Waiting Room

One moment please, while we wait for people to join

Song by artist:

Jake Shimabukuro Performing Galloping Seahorses On HiSessions

Please use the QR code to check-in: Name and Organization
Meeting Logistics

Teams Meeting

• Please click the meeting link sent to your email or Click here to join the meeting
 • +1 971-277-2317 (dial this number into your phone for best results)
 • PW: 885 018 032#

• Please use Microsoft Edge or Google Chrome with Teams as it will give you the best experience

During the presentation:

• All attendees will be muted; to unmute yourself via computer, click on the microphone that appears on the screen when you move your mouse

• To unmute yourself over the phone, press *6

• If you call in using your phone in addition to joining via the online link, please make sure to mute your computer audio

• Use the chat feature to share your comments and questions.

• Raise your hand icon to let us know you have a question
Quick Updates!

Important dates in 2022:

- OPUC DSP-Part 2 Working Group dates
 - Thursdays Mar 31, April 21, May 19, June 16 (1-4 pm)
- PGE DSP Partner Meetings
 - Wednesdays Apr 27, Jun 1, July 13, Aug 3 (9 am - 12 pm)
- PGE DSP Community Workshops
 - Thursday April 7 (1-3 pm), Wednesdays May 5, May 25 (9 -11 am)
- DSP Part 2 filing date
 - Monday, Aug 15
Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Description</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 - 9:15 am</td>
<td>Opening Remarks</td>
<td>15 min</td>
</tr>
<tr>
<td>9:10 - 9:20 am</td>
<td>Community Engagement Updates</td>
<td>10 min</td>
</tr>
<tr>
<td>9:20 - 9:35 am</td>
<td>Distributed Energy Resources (DERs) & Water Heater Example</td>
<td>15 min</td>
</tr>
<tr>
<td>9:35 - 9:45 am</td>
<td>Solar Innovation & Community Partnership Update</td>
<td>10 min</td>
</tr>
<tr>
<td>9:45 - 9:50 am</td>
<td>Break</td>
<td>5 min</td>
</tr>
<tr>
<td>9:50 - 10:50 am</td>
<td>Current Distribution Planning Process</td>
<td>60 min</td>
</tr>
<tr>
<td>10:50 - 10:55 am</td>
<td>Break</td>
<td>5 min</td>
</tr>
<tr>
<td>10:55 - 11:55 am</td>
<td>Non-wires Solutions Project Candidates</td>
<td>60 min</td>
</tr>
<tr>
<td>11:55 am - 12:00 pm</td>
<td>Next Steps</td>
<td>5 min</td>
</tr>
</tbody>
</table>
Operating Agreements

Establishing norms with our communities is foundational to building trust. To create a **safe space**, we establish **common agreements** such as **respect** and **inclusivity**. **Practice curiosity** and **seek to understand different perspectives**.

- Stay Engaged
- Experience Discomfort
- Speak your Truth (knowing it’s only part of the truth)
- Expect and Accept Non-closure
- Share the Airtime. Step up, Step back.

The courageous conversations framework
By Glenn Singleton and Curtis Linton
Community Engagement

Shadia Duery, DSP Project Manager
Where Are We?

Community Workshops

Dates and times: March 16, April 7 from 1-3 pm, May 4 and May 25 from 9-11 am
Topics to discuss: Equity Data, Community Needs, NWS Pilot Projects
Audience: Community Based Organizations (CBOs), municipalities, and city gov

CBO Engagement

CEP awarded Energy Trust of Oregon (ETO) Working Together Grant
Non-wires solutions non-technical materials to be shared in second Community Workshop April 7

Hiring

Hired two Community Engagement & Diversity Equity and Inclusion (DEI) roles
Distributed Energy Resources (DERs) & Water Heater Example

Binh Lu, Product Development, Senior Product Developer
OBJECTIVE

Discuss various design questions to inform the best possible program implementation possible.
CURRENT WATER HEATER MARKET

Electric Resistance Water Heaters

Gas/Propane/Solar Water Heaters

Heat Pump Water Heaters
DISCUSSION TOPIC #1

Heat pump water heater qualification level for the pilot

- Support more than one solution
- Acquire flexible load from both heat pump water heaters & electric resistance water heaters
- Promote energy efficient options, and coordinate messaging between PGE and Energy Trust
- Design a program that serves all customers

Design Considerations

- ENERGY STAR certified
- Energy Trust qualified (NEEA Tier 3+)
- Heat Pump Water Heater w/Mixing Valve
DISCUSSION TOPIC #2

Smart Water Heater Pilot as an opt-out enrollment

Automatically enroll installed water heater customers in the water heater pilot (opt-out design).

Design Considerations

• Applying learnings from MFWH opt-out design
 • Focus customer education on controlling comfort
 • Provide multiple modes for easy opt-out (phone, online, mobile)
 • Potential opt-out options: specific dates or from pilot completely

• Reduces administrative burden to recruit customers into the pilot
Incentives and rewards distribution

Due to the low flexible-load capacity available of water heaters, there are few dollars available to satisfactorily support both installation and flexible load incentives.

MFWH participants qualify to receive a Chinook Book but not all participants redeem it.

Design Considerations

- Exploration of front-loaded incentives that are provided to the builder or the installer to lower the cost of the installation.
- Exploration of value-centered rewards (non-monetary) for participation in the flexible load events.
 - Ex. charity donations, etc.
- Due to the low flexible-load capacity available of water heaters, there are few dollars available to satisfactorily support both installation and flexible load incentives.
- MFWH participants qualify to receive a Chinook Book but not all participants redeem it.
Next Steps

1. Incorporate today’s feedback.

2. Return to provide design updates in future DSP meetings.

Please contact Binh Lu, binh.lu@pgn.com

With feedback, and/or if interested in participating in design process.
Solar Innovation & Community Partnership

Kathy Wagner, Product Development, Senior Product Developer
Aligning On a Shared Solar Vision

Ensuring equitable decarbonization & resiliency

Starts with co-creation of equitable solar solutions for LMI and EJ communities and other programs that support solar adoption and resiliency goals

It's going to take ALL of us

PGE has done some initial thinking
We plan to explore those ideas and others as part of a co-creation process with Energy Trust of Oregon, community partners, and key stakeholders
Building a Better Future Together

Collaboration Team

- Jeni Hall, Energy Trust of Oregon
- Angela Crowley-Koch, OSSIA
- Silvia Tanner & Tim Lynch, Multnomah County Office of Sustainability
- Kathy Wagner, Andy Eiden, Jason Zappe, PGE
- Marli Klass, Jeff Bissonnette, Fred Heutte, Northwest Energy Coalition
- Jason Benefit, GM, Neil Kelly Solar
- Oriana Magnera, Verde Northwest
Collaboration Team: 2/25 Kick-Off

What went well:

• We had diverse representation from community organizations, government, ETO, and PGE
• The collaboration team was highly engaged
• PGE had prepared a kick-off activity for the team to inform future research with multi-family developers, tenants, and building managers
• We did capture some valuable pain points as a team that can inform future thinking

Lessons Learned:

• Desire for speed and action got in front of building alignment
• First meeting should have been focused on spending more time on creating shared vision
• We didn’t have all the right folks at the table who could speak directly to MF property owner/developer tenant issues (Multi-family NW, Housing Oregon, Community Alliance of Tenants)
• There wasn’t clarity regarding proposed process and lead-in to direct customer research
• PGE August timeframe seemed arbitrary and rushed
• PGE’s product development process needs to adjust to allow for co-creation

Overall: Slow down and take the time needed to do this important work
5 Minute Break
Current Distribution Planning Process

Jennifer Galaway, Manager, Distribution Planning Engineering
March 30, 2022
Objective

Full transparency into our current distribution system planning process

- Walking through an example project that was planned with the current distribution planning process.
- Provide for meaningful input from partners by exploring our planning process together to determine what data is useful and what questions we could answer that make Grid Needs and Solution Recommendations more accessible.
Distribution Information

Service Territory
- 1.9 million population
- 4,000 square miles
- ~900,000 customers

Big Equipment
- 153 Substations
- 270 Power Transformers
- 695 Feeders

Net System Peak Load
- Summer: 4,441 MW
- Winter: 4,073 MW
The Grid
Distribution Planning Expected Results

Goals

• Enhance safety
• Increase reliability
• Meet customer needs
• Meet standards/requirements
• Recommend best solutions
• Reduce risk (likelihood x consequence)
Most of DSP Part 2 will be based on the 2023 planning cycle, such as grid needs, proposed solutions and the resulting investment plan.

We are working to incorporate process changes into the 2024 planning cycle, such as NWS development and consideration of new data sets – equity, community needs, resilience.
Guiding Principles

Plan to peak
PGE plans the distribution system to serve customers even at extreme temperatures, at the largest power demand at a given point during a year

Planning criteria for equipment loading
target loading is less than 67% for feeders, less than 80% for transformers to have capacity to move load around on the system

Target system flexibility at both the transformer and feeder level
all load picked up by switching to other equipment for the loss of a single element

Customer-driven projects
take priority, e.g., large housing development, manufacturing facility, industrial park

Ensure new infrastructure is planned for the long-term forecasted load in the area
when PGE implements a project, we aim to not have to do another project on the affected equipment for at least 10 years
The Seven Steps of the Current Planning Process

1. WHAT IS THE PROBLEM
2. WHERE IS THE PROBLEM LOCATED
3. FINDING SOLUTIONS
4. WHAT ARE THE LIMITATIONS TO THE SOLUTIONS
5. WHAT ARE THE BENEFITS AND RISKS OF THE SOLUTIONS
6. ARE THERE ADDITIONAL IMPACTS TO THE SOLUTIONS
7. RECOMMENDATIONS
Project Overview

Project Name: Rock Creek Substation

Project Description
Construct a new substation with two 115 kV transmission lines, one distribution transformer, and three 13 kV distribution feeders to provide capacity for new North Bethany community development and system flexibility for existing infrastructure.

Project Timeline
- Washington County developed North Bethany Community Plan in 2012
- Grid Needs Analysis performed in 2013 to determine if existing Bethany substation could be expanded to serve new load; determined a new substation was required
- Property Purchase in 2014
- Solution Identification in 2014/15 when location of new substation was determined
- Project originally planned to be completed in 2018, actual completion in 2020

Project Cost
$14.3 million for the substation project + $0.54 million for new substation property purchase
Step 1: What is the problem?

Determine why the system needs to be upgraded to meet future needs (Identification Stage)

Drivers

- Economic development
- Load growth/Forecasts
- Lumped load additions
- Modernization
- Policy regulatory requirements
- Safety
- Substandard equipment
- Urban growth boundary expansion
- Zoning changes

Identification Tools

Analysis

- Feeder Load (System Weak Link Report/Minimum Load): Indicates equipment and conductors approaching certain limits or thresholds
- Reliability: Focuses on trouble spots in the distribution system based on historic outage events

Assessment

- System Assessments: Indicates potential problematic areas when the system is most stressed

Modeling

- Asset Risk Models: Identifies and quantifies risk related to certain equipment
Step 1: Problem identification

Review of area community development plans (City/County Economic Development websites) to determine where load may be added to the system in the future

New large community development in the North Bethany area identified, required a plan to serve the new load

Review of the system peak loading on adjacent substations at the time indicated that there was limited capacity available on existing infrastructure to reliably serve a large new community
New Community Development – North Bethany

North Bethany Concept Plan
July 27, 2010

Grid Needs
Load Projections based on similar developments in PGE’s service territory:

- Residential load estimated at 0.004 MVA per unit
- Commercial/Mixed Use estimated at 0.33 MVA per acre
- Institutional Use estimated at 0.015 MVA per acre

North Bethany Concept Plan - Load Projection

<table>
<thead>
<tr>
<th>Type</th>
<th>Acres</th>
<th># of Units</th>
<th>Total Peak Load (MVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 units/acre</td>
<td>214.98</td>
<td>1290</td>
<td>5.16</td>
</tr>
<tr>
<td>9 units/acre</td>
<td>43.28</td>
<td>390</td>
<td>1.56</td>
</tr>
<tr>
<td>15 units/acre</td>
<td>53.24</td>
<td>799</td>
<td>3.19</td>
</tr>
<tr>
<td>24 units/acre</td>
<td>34.19</td>
<td>821</td>
<td>3.28</td>
</tr>
<tr>
<td>25+ units/acre</td>
<td>5.99</td>
<td>210</td>
<td>0.84</td>
</tr>
<tr>
<td>Commercial/Mixed Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial</td>
<td>1.72</td>
<td>N/A</td>
<td>0.57</td>
</tr>
<tr>
<td>Mixed Use</td>
<td>5.00</td>
<td>N/A</td>
<td>1.67</td>
</tr>
<tr>
<td>Institutional Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.75</td>
<td>N/A</td>
<td></td>
<td>0.46</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acres</td>
<td>389.15</td>
<td></td>
<td>16.73</td>
</tr>
<tr>
<td># of Units</td>
<td>3510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Load (MVA)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 2: Where is the problem located?

Area affected by the problem

Review:
- Geographic boundaries
- Affected customers
- Contractual obligations
- Approach to contingency analyses

Forecasting parameters

Load profiles/Allocation

Setup models
Step 2: Location-specific considerations

Determine the infrastructure in the focus area that exists today

- Feeders and substation serving the site now - Bethany substation, Bethany-Germantown 13 kV, Bethany-Springville 13 kV
- West Union-Cornelius Pass 13 kV feeder adjacent to the site

Study area includes the Bethany substation and all substations and distribution feeders that tie to the Bethany substation

- Cornell substation
- Oak Hills substation
- Sylvan substation
- West Union substation
Step 2: Location-specific considerations

Substation Service Areas - Pre-Project
Step 2: Location-specific considerations
Step 3a: Finding Solutions: *Current State Analysis*

Software simulation will further define severity of the problem area and identify additional issues.

- Coordination issues
- Conductor loading violations
- Contingency analysis deficiencies
- Faulted equipment violations
- Load balancing / High neutral current
- Protection-related issues
- Voltage violations

This Photo by Unknown Author is licensed under CC BY-SA.
Step 3a: Current State Analysis

Base Case condition showed high and low voltages on sections of lines sourced from Sylvan substation and from West Union substation

Primary Cause - high neutral current flows, indicating unbalanced loading on the phases on the lines. Balancing load across phases alleviated the voltage issues.

<table>
<thead>
<tr>
<th>Neutral Currents</th>
<th>Base Case - No Load Balancing</th>
<th>Base Case - With Load Balancing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeder</td>
<td>Summer</td>
<td>Winter</td>
</tr>
<tr>
<td>Sylvan-Barnes</td>
<td>166.1 A</td>
<td>134.8 A</td>
</tr>
<tr>
<td>Sylvan-Patton</td>
<td>112.0 A</td>
<td>99.0 A</td>
</tr>
<tr>
<td>West Union-West Union 13</td>
<td>218.5 A</td>
<td>167.4 A</td>
</tr>
<tr>
<td>West Union-Cornelius Pass</td>
<td>139.1 A</td>
<td>145.6 A</td>
</tr>
</tbody>
</table>
Step 3a: Current State Analysis

Sources to the area are from the Bethany substation, so performed further analysis to examine the current state of the Bethany substation

Performed N-1 contingency analysis on feeders and transformers at Bethany substation for both peak summer and peak winter loading conditions

- Loss of the Bethany-Germantown feeder would result in 3.3 MVA of unserved load during peak summer conditions – load that can’t be switched to another part of the system because it could cause issues elsewhere.
- Loss of Bethany WR1 transformer would result in 6.5 MVA of unserved load during peak summer conditions, 1 MVA during peak winter conditions
- Loss of Bethany WR2 transformer would result in 11.9 MVA of unserved load during peak summer conditions

CONCLUSION: We already are in a state where we cannot pick up all the load in the event of an outage if one were to occur during peak loading conditions. Adding 16-17 MVA of new load will require a capacity addition.
Step 3b: Finding Solutions: *Solution Analysis*

Traditional
- Plan to peak
- Wired solutions
- Reliability-based
- Emissions agnostic
- Routine analysis
 - ✓ Reconductors
 - ✓ Substations
 - ✓ Voltage Regulators

Non-Traditional
- Plan to cycle(s)
- Non-wires Solutions (NWS)
- Flexibility
- Net-Zero emission targets
- Complex analysis
 - ✓ Automation
 - ✓ Demand Response
 - ✓ Inverter-based tech
 - ✓ Microgrids
Step 3b: Solution Analysis

Evaluated adding capacity at existing substation first

Bethany Substation:
- Substation cannot be expanded due to condition of approval when originally built
- A third transformer cannot be added without compromising the driving space within the substation, which is a safety issue

Cornell Substation:
- Energized in 2013; can accommodate another substation transformer
- Much further south – reaching north to serve load is challenging

West Union Substation:
- Expansion planned for 2015 due to heavy loading at the substation
- Load growth targeted for the area that will be served by West Union substation; no capacity to serve the North Bethany community development

CONCLUSION: A new substation is required to reliably serve the load growth, as well as provide redundancy to adjacent substations
Step 3b: Solution Analysis

Considered Site #1: INST Zoning
- 4.62 acres
- Owned by PCC
- PCC has expansion plans that utilize this land

Considered Site #2: AF5 Zoning
- 4.00 acres
- Access to the site is limited; would require widening of existing driveway

Considered Site #3: MUA20 Zoning
- 5.17 acres
- Limited infrastructure routing options; all major load growth will be south of the site

Considered Site #4: MUA20 Zoning
- 6.00 acres
- Limited ability to route two transmission sources to the site
- Limited line routing options; all major load growth will be west of the site

Acquired Site: AF10 Zoning
- 4.84 acres
- Access to major roads provides multiple routing options for infrastructure
Step 3b: Solution Analysis

Performed power flow studies to determine the plan for new lines from the new substation

All feeders identified in location-specific characteristics are included in the study

Load Forecast at the time was for the PGE system load to remain flat for the next 5 years

Solution should target the following criteria:

• **Base case (N-0):** Feeders and transformers are in their normal configurations. No equipment exceeds planning limits (feeders no higher than 67% and transformers no higher than 80% of their ratings). This ensures system flexibility in the event of a planned or unplanned outage – load can be shifted to adjacent lines and transformers.

• **Feeder or Transformer contingency (N-1):** Feeders or Transformers are removed from service, allowing surrounding feeders to pick up the unserved load. Under all contingent conditions, loading on conductors and associated equipment cannot exceed 100% their thermal loading limits. Also under these conditions, loading on transformers cannot exceed 100% of their seasonal rating.
Step 3b: Solution Analysis

Three feeders located within 0.25 miles of the new Rock Creek substation site: Bethany-Germantown, Bethany-Springville, West Union-Cornelius Pass

Feeders from the new substation are determined by first looking at offloading these three feeders to avoid significant infrastructure buildout and provide capacity to serve the new load growth in the North Bethany community area.

Load added to the model to simulate the capacity needs for the new development, while keeping in mind that the speed of which the load materializes is unknown.

The initial solution does not necessarily need to add ALL capacity now - just make provisions to add the capacity in the future.

Feeders from the new substation are determined by first looking at offloading these three feeders to avoid significant infrastructure buildout and provide capacity to serve the new load growth in the North Bethany community area.

Ultimately three new feeders were identified to be constructed from the new substation, offloading 12.4 MVA from Bethany and West Union.
Step 3b: Solution Analysis

Substation Service Areas - Pre-Project

Substation Service Areas - Post-Project
Step 4: What are the limitations to the solutions?

Solutions

Do They Satisfy:
• Problem Statement
• Additional discoveries during finding solutions current state analysis

Do They Meet:
• Customer/community needs
• Regulatory/compliance guidelines
• System needs under:
 ✓ normal conditions
 ✓ contingent conditions

Are They:
• Optimal
• Constructible

Is duration of short-term/intermediate option valid
Step 4: Solution Limitations

While the addition of the Rock Creek substation provides full N-1 feeder redundancy for Bethany substation, it does not provide N-1 transformer redundancy for Bethany WR2 during peak summer conditions.

A capacity addition at Sylvan was identified as a potential future solution to provide full N-1 transformer redundancy at Bethany.

The solution did not build out infrastructure to serve the entire North Bethany community plan due to the unknown timing of the load growth. Therefore, a future project will be required to add capacity as load in the area grows.

Provisions were made to accommodate the new load growth (room for a second transformer at the Rock Creek substation)
Step 5: What are the benefits and risks of the solutions?

- Benefit vs Cost
- Risk reduction on assets and non-assets
- Stacked benefits
- Savings
- Improve resilience
- Reduce outage duration/ frequency
Step 5: Benefits and Risks of Solutions

Asset Management analysis is performed for most distribution projects

The construction of Rock Creek substation reduces the consequences of an extended, unplanned outage at Bethany substation. Rock Creek substation offloads approximately 6.5 MVA from Bethany WR1 and approximately 4.8 MVA from Bethany WR2. This load shift not only reduces the consequence of failure but also defers replacement of 115kV equipment at Bethany substation.

<table>
<thead>
<tr>
<th>Device</th>
<th>Consequence of Failure</th>
<th>Years to Replacement</th>
<th>Consequence of Failure</th>
<th>Years to Replacement</th>
<th>Consequence of Failure</th>
<th>Years to Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bethany W110 (WR1 high-side CS)</td>
<td>$1,449,695</td>
<td>10</td>
<td>$1,052,866</td>
<td>14</td>
<td>-$396,829</td>
<td>+4</td>
</tr>
<tr>
<td>Bethany W228 (WR2 high-side CS)</td>
<td>$1,449,695</td>
<td>18</td>
<td>$1,156,652</td>
<td>21</td>
<td>-$293,043</td>
<td>+3</td>
</tr>
<tr>
<td>Bethany W102 (E 115kV line position CS)</td>
<td>$2,878,280</td>
<td>5</td>
<td>$2,188,408</td>
<td>7</td>
<td>-$689,872</td>
<td>+2</td>
</tr>
<tr>
<td>Bethany W110 (St Marys 115kV line position CS)</td>
<td>$2,878,280</td>
<td>5</td>
<td>$2,188,408</td>
<td>7</td>
<td>-$689,872</td>
<td>+2 50</td>
</tr>
</tbody>
</table>
Step 5: Benefits and Risks of Solutions

More substation capacity and ties to adjacent substations provides for more flexibility and resiliency in a planned or unplanned outage scenario to restore load.

Non-wires solution not considered (were not actively pursuing these back then); however, it would be difficult to serve a new community of this size (this much load) with a non-wires solution, as we have to provide a base level of service, not just peaking load.

Load at risk of not materializing in expected timeline.

- Projects are evaluated each year in the Portfolio stage to determine if it is still prudent to execute on the project in the designated timeframe.
- This project was originally expected to be completed by June 2018; this was delayed to June 2020 for a variety of reasons, including that the load did not materialize as quickly as anticipated.
Step 6: Are there Additional Impacts to the Solutions?

Impacts
Community, Customer & Environmental

Complexities
Construction sequencing
Introduction of newer technologies
Portable equipment scheduling
Newer concepts/procedures

Safety
Personnel & Public

Leads to Step 7
Final Recommendation(s)
Step 6: Additional Impacts to Solutions

Community Impact Requests:

- Develop a mitigation plan in the event of a fire
- Perform environmental analysis to ensure that the water supply is not contaminated
- Undergrounding distribution lines in front of the adjacent historic church and the new substation property
Step 6: Additional Impacts to Solutions

Community Impact Requests:

- Transmission poles – gave the community the choice on color, silver or brown
- Landscaping to provide screening (required per permitting process, but solicited input from community)
Step 7: Final Recommendation
The Seven Steps of the Current Planning Process

1. WHAT IS THE PROBLEM
2. WHERE IS THE PROBLEM LOCATED
3. FINDING SOLUTIONS
4. WHAT ARE THE LIMITATIONS TO THE SOLUTIONS
5. WHAT ARE THE BENEFITS AND RISKS OF THE SOLUTIONS
6. ARE THERE ADDITIONAL IMPACTS TO THE SOLUTIONS
7. RECOMMENDATIONS
5 Minute Break
Moving Toward a Future Distribution Planning Process

Part Two
Non-wires Solutions Project Candidates

Nihit Shah, Distributed Resource Planning, Senior Analyst
A year in transition – PGE’s 2023 capital cycle*

<table>
<thead>
<tr>
<th></th>
<th>Q1 2021</th>
<th>Q2 2021</th>
<th>Q3 2021</th>
<th>Q4 2021</th>
<th>Q1 2022</th>
<th>Q2 2022</th>
<th>Q3 2022</th>
<th>Q4 2022</th>
<th>2023+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplified current state investment planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corporate load forecast</td>
<td>Load allocation and Grid Needs Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Solution Identification</td>
<td>Whitepaper development</td>
<td>Portfolio Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Project Execution: Project planning</td>
<td>Engineer and design</td>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Non-wires solution concept proposal and NWS community engagement
3. Sharing prioritized grid needs
5. Share solutions
6. Using EJ Data in decision making of NWS concepts

* Funds allocated to start the project
Project Development Funnel

Grid Needs | Solution Identification | Recommendation | Near-term Plan

Year 1 | Year 2 | Year 3+

Needs/Solutions of Different Size and Type
Recapitulation of the Last Meeting

Share NWS Policy and Procedures document
- February

Perform current state analysis
- February

Present NWS candidates
- March

NWS customer engagement
- April

Develop NWS
- May

Present solutions
- May/June
Section Objectives

Share and receive feedback on the NWS candidates’ information

- Location of grid need
- Customer and equity information
- Magnitude of need
- Time and duration of need
- Contingency
- Potential solution technology options
Potential NWS Candidates

<table>
<thead>
<tr>
<th>Substation</th>
<th>Substation location</th>
<th>Target area</th>
<th>Expected issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruby Substation</td>
<td>831 SE 202nd Ave, Portland, 97233</td>
<td>Ruby-Junction and Ruby-Carline feeders</td>
<td>Heavily loaded feeder</td>
</tr>
<tr>
<td>Dayton Substation</td>
<td>12970 SE Amity Dayton Hwy, Dayton, 97114</td>
<td>Dayton-East feeder and Dayton substation transformer</td>
<td>Heavily loaded feeder and transformer</td>
</tr>
<tr>
<td>West Union Substation</td>
<td>21430 NW West Union Rd., Hillsboro, 97124</td>
<td>West Union-West Union 13, Oak Hills-Somerset, and West Union-Cornelius Pass feeders</td>
<td>Heavily loaded feeder and under voltage issues</td>
</tr>
<tr>
<td>Eastport Substation</td>
<td>4405 SE 80th Ave, Portland, 97206</td>
<td>Eastport-Plaza and Eastport substation transformer</td>
<td>Heavily loaded feeder and transformer</td>
</tr>
<tr>
<td>Clackamas</td>
<td>17104 SE Evelyn St, Clackamas, 97015</td>
<td>Clackamas-Tolbert feeder</td>
<td>Heavily loaded feeder</td>
</tr>
</tbody>
</table>
Ruby Substation Walkthrough – Data Transparency
Finding Ruby Substation in the DG map
Reviewing Equity Indicators - Income
Reviewing Equity Indicators – Disabilities
Ruby Substation Walkthrough – Understanding the Problem
Load Growth vs Planning Threshold

RUBY-JUNCTION FEEDER PROJECTED LOADING

- Projected MVA

Planning Threshold
Grid Needs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value under normal condition (N-0 condition)</th>
<th>Value under contingency condition (N-1 condition)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violation type</td>
<td>No violation but above planning threshold</td>
<td>Overload (thermal issues)</td>
</tr>
<tr>
<td>Violation magnitude</td>
<td>No violation but ~250 kW above planning threshold</td>
<td>~3.5 MW</td>
</tr>
<tr>
<td>Applicable areas for load relief</td>
<td>Across the entire Ruby-Junction feeder</td>
<td>Across the Ruby-Junction and Ruby-Carline feeders</td>
</tr>
<tr>
<td>Violation time and duration</td>
<td>3-7PM, June, Weekday</td>
<td>Summer weekdays</td>
</tr>
</tbody>
</table>

* Contingency condition is when the load of one feeder is transferred to another feeder on the same or different substation usually for emergency or planned maintenance purposes.
Ruby Substation – average seasonal load profiles
Ruby Substation Walkthrough – Customer Statistics
Customer Segment Breakdown

Summary of Customer Types on Ruby Substation
(Count of Distinct Premises)

- Res: 5,945
- Small Commercial (Sch 32): 601
- Med Commercial (Sch 83 and 85): 71
- Other: 156

Commercial Customer Types - SIC Description

- Commercial/Office: 36%
- Merchandise/Services/Other Trade: 22%
- Transportation, Utilities, Communications: 11%
- Undefined Business: 7%
- Manufacturing-Food, Metals, Wood, General: 5%
- Government/Education: 4%
- Restaurant/Lodging: 4%
- Healthcare: 4%
- Construction: 2%
- Agriculture and Mining: 2%
- High Tech Manufacturing: 2%

Summarized rate schedule by generic customer class:

<table>
<thead>
<tr>
<th>Customer class</th>
<th>Number of customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>5,945</td>
</tr>
<tr>
<td>Small Commercial (Sch 32)</td>
<td>601</td>
</tr>
<tr>
<td>Med Commercial (Sch 83 and 85)</td>
<td>71</td>
</tr>
<tr>
<td>Other</td>
<td>156</td>
</tr>
</tbody>
</table>
Customer Heating System Fuel Breakdown

Heating System Fuel by Housing Type

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Electric</th>
<th>Gas</th>
<th>Other</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-family</td>
<td>80%</td>
<td>2%</td>
<td>18%</td>
<td>100%</td>
</tr>
<tr>
<td>Manufactured homes</td>
<td>47%</td>
<td>53%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Single family</td>
<td>19%</td>
<td>81%</td>
<td>1%</td>
<td>100%</td>
</tr>
<tr>
<td>Grand Total</td>
<td>55%</td>
<td>35%</td>
<td>11%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Equity Metrics of Customers Served by Ruby

Percent of low-income-customers served by the Ruby substation

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Count of PremId</th>
<th>Count of Low-income</th>
<th>Energy Assistance Payments - Last 12 Mo.</th>
<th>% low-income customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-family (MF)</td>
<td>3,391</td>
<td>1,436</td>
<td>$413,360</td>
<td>42%</td>
</tr>
<tr>
<td>Manufactured homes (MH)</td>
<td>222</td>
<td>83</td>
<td>$7,233</td>
<td>37%</td>
</tr>
<tr>
<td>Single family (SF)</td>
<td>2,330</td>
<td>548</td>
<td>$65,450</td>
<td>24%</td>
</tr>
<tr>
<td>Grand Total</td>
<td>5,945</td>
<td>2,069</td>
<td>$486,044</td>
<td>35%</td>
</tr>
</tbody>
</table>
Ruby Substation Walkthrough – DER Forecast
DER Forecast without an NWS

Annual DER adoption forecast - Reference Case - Ruby Substation

Nameplate kW

- 2021
- 2022
- 2023
- 2024
- 2025
- 2026
- 2027
- 2028
- 2029
- 2030

- Flex Load - Res Thermostats
- Flex Load - Peak Time Rebates
- Flex Load - Water Heaters
- Res Storage
- Solar PV (All)
Hourly DER Forecast Without an NWS

August 2026 weekday, peak day profile - demand reduction / shift

Hour Ending
- Flex Load - Res Thermostats
- Flex Load - Water Heater
- Flex Load - Peak Time Rebates
- Flex Load - Res EV Smart Charging
- Res Solar

kW
Ruby Substation Walkthrough
– DER Potential Available
DER Forecast – Reference and High Case

Reference vs. High Case DER Adoption Potential

Nameplate kW

<table>
<thead>
<tr>
<th>Year</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
<th>2028</th>
<th>2029</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Case DER Adoption</td>
<td>500</td>
<td>700</td>
<td>1,000</td>
<td>1,500</td>
<td>2,000</td>
<td>2,500</td>
<td>3,000</td>
<td>3,500</td>
<td>4,000</td>
<td>4,500</td>
</tr>
<tr>
<td>High Case DER Adoption</td>
<td>1,000</td>
<td>1,500</td>
<td>2,000</td>
<td>2,500</td>
<td>3,000</td>
<td>3,500</td>
<td>4,000</td>
<td>4,500</td>
<td>5,000</td>
<td>5,500</td>
</tr>
</tbody>
</table>
DER Forecast – Flex Load Technical Potential

Demand Response - Reference, High, and Technical Potential

<table>
<thead>
<tr>
<th>Year</th>
<th>DR - Reference Case</th>
<th>DR - High Case</th>
<th>DR - Technical Achievable Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>3,500</td>
<td>2,500</td>
<td>3,000</td>
</tr>
<tr>
<td>2022</td>
<td>3,000</td>
<td>2,000</td>
<td>2,500</td>
</tr>
<tr>
<td>2023</td>
<td>2,500</td>
<td>1,500</td>
<td>2,000</td>
</tr>
<tr>
<td>2024</td>
<td>2,000</td>
<td>1,000</td>
<td>1,500</td>
</tr>
<tr>
<td>2025</td>
<td>1,500</td>
<td>500</td>
<td>1,000</td>
</tr>
<tr>
<td>2026</td>
<td>1,000</td>
<td>0</td>
<td>500</td>
</tr>
</tbody>
</table>

kW
Feedback Requested

What additional information do you need to better understand the problem?

• Please reach out if you have potential solution opportunities such as partnerships with HOAs, Federal Govt. work, existing initiatives etc. in each of the NWS candidate areas

• PGE will share similar slides on all other Candidates in the next few days. Please provide feedback if another medium is preferred.

• Please provide feedback on potential solution opportunities by May 1st to ensure they are considered during solutioning.

Please review and provide feedback to DSP@pgn.com, attention to Nihit Shah
Takeaways and Next Steps

- Share NWS Policy and Procedures document
 - **February**

- Perform current state analysis
 - **February**

- Present NWS candidates
 - **March**

- NWS customer engagement
 - **April**

- Develop NWS
 - **May**

- Present solutions
 - **May/June**

Please review and provide feedback to DSP@pgn.com, attention to Nihit Shah.
Next Steps
DRAFT Agenda for 2022

<table>
<thead>
<tr>
<th>April 27</th>
<th>June 1</th>
<th>July 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>• DSP Updates</td>
<td>• DSP Updates:</td>
<td>• DSP Updates</td>
</tr>
<tr>
<td> • Water Heater</td>
<td> • Community Engagement</td>
<td> • Water Heater</td>
</tr>
<tr>
<td> • Community Solar</td>
<td> • Product Development</td>
<td> • Community Solar</td>
</tr>
<tr>
<td> • Community Engagement</td>
<td> • HCA</td>
<td> • DER Forecasting & Adoption</td>
</tr>
<tr>
<td> • CEP & MYP</td>
<td> • Current & Future Grid Needs Identification Process</td>
<td> • Current & Future Grid Needs Identification Process</td>
</tr>
<tr>
<td> • DER Forecasting & Adoption</td>
<td> • NWS</td>
<td> • NWS</td>
</tr>
<tr>
<td> • NWS</td>
<td></td>
<td> • NWS</td>
</tr>
</tbody>
</table>

Let’s meet the future together.

You can reach us at:
DSP@PGN.com
DSP Part Two Framing

Angela Long, Distributed Resources Planning, Manager
DSP Part Two Requirements Summary

Due August 15, 2022

Forecasting of Load Growth, EV/DER Adoption
- Describe **current state for Load Forecast** - process, tools, data
- DER/EV:
 - Forecast methodology and geographic allocation
 - **Adoption by substation** - high/med/low scenarios
 - Forecast of load growth and adoption

Grid Needs Analysis
- Document process to assess grid adequacy and identify grid needs
- Discuss criteria used to assess reliability and risk – methods and modeling tools used
- **Present prioritized constraints publicly**, including prioritization criteria and timeline to resolve constraints

Solution Identification
- Document process for identifying the range of solutions to address grid needs
- **For each need, describe the data used to support investment decisions**
- For large projects, describe process for engaging communities and getting input
- **Propose 2 NWS pilot projects**

Near-term Action Plan (2-4yrs)
- Provide 2-4 yr. plan to address grid needs
- **Disclose planned spending, timeline and recovery mechanism**
- Discuss relationship between planned investments
- Discuss pilots being conducted to enhance the grid
Goals of DSP Part Two

Community Engagement
- Two-way flow of information
- Co-created education material
- Continued partnerships with community experts

Metrics & Data
- Resilience metrics for customer and utility
- Socio-economics & Demographics
- Cost-benefit analysis

DER Resource Planning
- Climate risk modeling
- Decarbonization
- NWS, Locational
- DEI/Equity
- Estimated impacts of electrification adoption

Portfolio Analysis
- Cost-effective DER
- Environmental and social justice community
- Resilience/Outage
- High DER adoption
High Level - Project Timeline

Planning: Developing the approach to address Part 2 requirements

Executing: Co-creating an inclusive Distribution Planning process

Reporting: Documenting the process changes and the plan to enact them

Filing DSP Part 2

Engaging Our Communities

Our objective is to foster procedural equity and ensure diversity of voice in the DSP planning process.

To accomplish this, we will continue to partner with Community-based Organizations (CBOs) and other organizations that have longstanding relationships and establish trust in environmental justice communities to:

• Co-develop solutions for NWA pilot projects

• Co-create community workshops to identify community energy needs, desires, barriers and interest in clean energy planning and projects

• Co-develop community education around key DSP practices and relevant energy related concepts
Identifying Grid Needs for NWS Pilots

Step 1: What is the problem?

- Prioritized grid needs for capital cycle
- Potential future grid needs/ lower priority grid needs
- NWS pilot candidates for the DSP