Waiting Room

One moment please, while we wait for people to join

Song by artist:

Khruangbin - Two Fish and an Elephant

Please use the QR code to check-in: <u>Name and Organization</u>

Meeting Logistics

Teams Meeting

- Please click the meeting link sent to your email or <u>Click here to join the meeting</u>
 - +1 971-277-2317 (dial this number into your phone for best results)
 - PW: 885 018 032#
- Please use Microsoft Edge or Google Chrome with Teams as it will give you the best experience

During the presentation:

- All attendees will be muted; to unmute yourself via computer, click on the microphone that appears on the screen when you move your mouse
- To unmute yourself over the phone, **press *6**
- If you call in using your phone in addition to joining via the online link, please make sure to **mute your computer audio**
- Use the chat feature to share your comments and questions.
- Raise your hand icon to let us know you have a question

Quick Updates!

Important dates in 2022:

- OPUC procedural dates
 - Thursday, Feb 24 Special Public Meeting:
 - IOUs present DSP Part 1,
 - Staff make recommendation to the Commission, and
 - Commission considers Acceptance of Part 1 filings
- OPUC DSP-Part 2 Technical Working Group dates
 - Thursdays Jan 20 / Feb 3 / Mar 24 / Apr 14 / May 19 / Jun 16 (1-3 pm)
- DSP Part 2 filing date
 - Monday, Aug 15

Please visit us at <u>www.portlandgeneral.com/dsp</u>

You can email us at: <u>DSP@pgn.com</u>

Online Feedback Form

DSP Partners Mailing List

Change in Dates Notice – Mark Your Calendars

DSP Partnership Workshop - August 2022

- Previously scheduled for August 10, 2022
- New Date: August 3, 2022

DSP Sub-Workshops

- Previously schedule below on slide 6
- New Dates: TBD
 - Why: Hiring new resources, engaging CBOs for their expertise, Cost-effectiveness (NSPM), ETO grants, NWS

DRAFT - Community Engagement for Non-wire Solutions (NWS) Pilot Project Proposals

Based on December 2021 DSP Partnership Meeting

Steps	Timeline	Audience
1 Education & Listening Session	December 8, 2021	All Partner Workshop
Defining NWS, location, solution types, process, implementation	December 0, 2021	
2 Non-wires Technical Education & Listening Session	January 12 2022	All Partner Workshop
Draft criteria for prioritizing projects and screening of NWS	January 12, 2022	
3 Community Workshop Brainstorming	January 31, 2022	
Development of community definitions and priority areas	Sandary 31, 2022	
4 Non-wires Technical Reiteration Session	Fobruary 9 2022	All Partner Workshop
Draft final criteria for prioritizing projects and screening of NWS		
5 Community Workshop Education	Eebruary 28, 2022	FIC
Identification of existing projects with analyses identifying opportunities for NW	S Tebruary 20, 2022	LJC
6 Non-wires Technical Listening Session	March 9, 2022	All - Partner Workshop
Identification of existing projects with analyses identifying opportunities for NW	'S	
7 Community Workshop Brainstorming	March 31, 2022	FIC
Finalization of prioritized project list - ACTION REQUESTED		230
8 Non-wires Technical Information Session	April 13, 2022	All - Partner Workshop
Notice of finalization priorized project list		
9 Community Workshop Brainstorming	April 29, 2022	FIC
Identification of pilot projects with analyses identifying opportunities	April 27, 2022	230
10 Non-wires Technical Non-wires Technical Information Session	May 11, 2022	All - Partner Workshop
Identification of pilot projects with analyses identifying opportunities		
11 Community Workshop Recommendation	May 20, 2022	FIC
Recommended two pilots concepts - ACTION REQUESTED	Way 20, 2022	
12 Non-wires Technical Information & Feedback Session		
Final recommended two pilots concepts	June 8, 2022	All - Partner Workshop

Agenda

9:00 - 9:20 am - **Opening Remarks** (20 min)

9:20 – 9:35 am – DSP Part Two Updates: Community Engagement (15 min)

9:35 - 9:55 am - DSP Part One Updates: Solar Innovation & Community Partnership (20 min)

9:55 - 10:15 am - DSP Part One Updates: Hosting Capacity Analysis (20 min)

10:15 -10:35 am - Equitable Deployment of DERs & Non-wires Solutions (20 min)

10:35 - 10:45 am - Break (10 min)

10:45 – 11:05 am – Cost Effectiveness: PGE DERs Research Update (20 min)

11:05 - 11:55 am - **DER Forecast Updates** (50 min)

11:55 am - 12:00 pm - Next Steps and Open Questions & Comments (5 min)

Operating Agreements

Establishing norms with our communities is foundational to building trust.

To create a safe space, we establish common agreements such as respect and inclusivity.

Practice curiosity and seek to understand different perspectives.

Stay EngagedExperience DiscomfortSpeak your Truth
(knowing it's only part of the truth)Expect and Accept Non-closure

Share the Airtime. Step up, Step back.

<u>The courageous conversations framework</u> By Glenn Singleton and Curtis Linton

DSP Part Two Framing

Angela Long, Distributed Resources Planning, Manager

DSP Part Two Requirements Summary

Due August 15, 2022

Forecasting of

Load Growth,

EV/DER

Adoption

- Describe current state for Load Forecast process, tools, data
 - DER/EV:

Grid Needs

Analysis

- Forecast methodology and geographic allocation
- Adoption by substation high/med/low scenarios
- Forecast of load growth and adoption
 - Document process to assess grid adequacy and identify grid needs

• Discuss criteria used to assess reliability and risk - methods and modeling tools used

• **Present prioritized constraints publicly**, including prioritization criteria and timeline to resolve constraints

- Document process for identifying the range of solutions to address grid needs
- For each need, describe the data used to support investment decisions
- For large projects, describe process for engaging communities and getting input
- Propose 2 NWS pilot projects

Near-term Action

<u>Plan (2-4yrs)</u>

- Provide 2-4 yr. plan to address grid needs
- Disclose planned spending, timeline and recovery mechanism
- Discuss relationship between planned investments
- Discuss pilots being conducted to enhance the grid

10

Goals of DSP Part Two

Community Engagement

- Two-way flow of information

- Co-created education material

- Continued partnerships with community experts

Metrics & Data

- Resilience metrics for customer and utility

- Socio-economics

- Cost-benefit analysis

& Demographics

DER Resource Planning

- Climate risk modeling
- Decarbonization
- NWS, Locational
- DEI/Equity

- Estimated impacts of electrification adoption

- Cost-effective DER

- Environmental and social justice community
- Resilience/Outage
- High DER adoption

High Level - Project Timeline

Community Engagement

Jenn Latu, Diversity Equity & Inclusion, Principal Diversity Consultant

Our Engagement

Engaging Our Communities

Our objective is to foster **procedural equity and ensure diversity of voice** in the DSP planning process.

To accomplish this, we will continue to partner with Community-based Organizations (CBOs) and other organizations that have longstanding relationships and establish trust in environmental justice communities to:

- Co-develop solutions for NWA pilot projects
- Co-create community workshops to identify community energy needs, desires, barriers and interest in clean energy planning and projects
- Co-develop community education around key DSP practices and relevant energy related concepts

Where Are We?

CBO Engagement Met with Community Energy Project (CEP) to discuss their DSP Part 1 comments

In conversations to collaborate with CEP creating energy related education materials

Working on leveraging ETO grant for CBOs, by matching funds for potentially 3 CBOs

Hiring

Reviewing applications for Community Engagement & DEI Manager/Coordinator

Using EquityToolsPurchased Greenlink Equity Mapping (GEM) data access

Low-Income Affordability Data (LEAD) Tool

DSP Engagement: Solar Innovation & Community Partnership

Kathy Wagner, Product Development, Senior Product Developer

A Brighter Future Together

Solar is our customers' preferred energy source

Vibrant solar market

We all support continued growth

PGE is committed to **reducing emissions** associated with the power we serve to customers by 80% by 2030 (net zero emissions by 2040) – HB 2021

Customer-sited solar is key to us reaching these goals

It's going to take all of us

• <u>Local communities</u> & <u>stakeholders</u> co-create solutions with an eye toward equity & resilience

Near-term

• Co-create solutions that **close the gaps & accelerate the equitable adoption of solar**, particularly for income qualified customers

Innovation, customer-centric design, and partnership

High-Level Process Overview

Next Steps – Q1 '22

Please send your feedback to Kathy Wagner **Kathy.wagner@pgn.com**

- Identify and engage stakeholder (DSP, others)
- Agree to participation in planning, ideation and review workshops
- Commit to 2-3 hours per month through August '22
- Align on schedule and desired co-development outcomes

Ideation Jan-March '22

- Development Plan Update Jan/Feb (TBD): Schedule, workshops, co-developers, etc.
- Customer research March (TBD): We want to hear from the people in our communities who are currently participating in, or who could benefit from solar
- Ideation workshops March (TBD): Working together, we'll identify gaps, opportunities and potential product concepts

With <u>feedback</u>, and/or if <u>interested in participating</u> in codevelopment workshops

DSP Part One Updates: Hosting Capacity Analysis

Joe Boyles, Distributed Resources Planning

Today's objective

Review and confirm next steps with respect to Hosting Capacity Analysis (HCA)

Acknowledgement of DSP Part One – 12.3.21 Written Public Comments

Community Engagement	Hosting Capacity Analysis (HCA)	Modernized Grid	IRP and DSP Coordination	Resilience	Cybersecurity
 "PGE has the power to change the tone and culture of those spaces and build trust with the entities with which they want to work." BUT It is not clear how we incorporated feedback and what changed in our thinking due to the partner input it received Our intent was clear but lacked action 	 We are moving too fast We need to have more discussion data is needed (e.g., day-time minimum load, socioeconomics and demographics RVOS is not the right cost-effectiveness tool Map should be updated to reflect use cases and partner feedback 	 Spending should be focused on equity Discuss on spending is needed, specifically, if we expect costs to continue to rise in the future Discuss on "aging" investments is needed Need to ensure the system can accommodate EV impacts Need to discuss cost- effectiveness work approach 	 DSP and IRP should be consolidated Load forecasting approach needs updated 	•Discuss on "hardening" investments is needed	•There are still data concerns that need addressed

PGE HCA Plan Revisited

Process

- Identify stakeholders who want to participate in the review and feedback process
- Review HCA plan with stakeholders
- Use IREC's whitepaper* as a guide
- Review results of each step with stakeholders and take feedback

Learning Objectives

- Level of effort required to produce HCA inputs
- Understanding of data quality
- Experience with DRIVE
- Results validation effort and effectiveness
- Effective presentation of results

Evolution

- Increase access to data
- Add DERs beyond DG
- Update HCA results based on defined triggers
- Refresh data on a regular cadence, e.g., update monthly the installed/ queued generation data

* <u>https://irecusa.org/resources/key-decisions-for-hosting-capacity-analyses/</u>

Next Steps

1. Current map will be refined to **incorporate equity** indicators and other related data sets

2. Adopt a "no regrets" approach to advancing HCA – make sure nearterm investments build toward future

3. Engage Technical Working Group (TWG)

Moving Toward a Future Distribution Planning Process

Part Two

Equitable deployment of DERs and non-wires solutions

Nihit Shah, Distributed Resource Planning, Senior Analyst

Today's objective

Sharing a broader look at how DERs can assist environmental justice (EJ) communities

Sharing how PGE is expanding its decision making to include equity in NWS projects

Overlap of EJ impact and DER adoption (illustrative)

Equity lens in NWS decision making

Equity in targeted DER programs

Ideation Co-develop equity metrics to define success for these programs

Socialization

Demonstration effectiveness of metric

Finalization

Regulatory approval of equity metric and associated funding

Realization

Programs designed to explicitly address EJ communities

Introduction

Development of new tariffs to roll out these program

PGE will email its draft NWS process to partners for comment in February

Co-develop the equity lens/metric with CBO partners beginning in February

PGE will integrate equity lens/metric into DER decision making by June

Non-wires solutions can assist EJCs, but do not explicitly target EJCs

PGE will co-develop equity metrics with community partners

PGE will work with community partners, ETO and the OPUC to develop targeted DER programs

5 Minute Break

Cost Effectiveness (CE): PGE Distributed Energy Resources (DERs) Valuation Research Update

Bachir Salpagarov, Distributed Resource Planning, Strategy and Planning Analyst

Enhancing Cost-Effectiveness (CE) Analysis

In 2021 PGE engaged with third party consultants Applied Energy Group (AEG) and Cadmus. Through these engagements we are looking to:

Review our current CE methodology and inputs

Perform gap analysis and valuation research

Refine and develop CE methodology and inputs

Prioritize non-energy impacts (NEIs) for customers and society

AEG: Energy Impacts and CE Tool

PGE Model Use-Case

Refine and update PGE's current inputs, assumptions and methodologies to assess DER cost-effectiveness and develop a DER Cost Effectiveness Modeling Tool.

Cadmus: Non-Energy Impacts (NEI)

- Host Customer NEI's
- Low Income NEI's
- Societal Impacts

Host Customer Impacts	DR	DG - Customer	DG - Utility	Storage - Customer	Storage - Utility	EV Controls	EV Proliferation	
Host Customer NEIs								
Value of Service Lost								
Transaction costs								
Asset value								
Productivity								
Economic well-being								See NEIs Mat
Comfort								
Health & safety								for added det
Empowerment and control								
Satisfaction and pride								
Low-Income NEIs								
Reduce forced mobility								
Reduced arrearages								
Reduced disconnections / collections								

NEIs by Perspective and Product Type

Societal Impacts	DR	DG - Customer	DG - Utility	Storage - Customer	Storage - Utility	EV Controls	EV Proliferation	
Societal Impacts								Higher potential for impact
Resilience								Lower potential for impact
GHG Emissions								Prioritized for review
Other Environmental								
Economic and Jobs								
Public Health								
Low Income (Society)								
Energy Security								

CADMUS

Continued work on CE

 Enhance CE tool to perform analyses on <u>current DER</u> <u>programs &</u> <u>proposed NWS</u> <u>projects</u> Develop values for costs and benefits (energy and nonenergy benefits) • Optimization work between asset deferral and other grid services

CE Tool

Optimization

Working Sessions Planned

NSPM

National Standard Practice Manual (NSPM)

- Invited NSPM co-authors to present high-level overview for applying DER cost-benefit methods to DSP (planned for February or March)
- Tim Woolf from Synapse Energy and Economics and Julie Michals from E4TheFuture to present on NSPM and methods, tools and resources for estimating cost-benefit of DER's

Subgroups

PGE led working groups

- Technical workshops to further discuss (March-May):
 - Cost-effectiveness framework
 - ✓ PGE specific inputs
 - Applications (NWS, TE, Flex Load)
 - ✓ Other ?

Partnership Meetings

PGE to summarize efforts monthly to larger group

• Report back to entire group at monthly partner workshops

DER Forecast Updates

Andy Eiden, Distributed Resource Planning, Principal Planning & Strategy Analyst

DSP Guidelines for DER Forecasting

Per the OPUC Guidelines, Section 5.2 outlines initial requirements for **Forecasting of load growth, DER adoption, and EV adoption.** Utilities are to document:

- A) Discussion of current utility processes for distribution system load growth forecasting
- B) Forecast of DER adoption and EV adoption by substation
- C) Results of forecasting load growth, DER adoption, and EV adoption

Today we will focus on **our progress for items A & B** and leave discussion of locational forecasting results for future partner meetings.

Corporate load forecast components and update schedule

Near Term (1-5 Years)

- 25 regression-based monthly energy deliveries models
- Business cycle influences energy deliveries
- Individually forecasts ~25 large customer
- Explicitly removes incremental energy efficiency
- Updated as frequently as every quarter

Long Term (5+ Years)

- Convergence to long term growth rates, agnostic to business cycle and specific customer growth
- Three aggregated customer class models
- Assumes energy efficiency is embedded in growth rates
- Growth rates are appended to near term model output
- Updated for IRP Cycle

Peak Demand

- Model spans full time horizon, near term and long term
- Average energy is a model input
- Updated annually

Distribution planning current practice

System-wide load updates occur annually in April, and informs continuous planning efforts to monitor new load requests, local developments, etc.

Planners track and integrate a variety of information that informs locational load growth assumptions, including:

- Local building permit activity
- Zoning policy changes
- New service requests
- Existing customer expansion plans

Bottom-up load additions tracked and associated with existing equipment that could serve the load

- If new load growth would exceed existing capacity, we investigate options to reconfigure the loading on existing equipment to reliably accommodate the new load
- Potentially would initiate a new project to add system capacity

Current load growth disaggregation

Currently, we calibrate the **corporate load forecast** to the <u>historic trends</u> and <u>past peak</u> <u>loads</u> of <u>each substation</u>, adjusting for any known customer additions. After accounting for **known/anticipated customer growth**, we allocate the <u>remaining top-down load</u> <u>growth</u> from the corporate load forecast on a proportional basis according to a 5-year historical trend of load growth on each feeder.

We are currently **reviewing** this **process** and aiming **to make some improvements** that <u>increase</u> our <u>accuracy</u> and <u>ability to pair</u> the <u>expected</u> <u>load growth with a granular</u> <u>DER forecast</u>.

Key updates we are working through:

- Improving the characterization of bottom-up known load additions to capture customer segment, and number of new customers (e.g., assigning 8760 load shapes to residential versus just peak MW)
- Calibrating growth from corporate load forecast based on specific customer mix on each feeder, as
 opposed to evenly across all feeders
- Adding weather normalization to the disaggregated load forecast to enhance ability to test constraints and potential solutions weather-based planning scenarios

Example of top-down calibration

Example – creating weather normalized load shapes

Hourly consumption data from 2019 is modeled with CalTRACK, then forecast against the Typical Meteorological Year (TMY3) data for the nearest qualified NOAA weather data set.

Future years are modeled using the actual calendar days and TMY3 weather and scaled with PGE's revenue-class load growth forecast.

Locational DER Forecasting

DER and Flex Load Study with DSP Part I

PGE is required to include forecasted demand-side resources in the IRP and DSP

- IRP has long history of forecasting DR and EE
- DSP forecast is new this year as result of UM 2005

Study covers forecast of the following distributed energy resources (DERs)

- Energy efficiency (done by Energy Trust)
- Demand response / flex loads
- Distributed rooftop PV
- Distributed battery storage
- Electric vehicles and charging needs

Full study available online as Appendix G to the DSP Part I, available at: <u>https://portlandgeneral.com/about/who-we-</u> <u>are/resource-planning/distribution-system-planning</u>

PGE DER and Flexible

🕻 cadeo 🛛 🗖 Brattle

Load Potential -

07 SE Washington Street, Suite 45

Phase 1

121 SW Salmon S

Portland General Electric

This study informs DER adoption for PGE DSP

Cadeo developed AdopDER model in 2020-2021 to simulate the load impacts from the co-adoption of 40+ distributed energy resources in PGE service area between 2021 and 2050

Two project phases

Phase 1

- Service territory technical, economic, achievable potential study for PGE IRP
- Measure feasibility varies by customer
- Adoption probability varies by DER and time, but not by premise

Phase 2

- Locational technical, economic, achievable potential
- Measure feasibility varies by customer
- Adoption probability varies by DER, time, and premise

We are here

Adoption propensity methodology

Premise-specific measure adoption probability with statistical and heuristic models

Statistical models where sufficient data exists, heuristic elsewhere

Statistical Model

- EV LDV (Res, non-Res Fleet)
- Solar PV (Res, non-Res)

Heuristic Model

- EV Charging
- BTM Storage (Res, non-Res)
- Microgrid

We use a structured framework for statistical modeling

For all DER types modeled with statistical modeling approach, we follow the below steps to:

Acquire Data		Combine	Sam	ple	rain		Validate		Deploy	
• Identi candid variab	fy date les	Join all candidate variables into single dataset		Train model on 70% of premises Validate model on 30% of premises	 Variable Selection Model specification 	on	• Test rank order with validatio KS	n	 Add scorecard to AdopDER Dynamic scoring ir AdopDER 	

Model selection and validation uses an empirical process

- Example of **statistical** model selection and validation for residential solar.
- Similar process for other models.

Univariate Screening and Model Selection: Res Solar

	Information
Variable	Value
building_type	0.788
ct_med_hh_inc	0.637
ct_num_solar_adopt	0.554
ct_tot_pop	0.492
HomeOwnerRenterPremPlusAX	0.438
ct_num_bev_adopt	0.365
xEstimatedIncomePremPlus	0.327
ch_num_vehicles	0.302
AgeCustName	0.256
AX_Score_GreenAffinity	0.242
consump_last_12_mos	0.240
ct_pv_kw_median	0.231
vintage	0.176
AX_Score_TechPropensity	0.084
has_battery	0.058
ct_avg_energy_burden_pct	0.040
ct_urban_rural	0.014
psps_zone	0.011

K-S Fit Statistics: Res Solar

Validation Sample Adoption Rate by Score Quintile: Res Solar

Selected Variable

We use statistical "scorecards" to rank-order adoption probability

- Scorecard is a transformation of logistic regression coefficients
- More points = Higher adoption probability
- Model scoring is simple, fast important when done at AdopDER scale

Model Scorecard: Residential Solar

Variable	Bin	Score Points
basepoints		493
building_type	MF	-325
	MH%,%SF	31
ct_med_hh_inc	missing	-17
	[-Inf,40000)	-26
	[40000,50000)	-13
	[50000,65000)	-2
	[65000, Inf)	7
ct_num_solar_adopt	missing	-80
	[-Inf,10)	-169
	[10,20)	-64
	[20,25)	-25
	[25,75)	22
	[75, Inf)	95
HomeOwnerRenterPremPlusAX	missing	-97
	0	34
	R	-112

AdopDER uses scorecards to adjust adoption probability

- Add variables (statistical and heuristic) to AdopDER customer input files
- For each year, premise, and measure, we use a function to
 - Calculate score from scorecard
 - Assign each score to a quantile-based bin
 - Adjust adoption probability

Using PGE Test Beds to test locational adoption and load impacts

Testbed Substations for Phase 2 AdopDER testing

Locational EV and EVSE adoption

Gross and net loadshapes for each feeder

- Residential and small commercial rate class loadshapes are modeled using a 10% sample of meters on each feeder (minimum sample size of 300 meters)
- Larger customers are modeled individually (census).
- Then we apply load impacts by DER type and level of adoption to get a net load shape

Baseline, DER, and net load impacts

Chart to the right shows the annual hourly (8760) load at the feeder-level for a feeder in Hillsboro

Baseline load growth (left), DER impact (center), and net load (right) for years 2027 and 2050

Upcoming work for AdopDER

- Conduct quality control on locational results
- Scale the results to entire PGE service area
- Integrate results into distribution planning and IRP workflow
- Develop modules within AdopDER to account for equity, resiliency, and environmental factors
 - Intention is to identify resource potential for different customer groups
 - Results will inform product development efforts and program outreach
 - Metrics used will reflect NWS equity lens conversations

Next Steps

DRAFT Agenda for 2022

February

• DSP Updates:

- Community Engagement
- Product Development
- HCA
- DER Forecasting & Adoption
- Current & Future Grid Needs Identification Process
- NWS

March

- DSP Updates
- DER Forecasting & Adoption
- Current & Future Grid Needs Identification Process
- NWS
- Interconnection
- Community Engagement

April

- DSP Updates
- DER Forecasting & Adoption (Andy – 45 min update on AdopDER)
- NWS
- Community Engagement

You can reach us at:

<u>DSP@PGN.com</u>

Let's meet the future together.

