: Example Datasets Update

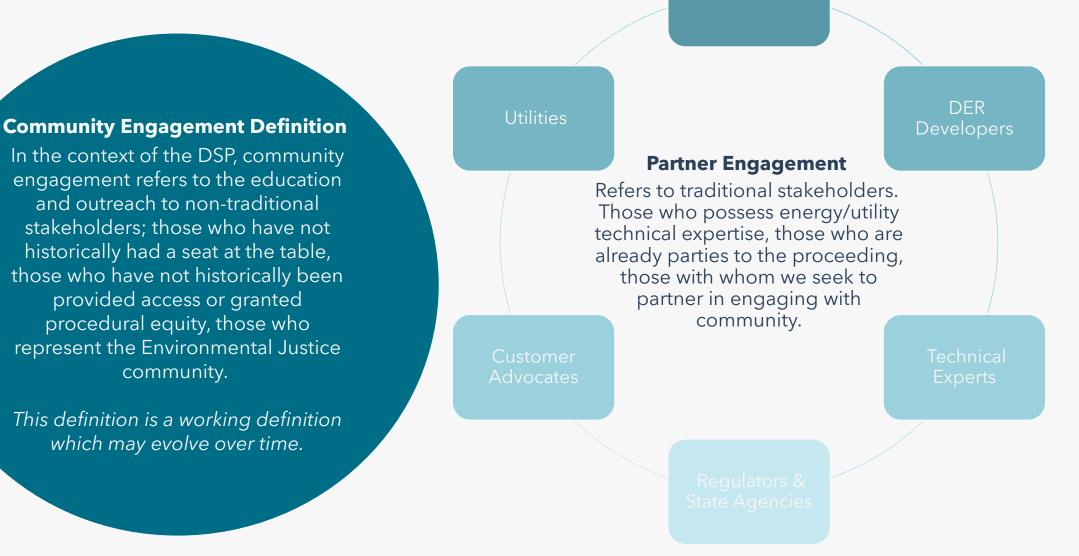
Long Term Plan: Grid Modernization

Break

Non-Wire Alternatives (NWA): Draft Results

Question/Next Steps

Proposed partner engagement timeline


		2021							
		January Februa	ry March April	May	June	July	August	September	October
(dSP)	Baseline data and system assessment		anization, QA/QC, and lization	Present to partners for feedback	lterate as necessary	Final draft shared with partners		PGE review process	Filed on Oct 15th
m Planning Part 1	Hosting capacity	i i i partners for			lterate as necessary	Final draft shared with partners	PGE review process	Filed on Oct 15th	
tion System plan - Pa	Community engagement plan	Development of the Community Engagement Plan parting for			Present to partners for feedback	PGE review process	Filed on Oct 15th		
Distribution	Long term planning				Final draft shared with partners	PGE review process	Filed on Oct 15th		

Community Engagement Plan: Community Facilitator Scope of Work Update

Our Engagement

Customers

CBO Partnerships

Technical Advisory

Education:

- Assess/ Translate
- Energy 101
- DSP 101

Best Practice:

- Recruit/ Convene
- Workshops/ Surveys
- Collect Feedback

Best Practice:

- Analyze
- Synthesize
- Recommend

Initial Engagement Channels (2021)

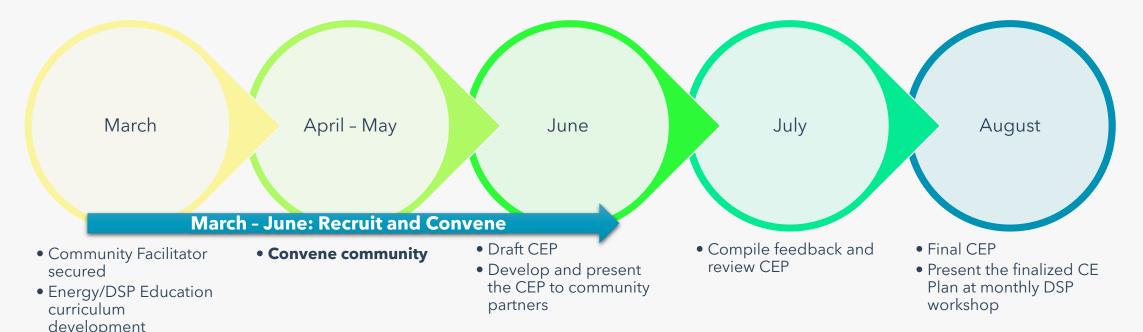
Channel	Intended Scope	Timing	
Community Engagement Workshops - Best Practice ("Series A")	Non-technical: Partner with Unite Oregon and Coalition of Communities of Color to conduct outreach, research and co-develop best practices	Monthly (April - June)	Technical Advisory provided
Community Engagement Workshops - Energy Education ("Series B")	Non-technical: Partner with CEP to provide targeted energy education	Monthly (April - June)	by NWEC, ETO and PGE
DSP Partner Workshops	Technical and Non-technical: Elicit Partner feedback	Monthly (Jan - Dec)	

Community Workshop Series

Series A: Best Practice

- Intent: Supports CEP development
- Activities: Recruit, Convene, Synthesize
- Scope /Timing:
 - Recruit, convene, and facilitate CE workshops series (March May 2021)
 - Perform Community Needs and Impacts Assessment, informed by outreach and research activities (**May-June** 2021)
 - Develop Best Practices Community Engagement framework to support development of PGE's CEP (May - July 2021)
 - Develop Action Plan that provides findings and recommendations (July August 2021)

Series B: Energy Education


- Intent: Support Best Practice workshops desire to foster meaningful engagement
- Activities: Translate and Inform
- Scope /Timing
 - Energy Education Needs Assessment, identifying gaps in education (**March** 2021)
 - Energy 101 + DSP 101 Educational Materials, addressing gaps inventoried in previous deliverable (**April** 2021)
 - Educational Workshops (May 2021)

Reference Models

In addition to our community engagement workshops we aim to draw inspiration from these models in the drafting of our Community Engagement Plan.

Community Engagement Calendar

Updates since March Workshop:

partnership formalized

 Recruit community members to attend

PGE's community engagement

workshops

- SOWs formalized, education outline drafted and core technical advisory committee formed
- Convened community consultants and advisory to discuss energy education outline and workshop timeline
- Flexible Learnings: Identified an opportunity to characterize engagement in both a COVIDvirtual and physical environment in our development of best practices

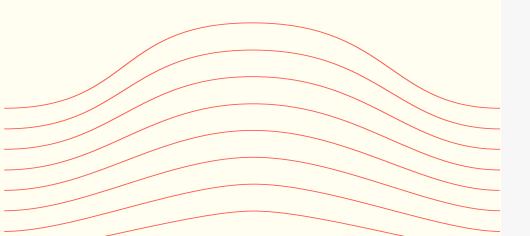
DER Potential & Flex Load Analysis – Phase 1 project update

Current Status

In the March Meeting, PGE ran long on its presentation with Cadeo, which resulted in PGE not being able to share its example draft results.

PGE committed to share the remainder of the slides in the April DSP Partnership Workshop.

However, model and results QC still underway and require more time than appreciated.


Draft Final Results will be shown in the May DSP Partnership Meeting.

Today will be a quick update of status and some **example** results for discussion.

Advancing DER Modeling at PGE

Quick recap of the new method...

Or, why it's taking longer than planned

Through this study we sought to...

- Increase transparency of modeling approach (inputs, outputs, algorithms)
- Better capture resource parameters and key assumptions
- Advance understanding of Flex Load potential to achieve range of grid needs
- Develop supply curves with levelized costs to model on comparable basis within IRP analysis

Leveraging trusted third-party sources

The DER Study is leveraging open-source tools and best practices where possible, including:

- CalTRACK for standardized baseline and net load profile calculations
- NREL data sets and forecasts
 - PVWatts
 - Re-Opt Lite
 - EVI-Pro Lite
- NEEA CBSA/RBSA stock studies and end use load research studies
- Tie to ETO forecast whenever possible

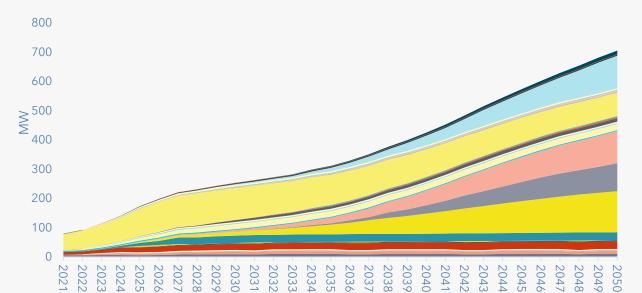
DER Adoption Scenarios

Greater visibility into model mechanics

Chance to answer "what-ifs" with plausible scenarios

Important for quick changing markets (e.g., TE) and complex code futures • Worked with IRP team to define boundary conditions across nine different future scenarios

		Load Forecast Scenarios			
		Low	Reference	High	
tion	Low	Low Load Low DER	Ref Load Low DER	High Load Low DER	
DER Adoption Scenarios	Reference	Low Load Ref DER	Ref Load Ref DER	High Load Ref DER	
DER	High	Low Load High DER	Ref Load High DER	High Load High DER	

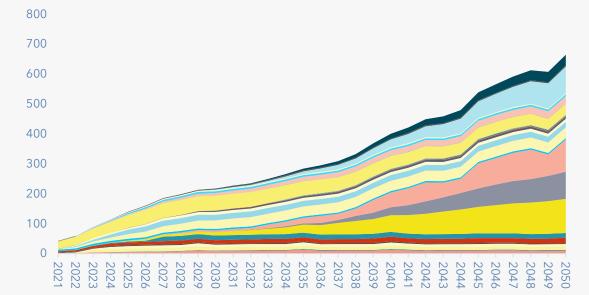

Types of potential modeled

Technical potential

Amount of the resource	Economic potential				
that is technically possible, without consideration of cost or other market barriers. Sets upper bound to determine what is max theoretical adoption.	Layers a cost-effectiveness screen on to technical potential to determine economically beneficial technologies. Cost-effectiveness is used for utility deployed	Market forecast Use of broad market forecasting methods for non-programmatic technologies.	Achievable potential Subset of economic potential that PGE can realistically achieve, given market barriers and its		
	measures (e.g., DR) and simple payback for others (e.g., solar, unmanaged electric vehicle load).	E.g., solar and EVs. Note vehicle chargers are a program, just not the vehicles themselves.	DER programs. This screen accounts for: • Maximum penetration • Time to maturity • Ramp rate (adoption curve)		

EXAMPLE Results Outputs - Potential

Summer MW (all achievable, reference load and DER)

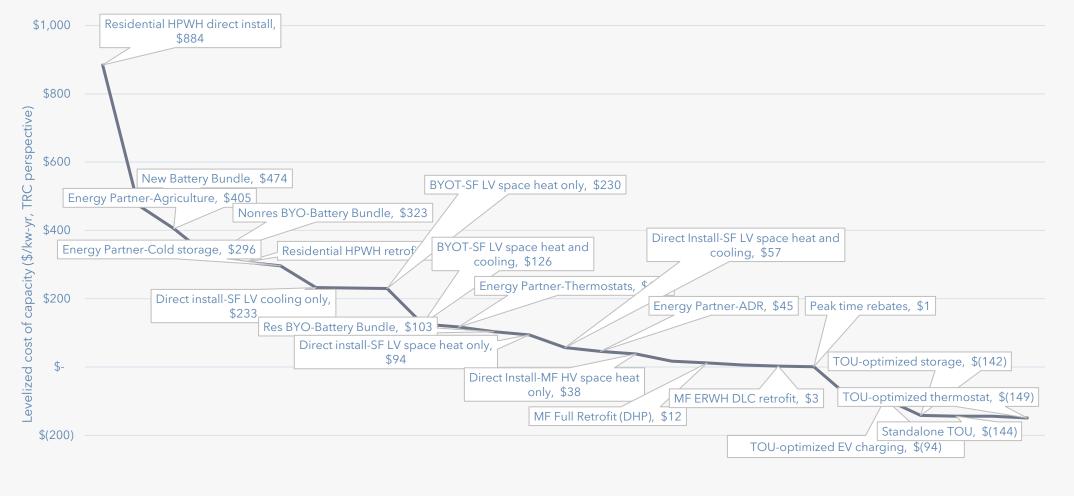


BYOT-SF LV cooling only

- BYOT-SF LV space heat only
- Direct install-SF LV cooling only
- Direct install-SF LV space heat only
- Energy Partner-Agriculture
- Energy Partner-ThermostatsFleet DCQC
- MF ERWH DLC retrofit
- MF Full Retrofit (baseboard)
- New Battery Bundle
- Nonresidential Fleet Smart Charging
- Nonresidential Microgrid-Single site
- Res BYO-Battery Bundle

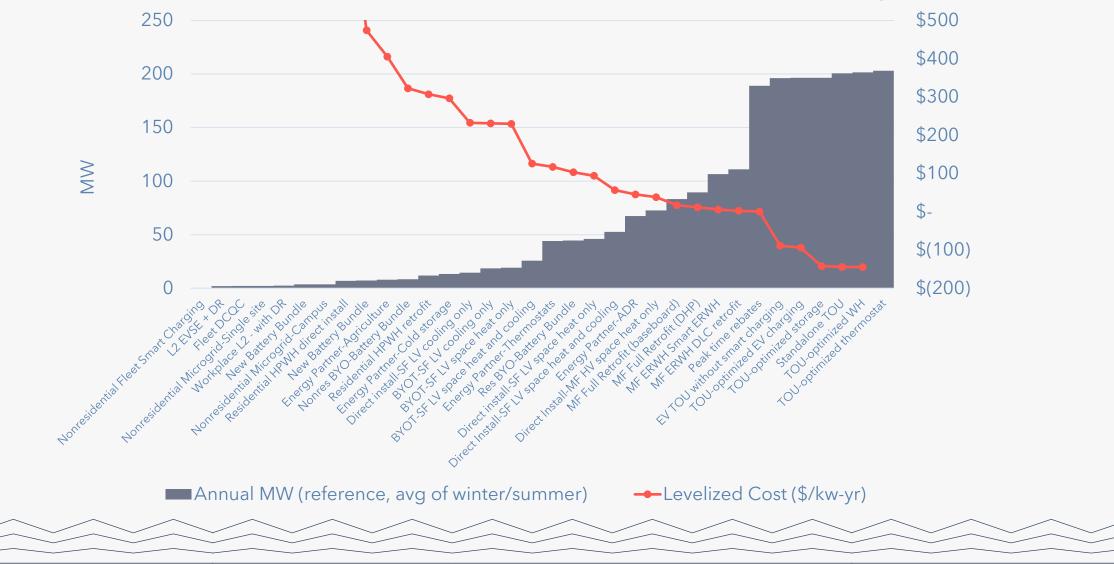
- BYOT-SF LV space heat and cooling
- Direct Install-MF HV space heat only
- Direct Install-SF LV space heat and cooling
- Energy Partner-ADR
- Energy Partner-Cold storage
- EV TOU without smart charging
- L2 EVSE + DR
- MF ERWH Smart ERWH
- MF Full Retrofit (DHP)
- Nonres BYO-Battery Bundle
- Nonresidential Microgrid-Campus
- Peak time rebates
- Residential HPWH direct install

Winter MW (all achievable, reference load and DER)

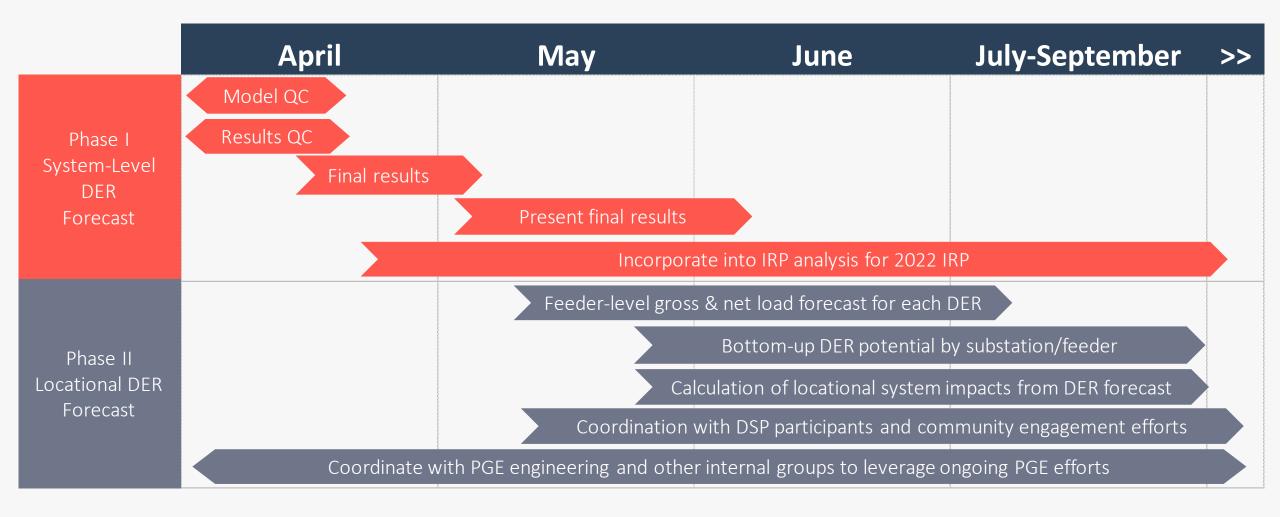


■BYOT-SF LV cooling only

- BYOT-SF LV space heat only
- Direct install-SF LV cooling only
- Direct install-SF LV space heat only
- Energy Partner-Agriculture
 Energy Partner-Thermostats
- Fleet DCQC
- MF ERWH DLC retrofit
- MF Full Retrofit (baseboard)
- New Battery Bundle
- Nonresidential Fleet Smart Charging
 Nonresidential Microgrid-Single site
- ■Res BYO-Battery Bundle


BYOT-SF LV space heat and cooling
Direct Install-MF HV space heat only
Direct Install-SF LV space heat and cooling
Energy Partner-ADR
Energy Partner-Cold storage
EV TOU without smart charging
L2 EVSE + DR
MF ERWH Smart ERWH
MF Full Retrofit (DHP)
Nonres BYO-Battery Bundle
Nonresidential Microgrid-Campus
Peak time rebates
Residential HPWH direct install

EXAMPLE Results Outputs – Supply Curve



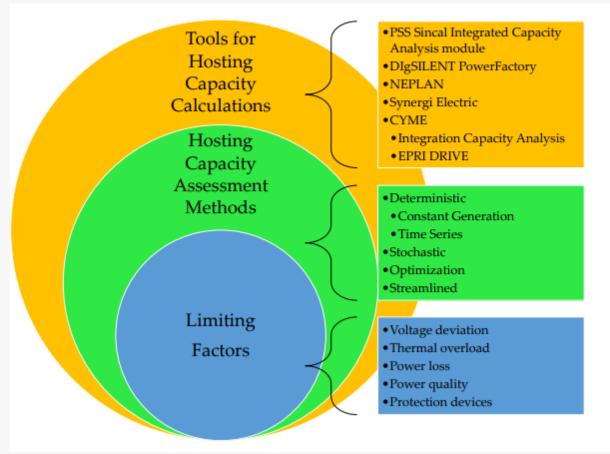
EXAMPLE Results Outputs – Supply Curve

Timeline of near-term activities

Hosting Capacity Analysis: Options Analysis

Hosting Capacity Analysis (HCA) Methods Examples

Method	Approach	Advantages	Disadvantages	Computation Time	Recommended Use Case
Stochastic	+Increase DER randomly +Run power flow for each solution	+Similar in concept to traditional interconnection studies +Becoming available in planning tools	+Computationally intensive +Limited scenarios	Hours/feeder	+DER planning
Iterative (Integration Capacity Analysis)	+Increase DER at specific location +Run power flow for each solution	+Similar in concept to traditional interconnection studies +Becoming available in planning tools	+Computationally intensive +Limited scenarios +Vendor-specific implementations can vary + does not determine small distributed (rooftop PV)	Hours/feeder	+Inform screening process +Inform developers
Streamlined	+Limited number of power flows +Utilizes combination of power flow and algorithms	+Computationally efficient +Not vendor tool specific	 +Novel approach to hosting capacity +Not well understood method +Limited scenarios +Not available in current planning tools 	Minutes/ feeder	+Inform screening process +Inform developers
DRIVE	+Limited number of power flows +Utilizes combination of power flow and algorithms	+Computationally efficient +Many DER scenarios considered +Not vendor tool specific +Broad utility industry adoption and input +Becoming available in planning tools	+Novel approach to hosting capacity +Not well understood method +Lag between modifications/ upgrades and associated documentation	Minutes/ feeder	+DER planning +Inform screening process +Inform developers


Source: <u>Methods and Application Considerations for Hosting Capacity (hawaiianelectric.com)</u>

Hosting Capacity Analysis (HCA) Methods Use Case

Method	Industry Adoption	Recommended Use Case
Stochastic	Pepco, ComEd	+Enabling Planning +Informing the public
Iterative	SCE, SDG&E	+Assisting with Interconnection +Informing the public
Streamlined	PG&E	+Enabling Planning +Informing the public
Hybrid – DRIVE	>27 utilities worldwide (including Xcel, NY)	+Enabling Planning +Assisting with Interconnection +Informing the public

Source: Impact Factors, Methods, and Considerations for Calculating and Applying Hosting Capacity-EPRI

HCA Review Structure Example

Source: A Review of the Tools and Methods for Distribution Networks' Hosting Capacity Calculation

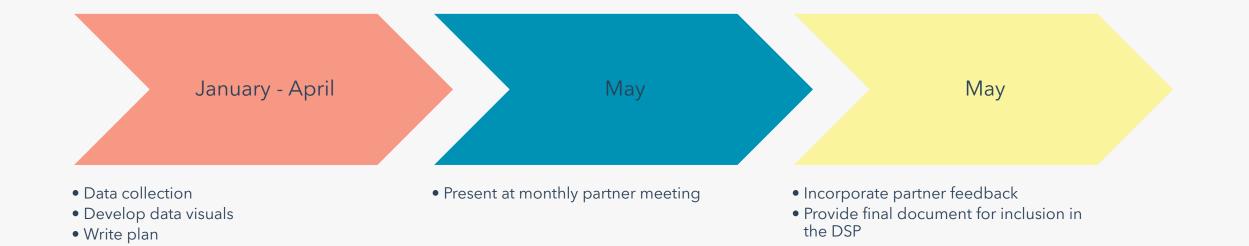
HCA Options To Be Evaluated

HCA Characteristic	Option 1	Option 2	Option 3
Methodology	Stochastic modeling/EPRI DRIVE modeling	Same as option 1	Iterative modeling
Geographic granularity	Circuit	Feeder	Line segment
Temporal granularity	Annual minimum daily load	Monthly minimum daily load	Hourly assessment
Data presentation	Web-based map for the public and available tabular	Same as option 1	Same as option 1
Data update frequency	Annual refresh	Monthly refresh	Monthly refresh
Other info	Queued generation	Same as option 1	Same as option 1

HCA Option Questions

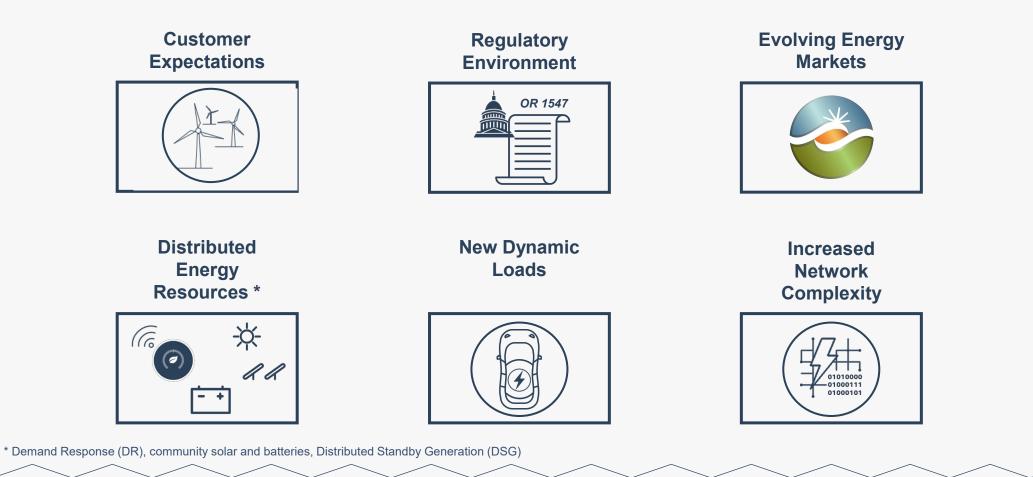
- 1. What are the strengths of each option?
- 2. What are the implementation barriers for each option?
- 3. What are the cost and timeline for each option?
- 4. What is our choice, for near-term, long-term?
- 5. How frequently to update the data and map?
- 6. How helpful will this be for grid needs identification?
- 7. How helpful will this be for interconnection studies?

HCA Option Evaluation Parameter

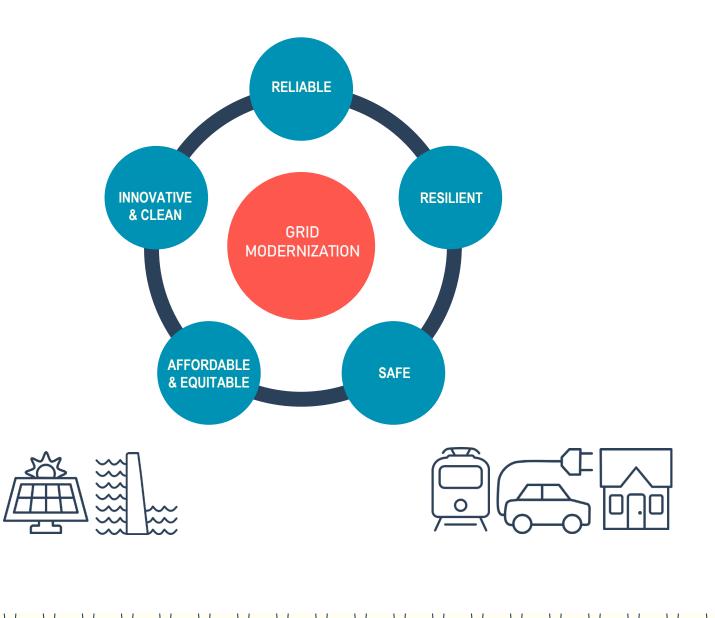

Evaluation Parameter	Option 1	Option 2	Option 3	Notes
Timeline	6 months	12-18 months	24-36 months	system integration and computation time
Cost	\$	\$\$	\$\$\$	system upgrades, labors
Data security	Low	High	High	input data, output data
Result validation	Low- Medium	High	High	input , output data QA (process, time, cost)
Implementation Concerns	Low	High	High	data availability, time and cost at PGE
Interconnection use case and implications	Low	High	High	Back feed issues, VoltVar
Planning use case and implications	Low	Medium- High	High	Forecasting and distribution system configuration
Locational value and benefits	N/A	High	High	Distribution System CapEx planning
Interaction with "grid Needs Identification	Medium	High	High	Feeder level DER forecast

Baseline Data & System Assessment: Example Datasets Update

Baseline Workstream Timeline



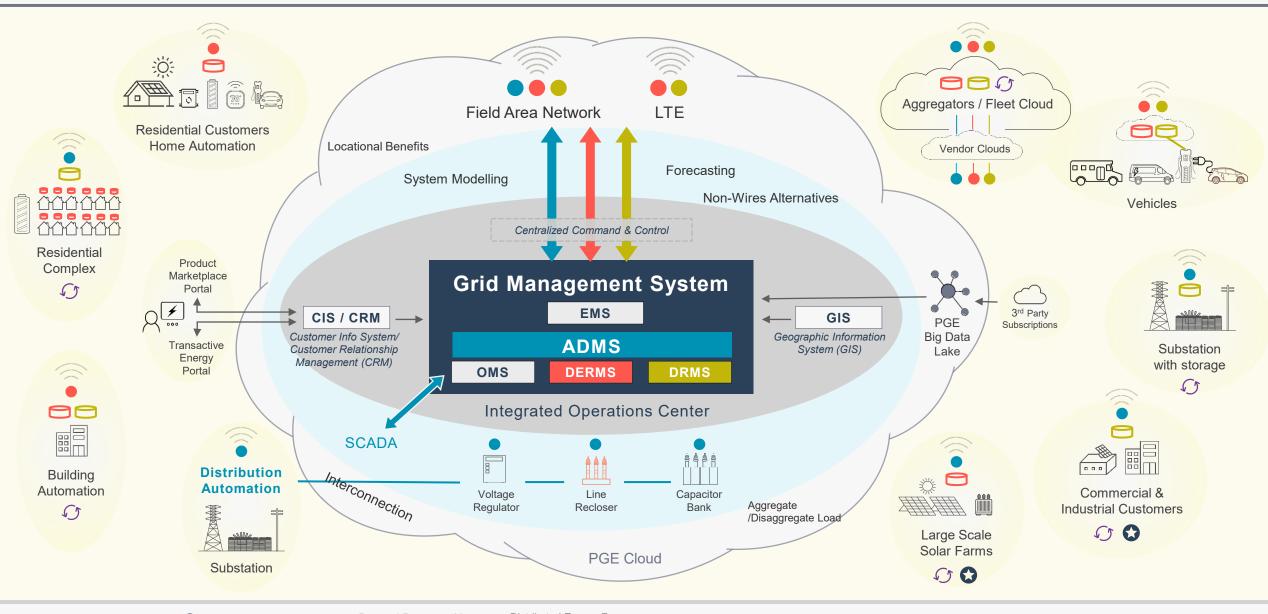
Long Term Plan: Grid Modernization


PGE is operating in an increasingly complex & changing environment

We need to evolve our grid capabilities to best meet our customer and community needs

Integrated Grid Management

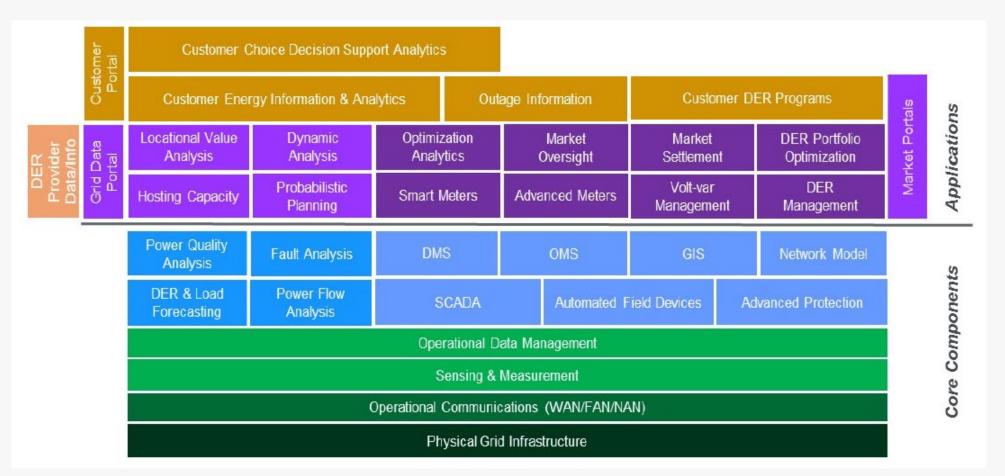
33


Updates to our grid will improve customer experience

Our customers are increasingly focused on reliability and resiliency

We are building the foundation to deliver reliable, affordable, and clean electricity to consumers where they want it, when they want it, how they want it.

PGE Grid Modernization – Conceptual Overview of the Grid



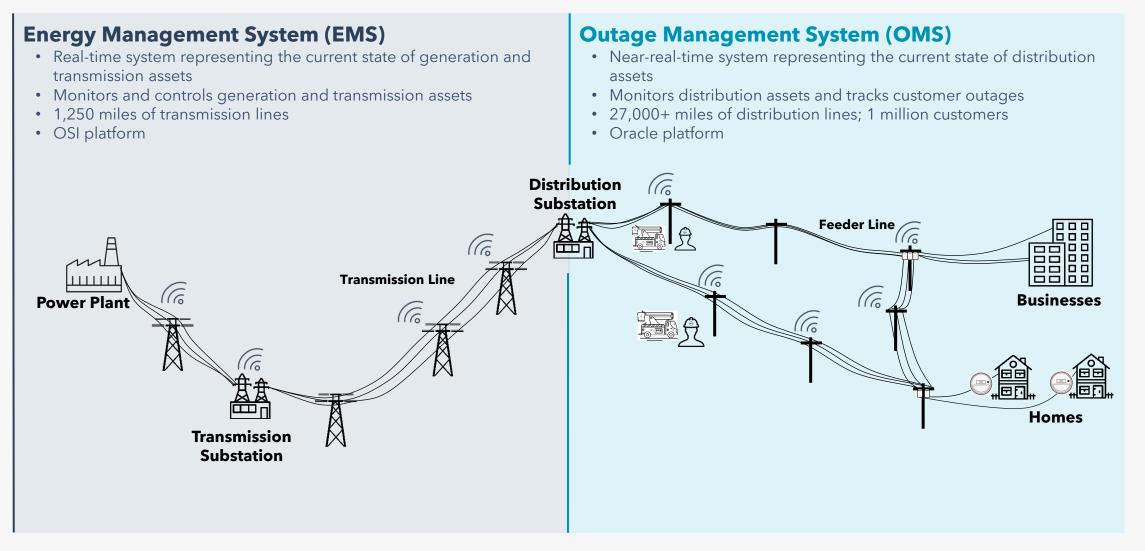
System (DRMS)

Mgmt System (DERMS)

KEY 介 Potential µGrid / Microgrid 🚯 Potential Qualified Facility 😑 Demand Response Mgmt 😑 Distributed Energy Resource 🔴 🔴 Node communicating with system 💮 1-way or 2-way communication through Vendor, Aggregator, or direct to PGE

Another view of modernization technologies

Grid Modernization Program Advanced Distribution Management System (ADMS)


ADMS (Advanced Distribution Management System) is a centralized software platform that we will use to model, monitor, control, predict, and safely operate our distribution network in real-time.

Current State: EMS + OMS

No current real-time monitoring of distribution network

Future State: EMS + OMS + ADMS (2021–2024)

SCADA: Supervisory Control And Data Acquisition

A new, centralized platform will enable real-time management of the distribution grid

Energy Management System (EMS) Outage Management System (OMS) • Near-real-time system representing the current state of distribution • Real-time system representing the current state of generation and transmission assets assets • Monitors and controls generation and transmission assets Monitors distribution assets and tracks customer outages • 1.250 miles of transmission lines 27,000+ miles of distribution lines; 1 million customers OSI platform • Oracle platform Distribution **G** SCADA Switching **Substation** Device **Feeder Line** (16 **Automated Transmission Line** FLISR **Businesses Power Plant** (6 (c)Home with Homes DERs **PGE Line Transmission** Center **Substation** Advanced Distribution Management System (ADMS) New, real-time system representing as-operated distribution grid **DERs:** Distributed Energy Resources Model, monitor, predict and control energy flow for distribution assets FLISR: Fault Location, Isolation, and Service Restoration

Enable automatable FLISR, Volt-VAR, voltage reduction

OSI platform

ADMS

Advanced Distribution Management System Project

Enabling safer and more reliable distribution grid operations

ADMS is an overarching distribution software platform over DMS (Distribution Management System), OMS (Outage Management System), and DERMS (Distributed Energy Resource Management System). We will use ADMS and its associated infrastructure to model, monitor, control, predict and safely operate our distribution network in real-time.

Distribution Substation

.

Why is it important?

Customers are increasingly focused on reliability, decarbonization and renewables. Complexity of grid operations is increasing from electric vehicles (EVs), renewable generation, microgrids, battery energy storage systems, and smart inverters. Regulatory and energy market requirements are also becoming stricter and more complicated. In order to meet our customer and community needs, we need to evolve our grid capabilities.

Phase 1 Project Objectives

Separate Transmission & Distribution dispatch

Implement and integrate the ADMS software

SCADA Switching

6

Device

Home

with DERs Feeder Line

Ê

Automated

FLISR

· 🔁 🕄

Businesses

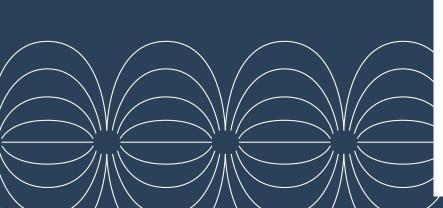
Homes

Prepare stakeholders for new ways of working

Create and update business processes

Expected Benefits

Improved reliability & faster service restoration for customers Vastly improved visibility & control of the distribution network



Expanded renewable energy integration & usage

Advanced tools & business processes

Field Area Network

Field Area Network (FAN) Project

The FAN is a wireless communication network that is expanding to cover PGE's distribution service territory.

Why is it important?

Today, PGE's distribution assets in the grid are spread across our territory and hard to communicate to. We don't have the visibility and data that we need to effectively operate in an increasingly complex environment, (dynamic loads, new regulations, changing customer expectations, etc.).

We are executing several Grid Modernization initiatives that rely on two-way communication between our system control center and devices throughout PGE's service territory. These initiatives need the fast, reliable, and secure communication network that the FAN provides. We continue to expand the FAN to cover all our territories to efficiently operate the grid and serve our customers.

Expected benefits

More control over reliability and speed of restoration

Greater ability to scale

Better protection through increased

More control over how quickly information is relayed throughout the grid

More data on the grid, including greater visibility into customer demand for electricity

System Control Center Tier 1 remote radio on a Recloser Tier 1 base station Tier 2 remote radio on a Recloser

The FAN is a multi-tier point-to-point radio network that connects our distribution assets and system control center.

Distribution Automation

Distribution Automation (DA) Program

DA is a suite of automated field devices that are deployed across PGE's service territory to monitor electrical characteristics of the grid.

As part of the DA program, we are currently implementing Integrated Reclosers and Smart Line Sensors/ Faulted Circuit Indicators. Faulted Circuit Indicators (FCIs) are being deployed in known wildfire areas within PGE's service territory to inform real-time operations. Additionally, wildfire mode protection settings are being used in Integrated Reclosers. Future DA plans include integrating new and existing Load Tap Changer (LTC) controllers into SCADA and deploying distribution capacitor banks.

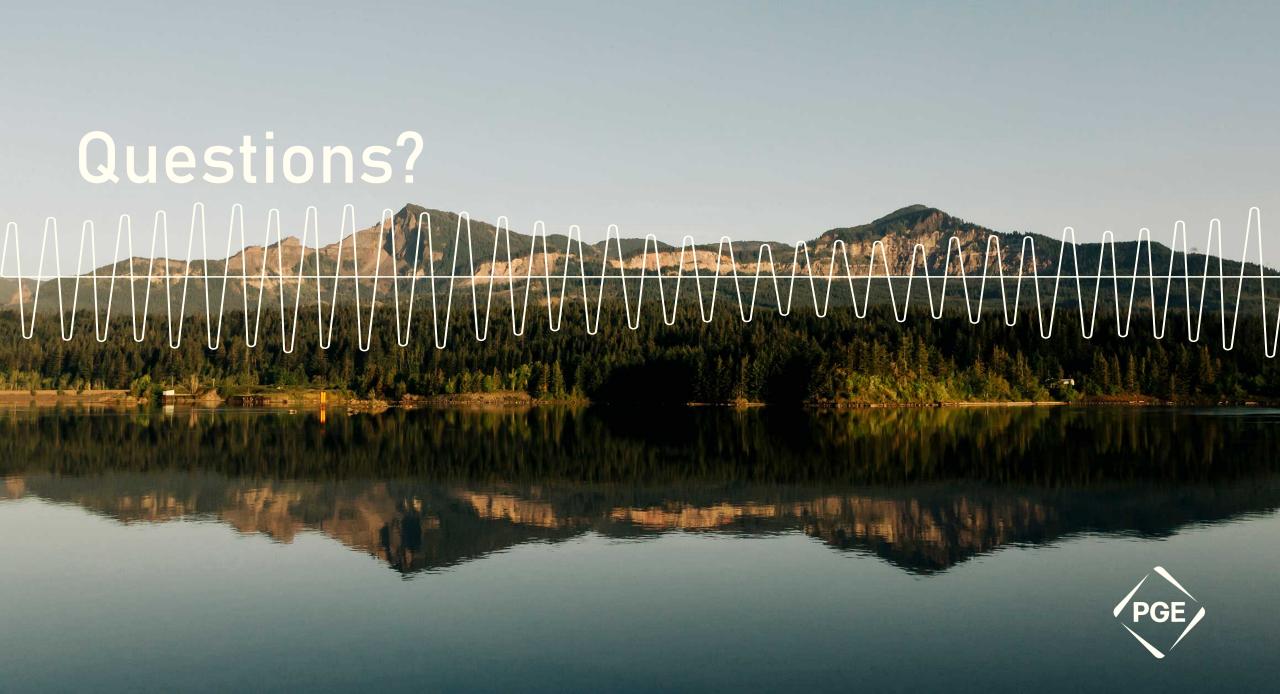
Why is it important?

(+

The DA Program is foundational to enabling other PGE Grid Modernization initiatives, including the Advanced Distribution Management System. Through the work of this project we will improve reliability for our customers, increase safety for our line crews and the community, and improve system awareness for our distribution system operators.

DA also enables Fault Location, Isolation, and Service Restoration (FLISR), Conservation Voltage Reduction (CVR), and Faulted Circuit Indication (FCI) integration within the broader Grid Modernization program.

Near-Term DA Program Objectives


- Expand Fault Location, Isolation, and Service Restoration (FLISR) capability
 throughout our service territory to15% of our feeders by 2024
 - Improve distribution system resilience to extreme weather through equipment integration
 - Enhance distribution system operators' ability to monitor, control, and optimize the distribution system

Integrated Grid Roadmap – 5 Year View (DRAFT)

Note: Includes future Initiatives

	2020	2021	2022	2023	2024	>>			
ENERGY STORAGE	Microgrid Program	:	:						
	Residentia	Storago							
	Residentia	Storage							
	ADMS (Adv. Distribution Mgmt	System) Phase 1							
GRID MANAGEMENT		ADMS Phase 2	/ DERMS (Distributed Energy R	esource Mgmt System)					
				(Outage Management System) R	enlacement				
SYSTEMS									
			-	Mobile Grid Operations/ Field S	Solutions	:			
	Field Area Network (FAN)								
STRATEGIC									
PROGRAMS & FOUNDATIONAL COMMS	Distribution Automation (DA)	·	·						
	Integrated Operations Center	- (IOC)							
ELECTRIFICATION		Residential EV		-					
		PGE Workplace Charging Infrastructure & Fleet							
		Tri-Met Traction Power Substations							
		Commercial EV (e.g. School E	Buses, Daimler)	-					
	Building Electrification								

Non-Wire Alternatives (NWA): Draft Results

Opus One Presentation

Presentation attached.

Questions/Next Steps

Future Agenda Topics

May Meeting - 2.5 hrs

Updates on guideline requirements: 30 mins

- Hosting Capacity
- Long-term Plan
- Community Engagement

Forecasting of Load Growth, DER Adoption, and EV Adoption 60 mins

Baseline Data & System Assessment: 60 mins

June Meeting - 2.5 hrs

Updates on guideline requirements: 30 mins

- Baseline Data & System Assessment
- Long-term Plan
- Community Engagement

Hosting Capacity: 60 mins

July Meeting - 2.5 hrs

Updates on guideline requirements: 30 mins

- Baseline Data & System Assessment
- Hosting Capacity
- Community Engagement

Long-term Plan: 60 mins

Next Steps

Propose Meeting Topics

• Email us at **DSP@pgn.com** with suggested topics

		2021									
		January	February	March	April	Мау	June	July	August	September	October
em Part 1	Baseline data and system assessment	Data collection, organization, QA/QC, and partners visualization for feedback			lterate as necessary	Final draft shared with partners		PGE review process	Filed on Oct 15th		
Distribution System Planning (DSP) plan - Pá	Hosting capacity	System evaluation map and hosting capacity option analysis			lterate as necessary	Final draft shared with partners	PGE review process	Filed on Oct 15th			
	Community engagement plan	Development of the Community Engagement Plan						Present to partners for feedback	PGE review process	Filed on Oct 15th	
	Long term planning	Development of long-term plan				Present to partners for feedback	Final draft shared with partners	PGE review process	Filed on Oct 15th		

Oraann Nraann Nraann nann Oraann Oregon

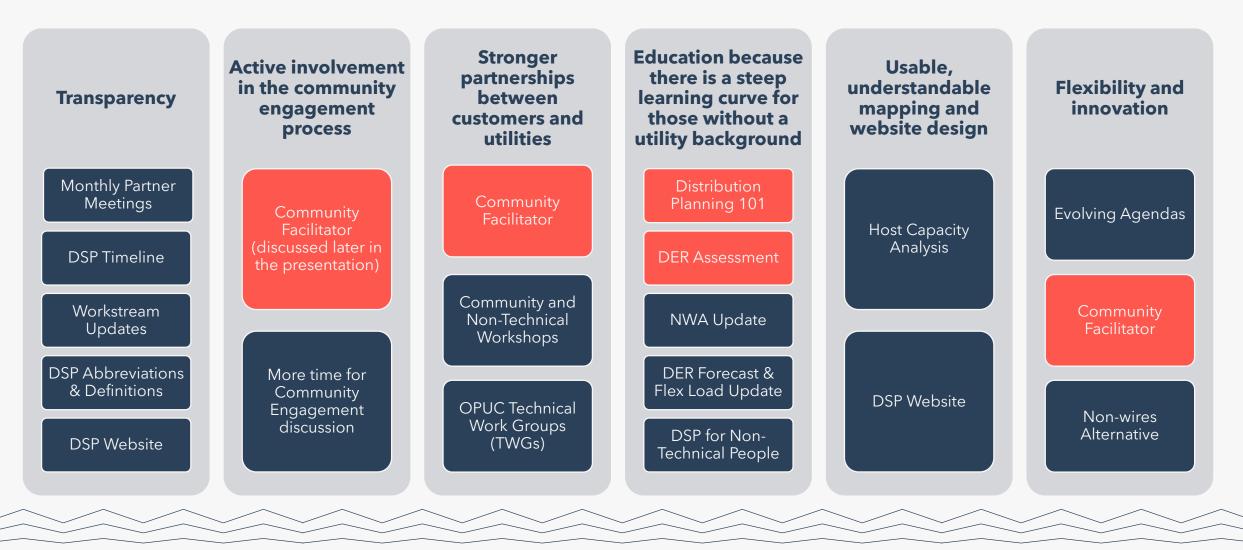
kind of energy

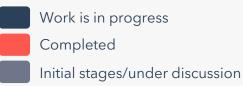
Additional Material

Runway

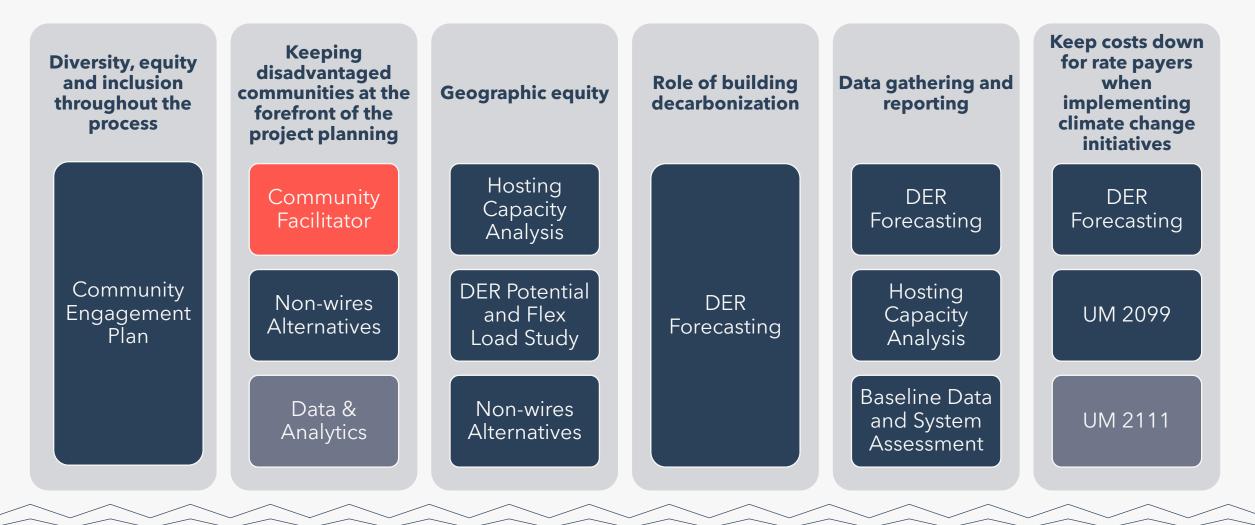
Overview of March Meeting

Topics included:


Presentation:


Forecasting of Load Growth, DER Adoption, and EV Adoption: DER Potential & Flex Load Analysis -Phase 1

DSP Details:


- Workstream Updates
 - Community Engagement Plan: Community Facilitator Scope of Work Update
 - Baseline Data and System Assessment: Example Datasets Update
 - Hosting Capacity Analysis: Approach Update
 - Long Term Plan: Approach Update

Topics of interest

Parking Lot

Question/Comment	Partner	Name	Response
Will you be implementing a green button/utility API type solution for the interval data from customers?	Community Energy Labs	Tanya Barham	To be considered during DSP Part II in 2022

Appendix

DSP Abbreviations

ADMS = Advanced DistributionManagement System BIPOC = Black, Indigenous, and People of Color C&I = Commercial and Industrial CBO = Community-Based Organization CE = Community Engagement CEP = Community Engagement Plan CTA = Consumer Technology Association DCQC = Direct Current Quick Charge DEI = Diversity, Equity, and Inclusion DER = Distributed Energy Resource DHP = Ductless Heat Pump

```
DR = Demand Response
DSP = Distribution System Plan
EJ = Environmental Justice
ERWH = Electric Resistance Water
Heater
EV = Electric Vehicle
EVSE = Electric Vehicle Supply
Equipment
HPWH = Heat Pump Water Heater
HVAC = Heating, Ventilation, and Air
Conditioning
IRP = Integrated Resource Plan
kW = kilowatt
L2 = Level 2 EV Charging
LDV = Light-duty Vehicle
```

LIDAR = Light Detection and Ranging MDHDV = Medium- and Heavy-duty Vehicles MW = Megawatt MWh = Megawatt-hour NREL = National Renewable Energy Lab NWA = Non-Wires Alternative PTR = Peak Time Rebates PV = PhotovoltaicSGTB = Smart Grid Test Bed T&D = Transmission & DistributionTstat = Thermostat TOU = Time of Use