Handout 2: Renewable Resources in the 2016 IRP This handout consists of a summary table that provides the DNV GL technical and financial parameters for renewable resources considered in the 2016 IRP. The complete DNV GL report is available in the 2016 IRP document as Appendix M. #### **Contact Us:** Portland General Electric Integrated Resource Planning 121 SW Salmon Street Portland, OR 97204 (503) 464-7312 irp@pgn.com ### **Portland General Electric's 2016 IRP Parameters** | | Metric | Units | Offshore Wind 30
aMW: Coos Bay,
Oregon | Wind 116 aMW: lone, Oregon | Wind 100 aMW:
Montana East of
Rockies Along
Colstrip Line | Solar PV 25 aMW
Fixed Tilt: Christmas
Valley, Oregon | Solar PV 25 aMW
Single Axis Tracking:
Christmas Valley,
Oregon | |----------------------|---|----------|---|---|--|--|--| | | Capacity: MW | MW | 72 | 338 | 236 | 115 | 103 | | | pacity factor % 42% 34% | | | 42% | 21.70% | 24.20% | | | 2 | Power curve | - | MHI Vestas V164-
8.0MW | GE 2.0-116 | GE 2.0-116 | N/A | N/A | | l to | Expected forced outage rate | % | 2.5% | 1% | 1% | 1% | 1% | | Parameters | Panel efficiency if applicable | % | N/A | N/A | N/A | 15.5% - 16% | 15.5% - 16% | | Š | Inverter efficiency if applicable | % | N/A | N/A | N/A | 98% - 99% | 98% - 99% | | | | 70 | N/A | N/A | NA | 30/0 - 33/0 | 3070 - 3370 | | Technical | Maintenance cycle and average maintenance days | - | Once every 12
months, 4 days per
turbine | Semi-annual, 60-80 hours per turbine | Semi-annual, 60-80
hours per turbine | 3 days per year plus
quarterly
maintenance (at night) | 3 days per year plus
quarterly
maintenance (at night) | | | Approximate footprint | Acres/MW | 30-40 | 80 | 80 | 5 | 7 | | | Construction period, once permitted | months | 18-24 | 10 | 9 | 6-8 | 6-8 | | | Construction period, once permitted | months | 10-24 | 10 | 3 | 0-0 | 0-8 | | | Total quarnight capital cost including EDC and | | ĊEO 4N 4 | \$558M | ¢40484 | | | | | Total overnight capital cost, including EPC and owner's costs | \$M | \$504M
(\$7M/MW) | \$558W
(\$1.68M/MW) | \$401M
(\$1.70M/MW) | | \$204M (\$1.98M/MW) | | | Standard deviation from average total overnight capital cost | \$M | Expected range: \$5M-
\$8M/MW | Std dev: \$0.350M/MW | Std dev: \$0.350M/MW | Expected range:
\$1.7M-\$ 1.9M/MW | Expected range:
\$1.9M-\$-2.1M/MW | | | Escalation rate for capital costs over next 20 years, if different from inflation | | See Capex maturity tab | | | Fixed O&M | \$/MW/yr | \$165,000 | \$45,000 | \$45,000 | \$9,900 | \$10,000 | | Einancial Parameters | Breakdown of fixed O&M costs including, but not limited to, service contracts and warranty costs, royalty payments, and labor | \$/MW/yr | Vessels: 53,000/MW Parts: \$11,000/MW Labor: \$22,000/MW Onshore support: \$22,000/MW BOP 0&M: 3,000/MW Insurance: \$16,000/MW Lease payments: \$28,000/MW Other: 10,000/MW | Scheduled Turbine O&M: \$17,000 /MW BOP O&M: \$3,000-5,000 /MW Utilities: \$1,000 /MW Project Mgmt Admin: \$3,000 /MW Gen Charges: \$1,500 /MW Land Lease: \$5,500 /MW Insurance: \$3,000 /MW Property Taxes: \$5,500 /MW Professional Advisory: \$3,000/MW Other G&A: \$1,500/MW | Scheduled Turbine O&M: \$17,000 /MW BOP O&M: \$3,000- 5,000 /MW Utilities: \$1,000 /MW Project Mgmt Admin: \$3,000 /MW Gen Charges: \$1,500 /MW Land Lease: \$5,500 /MW Insurance: \$3,000 /MW Property Taxes: \$5,500 /MW Professional Advisory: \$3,000/MW Other G&A: \$1,500/MW | Module cleaning:
\$5,000-6,500/MW;
Other: \$3,400-
4,900/MW | Module cleaning:
\$5,000-6,500/MW;
Other: \$3,500-
5,000/MW | | | Non fuel variable O&M | \$/MW/yr | N/A | N/A | N/A | N/A | N/A | | | Approximate capital drawdown schedule | - | Approx. 15% down,
65% for deliveries to
port,
5% for construction,
15% for
commissioning (pro
rata) | Approx. 20% down, 50% on Ex-works completion (pro rata), 20% on delivery to site, 5% on commissioning, 5% on final completion | Approx. 20% down,
50% on Ex-works
completion (pro rata),
20% on delivery to
site,
5% on commissioning,
5% on final completion | Approximately: 10%
down at start,
80% in monthly
progress payments,
10% at substantial
completion | Approximately: 10%
down at start,
80% in monthly
progress payments,
10% at substantial
completion | | | Ongoing expected Capital Additions or maintenance accrual | \$/yr | Included in Fixed
O&M (above) | \$16,500 | \$16,500 | \$2,400 | \$2,500 | | | Design life: years | vears | 25 | 25 | 25 | 30 | 30 | Design life: years Decommissioning accrual years 25 \$1,600,000 ### **Portland General Electric's 2016 IRP Parameters** | | Capacity: MW | Offshore Wind 30
aMW: Coos Bay,
Oregon
Based on estimated
42% NCF | Wind 116 aMW: Ione,
Oregon
Based on estimated
34% NCF | Wind 100 aMW:
Montana East of
Rockies Along
Colstrip Line
Based on estimated
42% NCF | Solar PV 25 aMW
Fixed Tilt: Christmas
Valley, Oregon
Assumed typical dc/ac
ratio of 1.20 | Solar PV 25 aMW
Single Axis Tracking:
Christmas Valley,
Oregon
Assumed typical dc/ac
ratio of 1.20 | |----------------------|--|---|--|--|---|--| | | Capacity factor | Mean wind speed of
approximately 9 m/s,
which is based on
preliminary mesoscale
mapping | Mean wind speed of
approximately 6.6
m/s, which is based
on extensive wind
resource analysis and
experience in the
region | Mean wind speed of
approximately 8.2
m/s, which is based
on extensive wind
resource analysis and
experience in the
region | Result given in AC based on DC capacity factor of 18.1% with DC/AC ratio of 1.2. Assumed 30 deg tilt, due south orientation, Normalized by dc capacity, assumed Performance Ratio of 79.5%, solar resource based on experience, includes loss factor for inverter clipping. | Result given in AC based on DC capacity factor of 20.2% with DC/AC ratio of 1.2. Assumed horizontal single axis tracking oriented due south, Normalized by dc capacity, assumed Performance Ratio of 78.6%, solar resource based on regional irradiation data, includes loss factor for inverter clipping. | | Technical Parameters | Power curve | This is the turbine on which the project design is currently based. See "MHI Vestas V164-8.0MW PC" tab | The GE 2.0-116
turbine was identified
as representative of
the type of
technology typically
utilized in projects
with this wind regime | The GE 2.0-116
turbine was identified
as representative of
the type of
technology typically
utilized in projects
with this wind regime | N/A | N/A | | Techn | Expected forced outage rate: % | Standard assumed value; grid availability is excluded. | | | Panel efficiency if applicable | N/A | N/A | N/A | Based upon first tier
suppliers, 72 cell
panels, 290 w - 310 w | Based upon first tier
suppliers, 72 cell
panels, 290 w - 310 w | | | Inverter efficiency if applicable | N/A | N/A | N/A | typical aggregate loss
factors. Transformers
add an additional 1%
loss | typical aggregate loss
factors. Transformers
add an additional 1%
loss | | | Maintenance cycle and average maintenance days | Industry standard, this
does not include
various inspections | Industry standard in
US | Industry standard in
US | maintenance occurs
at night, minimal
inverter maintenance | maintenance occurs
at night, minimal
inverter maintenance | | | Approximate footprint: Acres/MW | Based on Block Island,
Rampion, and Kentish
Flats Extension | Typical in the US | Typical in the US | Standard industry
assumption. Trackers
need additional area | Standard industry
assumption. Trackers
need additional area | | | Construction period, once permitted | Construction period
only, assumes
financing is also
secured | Based on DNV GL
expected durations
for construction tasks | Based on DNV GL
expected durations
for construction tasks | Largely dependent
upon EPC Contractor
man-loading, and also
weather dependent | Largely dependent
upon EPC Contractor
man-loading, and also
weather dependent | ## **Portland General Electric's 2016 IRP Parameters** | icial Parameters | Total overnight capital cost, including EPC and owner's costs | Based on industry
expectations for
floating offshore wind
projects | \$1,000/kW turbine,
\$450/kW EPC,
\$230/kW
development/continge
ncy/etc | \$1,000/kW turbine,
\$470/kW EPC,
\$230/kW
development/continge
ncy/etc | \$2.15 per Wp, which
includes construction
costs and reflects
fixed-tilt technologies
and the larger utility-
scale PV projects that
require financing | \$2.38 per Wp, which includes construction costs and reflects single axis tracking technologies and the larger utility-scale PV projects that require financing | |------------------|--|---|---|--|---|---| | | Standard deviation from average total overnight capital cost | floating offshore wind
assumed to be at the
high end of the range | Standard deviation is
high due to limited
availability of recent
data of similar
projects in this region | Standard deviation is
high due to limited
availability of recent
data of similar
projects in this region | A cost range of \$2.00 - \$2.30 per Wp is expected for fixed-tilt projects. This is considered to represent the range of typical projects in the Pacific Northwest; it does not capture the extremes of the possible range. | A cost range of \$2.25 - \$2.50 per Wp is expected for single-axis tracking projects. This is considered to represent the range of typical projects in the Pacific Northwest; it does not capture the extremes of the possible range. | | | Escalation rate for capital costs over next 20 years, if different from inflation | Informed by the IEA's
Annual Energy
Outlook (2013) and by
DNV GL's experience
with utility-scale
project cost trends | Informed by the IEA's
Annual Energy
Outlook (2013) and by
DNV GL's experience
with utility-scale
project cost trends | Informed by the IEA's
Annual Energy
Outlook (2013) and by
DNV GL's experience
with utility-scale
project cost trends | Informed by the IEA's
Annual Energy
Outlook (2013) and by
DNV GL's experience
with utility-scale
project cost trends | Informed by the IEA's
Annual Energy
Outlook (2013) and by
DNV GL's experience
with utility-scale
project cost trends | | | Fixed O&M: \$/MW-month | See below, averaged over economic lifetime | | | Breakdown of fixed O&M costs including, but not limited to, service contracts and warranty costs, royalty payments, and labor. | Based on European experience, adjusted for floating project | Based on DNV GL
database | Based on DNV GL
database | \$2000/MWp; Budget includes: System monitoring, regular visual inspections, preventative maintenance, periodic electrical testing, inventory management, occasional medium voltage and inverter work; on-site staff is typically present for these services on projects larger than 25 MWp. No non-fuel variable | \$2000/MWp; Budget includes: System monitoring, regular visual inspections, preventative maintenance, periodic electrical testing, inventory management, occasional medium voltage and inverter work; on-site staff is typically present for these services on projects larger than 25 MWp. No non-fuel variable | | | Non fuel variable O&M: \$/MWh | O&M costs Based on known projects, will depend | O&M costs | O&M costs | O&M costs | O&M costs | | | Approximate capital drawdown schedule | on contractual
responsibilities | Typical for US industry | | | Ongoing expected Capital Additions or maintenance accrual: \$/yr. | Small project, with
likely shared vessel
resources, so can not
separate scheduled
and unscheduled
maintenance costs | Based on DNV GL
database, 25-year
average value, does
not include
unscheduled BOP
maintenance | Based on DNV GL
database, 25-year
average value, does
not include
unscheduled BOP
maintenance | \$2.90 per kWp / yr This is driven by inverter repair/replacement | \$3.00 per kWp / yr This is driven by inverter repair/replacement | | | Design life: years | project life, Industry
standard (design life is
25 years) | project life, Industry
standard (design life is
20-25 years) | project life, Industry
standard (design life is
20-25 years) | project life, Industry
standard (design life is
30 years) | project life, Industry
standard (design life is
30 years) | | | Decommissioning accrual: \$/yr. | 7-10% of the capital cost. A bond will be required to accumulate funds. | Decommissioning cost is widely assumed to be offset by salvage value of used components. A bond may be required to accumulate funds, although this is uncommon for onshore wind projects. | is widely assumed to
be offset by salvage
value of used
components. A bond
may be required to
accumulate funds,
although this is
uncommon for | Decommissioning cost
is widely assumed to
be offset by salvage
value of used
components. A bond
may be required to
accumulate funds. | Decommissioning cost
is widely assumed to
be offset by salvage
value of used
components. A bond
may be required to
accumulate funds. |