

PGE

Learning Lab

Learning Lab # 10 - December 14, 2023

Meeting Logistics

Chat box

Video

Raise Hand

Closed Caption

Operating Agreements

Establishing norms with our communities is foundational to building trust

To create a **safe space**, we established **common agreements** such as **respect, honoring diversity of thought**, and **inclusivity**

Practice curiosity and seek to understand different perspectives

10:00 - Welcome & Meeting Logistics

10:10 - Distributed Energy Resources (DERs) Integration Opportunity

11:05 - Break

11:10 - Distribution System & DER Readiness

11:55 - Closing Remarks & Next Steps

12:00 - Adjourn

Meeting Objectives

Strategy and goals: Share with Stakeholders our strategy for increasing the number of distributed energy resources (DERs) on the distribution system

Distribution system 101: Provide an overview of considerations that go into planning for more DERs

Empowered Communities | We Heard

Themes identified in relation to community needs

- Outcomes
- Transparency
- Trust
- Financial Needs and Incentives
- Education and Awareness
- Community Benefits
- Community/Customer Involvement
- Customer Resilience
- Renters' vs Owners' Needs

Distributed Energy Resources (DERs) Integration Opportunity

Jason Salmi-Klotz, Senior Manager DER Strategy & Planning Learning Lab # 10 - December 14, 2023

Objectives

Present our rationale for integrating Distributed Energy Resources (DERs) into the Distribution System

Elicit feedback on our rationale

Share our next steps

PGE's Annually Reported Emissions to DEQ*

*Anthropogenic emissions from power generated and purchased to serve Oregon retail customers.

Emissions Targets

Path to 2030 Strategy

PGE

Our decarbonization strategy is multi-faceted to support reliable and affordable power

Learning Lab -12/14/2023

Meeting energy needs today

Meeting future energy needs – without DERs

For illustration purposes only

Zooming in on Transmission

2023

2030

Problem Statement

We have to add renewable resources

We are transmission constrained

We need to add transmission, but it requires time

Continue & Accelerate Modernizing the Grid

two-way power flow end users/customers can also generate power and/or interact with the electric grid

Distributed Energy Resources (DER) examples:

Distributed Energy Resources Efforts Over Time

Long-term Energy Impacts from Distributed Energy Resources (DERs)

Number of Electric Vehicles Forecasted to 2040

Reference Case - EVs on the Road

Long-term Flex / Capacity Potential from Distributed Energy Resources (DERs)

For illustration purposes only

Stages of DERs in the Distribution System

Advancing Our Ability to Deploy and Use DERs

Communication Path to All DERs

Aggregate to Enable Scale

Operate to Provide Valuable Services

Opportunity to Integrate DERs

What is the Value for our Customers | Control

Customers will be in control of their energy journey

Sell Excess Energy Produced to Utility

Improve Efficiency of Energy Wallet

What is the Value for our Customers | Reliability

Climate Change Multiple Day Extreme Weather Events

Example of DERs Use for Reliability (3-day event Aug = 94 MW shaved off of peak)

Using August extreme weather event scenario

- Reduce risk of rolling brownouts and blackouts
- Avoid buying very expensive energy off the market during extreme weather event hours
- Avoid potential harm to system equipment
- Provide additional benefits to customers (DERs)

To Empower our Customers on their Energy Journey

To harness all Distributed Energy Resources (DERs) available in the distribution system, including our customers' DERs, we need to continue and accelerate modernizing our grid

We want to elicit feedback

Do these concepts resonate with you?

How do you see fitting into this effort?

How can we make it more relatable?

Other

Path to 2030 Strategy

PGE

Our decarbonization strategy is multi-faceted to support reliable and affordable power

Learning Lab -12/14/2023

Questions/Comments

555 D

BREAK

PGE

Distribution System & Distributed Energy Resources Readiness

Fatima Colorado, Manager, Distribution Planning Learning Lab # 10 - December 14, 2023

Objective

Recap previous Distribution System 101 (*link to past ppt Current Distribution System Planning Process*)

Distribution system components that prepare the grid and customers for Distributed Energy Resources (DERs) (*link to past ppt Long Term Plan: Grid Modernization*)

Distribution Information

The Grid

Distribution System & Distributed Energy Resources Integration

Learning Lab. 12/11/2023

Moving from one-way to two-way power flow

DERs have an impact in the Distribution System

Effective integration of DERs requires new types of energy management tools

Moving to a two-way grid

Energy Efficiency (EE)

- Double pane windows
- Wall insulation
- LED light bulbs

Reduce energy need

Flexible Loads/ Demand Response (DR)

- Smart Thermostats
- Peak Time Rebate
- Smart Water Heater
- Customer Batteries
- Managed Charging *Reduce energy need & shift energy use to another time*

Generation and Storage Resources

- Solar Rooftop
- Customer Batteries
- Future EV Batteries

Produce energy

*some produce energy, some reduce energy need, some can do both, some are load and generation

What is necessary to support two-way power flow?

Connected

Visible

Actionable

This affects how we

- Plan
- Operate
- Build

Learning Lab -12/14/2023

One-way street becoming a two-way street

Questions/Comments

555 D

Next Steps and Closing Remarks

Please share your feedback for us to improve

Next Steps

We will evaluate your feedback and report back to you in January

01/25/2024 Learning Lab Topics:

Distribution System Vision

Forecast and DER Forecast

Next Steps & Closing Remarks

U-U

- Dec 14 | IRP/CEP Staff Report and Final Recommendations| <u>LC 80</u>
- January 24 | 10a-12p | Zoom | CBIAG Meeting
- January 25 | 10a-12p | Zoom | Learning Lab # 1

Meeting materials and recording will be posted to our Plan's Engagement webpage at <u>Plan's Engagement | Portland</u> <u>General Electric</u>

For more information or if you have questions, please email us at <u>LearningLabs@pgn.com</u>

Happy Holidays and Thank You for your participation in our plans

Oraann Oraann **Nraann** nann Oraann Oregon

kind of energy

Appendix

Energy Unit

Kilowatt-Hour (kWh)

A kilowatt-hour (kWh)

electricity consumption over 1 hr.

Capacity Units

Megawatts (MW)

energy output of a power plant

600 MW

198,000 homes

Capacity Factor

- Go the IRP and get the definition
- Can I get the amount of resource/energy from that generation unit whenever I want
- Consistency of delivery

U.S. Capacity Factor by Energy Source - 2021

Energy Usage in the United States

- Electricity Generation: **37.7 Quads**
- Rejected Energy on Electricity generation **24.3 Quads**

Source: LIML July, 2023. Data is based on DOF/EIA SEDS (2021). If this information or a reproduction of it is used, oredit must be given to the Lawrence Livermore Mational Laboratory and the Department of Energy, undue whose auspices the work was performed. Distributed electricity represents only retail electricity and does not include self-generation. EIA reports consumption of remewbel resources (i.e., hydro, wind, geothermal and solar) for electricity in "D"-equivalent values by assuming a typical feesil fuel plant heat rate. The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input inc electricity generation. End use efficiency is estimated as 0.65% for the residential sector, 0.47% for the industrial sector, 0.42% for the industrial sector, 0.42% for the industrial sector. Note: The transportation sector. Total use of the industrial sector, 0.42% for the industrial sector, 0.42% for the industrial sector. Note: The transportation sector. Total use of components due to independent Rounding. LiML-M-140527

The Math Behind CO2

Whan gasoline is burned, carbon and hydrogen atoms are separated from one another. The hydrogen atoms combine with oxygen to form water (H_2O). The carbon atoms combine with oxygen to form CO_2 – a major greenhouse gas.

Carbon has an atomic weight of 12. Oxygen has an atomic weight of 16. This means that every molecule of CO_2 has an atomic weight of 44 – 3.7 times the weight of a single carbon atom.

Gasoline is about 87% carbon, which means there is $6.3lbs/gallon \times 0.87 = 5.5lbs$ of carbon in a single gallon of gasoline. When burned, this creates creates $5.5lbs \times 3.7 = 20lbs$ of CO₂.

The Electric Grid is Evolving

One way flow of power

Distribution

Two-way flow of

+

End Use

FROM: one-way power flow large generation facilities to end users/customers

Transmission

TO: two-way power flow – end users/customers can also generate power and/or interact with the electric grid

Generation

Types of energy needed to meet demand every day

Distributed Energy Resources (DER) examples:

Electric Utility Operations

To ensure reliability, utilities must be capable of meeting customers' electricity demand at every second

Illustrative Example of demand for electricity on a summer day in Palo Alto, CA

Electric Utility System Planning

The system must be built to support the forecasted highest possible demand

Increased energy demand requires additional:

Physical Infrastructure | generation facilities and grid capacity

Energy Efficiency and Demand Response encourage a change in the use of electricity

Scheduling energy resources to serve load

Resources used only when loads are highest (a few times per year) can have high price impacts

Demand Side Management

- Encourage a change in the use of electricity
- Move load from peak to off-peak
- Save customers money
- During extreme weather events can reduce the chance of brownouts and blackouts

Smart Devices enable load flexibility

Utility product & programs can encourage a change on the use of electricity

FACT:

The national average customer participation on Flex Load Programs is 12%; at PGE it is 22%.

Summer 2021

11 Events

- 4 events in June
- 2 events in July
- 4 events in Aug
- 1 event in Sept

Range: ~25 MW ~69 MW

"All call" events consistently delivered 66 to 71 MW

Demand Response (DR) Event Example Aug 4, 2021, from 5- 8 pm (3hrs)

* MFWH: Multi-family water heater