Waiting Room

One moment please, while we wait for people to join

Song by artist:

Lumpy

<u>Snorkel – Lumpy</u>

Please use the QR code to check-in: <u>Name and Organization</u>

Agenda

9:00 - 9:10 am - **Opening Remarks** (10 min)

9:10 – 9:30 am - DSP Part One Updates & DSP Part Two Framing (20 min)

9:30 – 10:15 am – Current Distribution Planning Process (45 min)

10:15 - 10:25 am - Break (10 min)

10:25 - 11:10 am - Moving Toward a Future Distribution Planning Process (45 min)

11:10 - 11:20 am - **Break** (10 min)

11:20 – 11:40 am – Preparing for more DERs (specifically, rooftop solar) (20 min)

11:40 am - 12:00 pm - Next Steps and Open Questions & Comments (20 min)

Meeting Logistics

Teams Meeting

- Please click the meeting link sent to your email or <u>Click here to join the meeting</u>
 - +1 971-277-2317 (dial this number into your phone for best results)
 - PW: 885 018 032#
- Please use Microsoft Edge or Google Chrome with Teams as it will give you the best experience

During the presentation:

- All attendees will be muted; to unmute yourself via computer, click on the microphone that appears on the screen when you move your mouse
- To unmute yourself over the phone, **press *6**
- If you call in using your phone in addition to joining via the online link, please make sure to **mute your computer audio**
- Use the chat feature to share your comments and questions.
- Raise your hand icon to let us know you have a question

Quick Updates!

Important dates:

- OPUC procedural dates
 - Friday, Dec 10, 2021 9 am 12:00 pm (Pacific) Staff workshop to receive public comment
 - Thursday, Feb 24, 2022 Special Public Meeting:
 - IOUs present DSP Part 1,
 - Staff make recommendation to the Commission, and
 - Commission considers Acceptance of Part 1 filings
- Monday, Aug 15, 2022 DSP Part 2 filing date

Please visit us at <u>www.portlandgeneral.com/dsp</u>

You can email us at: <u>DSP@pgn.com</u>

Online Feedback Form

DSP Partners Mailing List

Operating Agreements

Establishing norms with our communities is foundational to building trust.

To create a safe space, we establish common agreements such as respect and inclusivity.

Practice curiosity and seek to understand different perspectives.

Stay EngagedExperience DiscomfortSpeak your Truth
(knowing it's only part of the truth)Expect and Accept Non-closure

Share the Airtime. Step up, Step back.

<u>The courageous conversations framework</u> By Glenn Singleton and Curtis Linton

DSP Part One Updates

Angela Long, Distributed Resources Planning Manager December 8, 2021

DSP Part One – Strategic Actions

Empowered communities	Modernized grid	Resilience	Plug and play	Evolved regulatory framework
 Human-centered Planning Community Engagement Plan 	 Customer ecosystem (data and access) Virtual Power Plant VPP Planning & Engineering tools Grid Management Systems (ADMS, DERMS, OMS, DRMS) Sensing, Measurement, and Automation (SCADA, CVR, FLISR) Telecommunication (AMI, FAN, cellular) Physical Grid Infrastructure (IOC, poles and wires) Cybersecurity (firewalls, physical security) 	 Customer Infrastructure (community resource centers) PGE Infrastructure (Mt Hood Improvements) Operational (End-to-end assessment process) 	 <u>Distributed</u> <u>generation map</u> <u>Hosting Capacity</u> <u>Analysis (HCA)</u> 	 Key policy interactions such as: HB 2021 (100% Clean) HB 2475 (Energy burden) Key regulatory activities such as: Cost-effectiveness nverter-based DER generation

DSP Part One – 12.3.21 Written Public Comments

- Coalition of Communities of Color (CCC) / Verde / Institute for Market Transformation (IMT)
- Interstate Renewable Energy Council (IREC)
- Oregon Solar and Storage Industries Association (OSSIA) & Ocean Coast Energy Alliance Network (OCEAN)
- NW Energy Coalition (NWEC)
- Weave Grid
- Community Energy Project (CEP)

Thank you

Acknowledgement of DSP Part One – 12.3.21 Written Public Comments

Community Engagement	Hosting Capacity Analysis (HCA)	Modernized Grid	IRP and DSP Coordination	Resilience	Cybersecurity
"PGE has the power to change the tone and culture of those spaces and build trust with the entities with which they want to work." BUT •It is not clear how we incorporated feedback and what changed in our thinking due to the partner input it received •Our intent was clear but lacked action	 We are moving too fast We need to have more discussion data is needed (e.g., day-time minimum load, socioeconomics and demographics RVOS is not the right cost-effectiveness tool Map should be updated to reflect use cases and partner feedback 	 Spending should be focused on equity Discuss on spending is needed, specifically, if we expect costs to continue to rise in the future Discuss on "aging" investments is needed Need to ensure the system can accommodate EV impacts Need to discuss cost- effectiveness work approach 	 DSP and IRP should be consolidated Load forecasting approach needs updated 	•Discuss on "hardening" investments is needed	•There are still data concerns that need addressed

DSP Part Two Framing

DSP Part Two Requirements Summary

Due August 15, 2022

Forecasting of

Load Growth,

EV/DER

Adoption

- Describe current state for Load Forecast process, tools, data
 - DER/EV:

Grid Needs

Analysis

- Forecast methodology and geographic allocation
- Adoption by substation high/med/low scenarios
- Forecast of load growth and adoption
 - Document process to assess grid adequacy and identify grid needs

• Discuss criteria used to assess reliability and risk - methods and modeling tools used

• **Present prioritized constraints publicly**, including prioritization criteria and timeline to resolve constraints

- Document process for identifying the range of solutions to address grid needs
- For each need, describe the data used to support investment decisions
- For large projects, describe process for engaging communities and getting input
- Propose 2 NWS pilot projects

Near-term Action

<u>Plan (2-4yrs)</u>

- Provide 2-4 yr. plan to address grid needs
- Disclose planned spending, timeline and recovery mechanism
- Discuss relationship between planned investments
- Discuss pilots being conducted to enhance the grid

12

Goals of DSP Part Two

- Two-way flow of information
- Co-created education material
- Continued partnerships with community experts

- Resilience metrics for customer and utility

- Socio-economics
- Demographics
- Cost-benefit analysis

DER Resource Planning

- Climate risk modeling

- Decarbonization
- NWS, Locational
- DEI/Equity
- Estimated impacts of electrification adoption

- Cost-effective DER
- Environmental and social justice community
- Resilience/Outage
- High DER adoption

High Level - Project Timeline

Current Distribution Planning Process

Jennifer Galaway, Distribution Planning Manager December 8, 2021

Objective

Full transparency into our current distribution system planning process

Provide for meaningful input from partners by exploring our planning process together to determine where we could enhance or improve

PGE's Distribution Planning Team

Distribution Information

The Grid

Distribution Planning Expected Results

- Enhance **safety**
- Increase reliability
- Meet customer needs
- Meet standards/requirements
- Recommend best solutions
- **Reduce risk** (likelihood x consequence)

The Seven Steps of the Current Planning Process

Step 1: What is the problem?

Determine why the system needs to be upgraded to meet future needs (Identification Stage)

Identification Tools

Analysis

Feeder Load (System Weak Link Report/Minimum Load): Indicates equipment and conductors approaching certain limits or thresholds

Reliability: Focuses on trouble spots in the distribution system based on historic outage events

Assessment

System Assessments: Indicates potential problematic areas when the system is most stressed

Modeling

Asset Risk Models: Identifies and quantifies risk related to certain equipment

Drivers

Economic development

Load growth/Forecasts

Lumped load additions

Modernization

Policy regulatory requirements

Safety

Substandard equipment

Urban growth boundary expansion

Zoning changes

22

Step 2: Where is the problem located?

Area affected by the problem

Review:

- Geographic boundaries
- Affected customers
- Contractual obligations
- Approach to contingency analyses

Forecasting parameters

Load profiles/Allocation

Setup models

Step 3a: Finding Solutions: Current State Analysis

Software simulation will further define severity of the problem area and identify additional issues

Coordination issues

Conductor loading violations

Contingency analysis deficiencies

Faulted equipment violations

Load balancing / High neutral current

Protection-related issues

Voltage violations

на и констранция и на	The first of the	(職 双純文字(7)、低子集(1)、(1)、(1)、(1)、(1)、(1)、(1)、(1)、(1)、(1)、
	\sim	\sim $<$

Step 3b: Finding Solutions: Solution Analysis

- Plan to peak
- Wired solutions
- Reliability-based
- Emissions agnostic
- Routine analysis
 - ✓ Reconductors
 - Substations
 - Voltage Regulators

- Plan to cycle(s)
- Non-wires Solutions (NWS)
- Flexibility

itiona

Non-Trad

- Net-Zero emission targets
- Complex analysis
 - ✓ Automation
 - ✓ Demand Response
 - ✓ Inverter-based tech
 - ✓ Microgrids

Step 4: What are the limitations to the solutions?

Solutions	Do They Satisfy:
	Problem Statement
	 Additional discoveries during finding solutions current state analysis
	Do They Meet:
	Customer/community needs
	Regulatory/compliance guidelines
	• System needs under:
	 normal conditions
	 ✓ contingent conditions
	Are They:
	• Optimal
	Constructible

Step 5: What are the benefits and risks of the solutions?

Benefit vs Cost

Risk reduction on assets and non-assets

Stacked benefits

Savings

Improve resilience

Reduce outage duration/ frequency

Step 6: Are there additional impacts to the solutions?

Moving Toward a Future Distribution Planning Process

Community Engagement

Angela Long, Distributed Resources Planning Manager December 8, 2021

Engaging Our Communities

Our objective is to foster **procedural equity and ensure diversity of voice** in the DSP planning process.

To accomplish this, we will continue to partner with Community-based Organizations (CBOs) and other organizations that have longstanding relationships and establish trust in environmental justice communities to:

- Co-develop solutions for NWA pilot projects
- Co-create community workshops to identify community energy needs, desires, barriers and interest in clean energy planning and projects
- Co-develop community education around key DSP practices and relevant energy related concepts

Where Are We?

Hiring: Community Engagement & DEI Manager/Coordinator

Third Party Engagements: Climate modeling, decarbonization and equity analysis for location DER forecasting

DEI Advisory Boards: Identification of community groups through existing regional efforts

New Equity Tools: Greenlink Equity Mapping (GEM) and Low-Income Affordability Data (LEAD) Tool

- **NWS** Developing non-wire solution (NWS) policy and procedures (P&P) document
 - Meet with Verde and Institute for Market Transformation (IMT) to discuss goals of empowering communities through NWS
 - Testing hourly modeling tools in CYME to facilitate evaluation of DER's contribution to mitigating range of grid needs
 - Begun development of economic assessment model needed to account for partial deferral of traditional investment under an NWS

DRAFT - Community Engagement for Non-wire Solutions (NWS) Pilot Project Proposals

Steps	Timeline	Audience
1 Education & Listening Session	December 8, 2021	All Partnar Workshop
Defining NWS, location, solution types, process, implementation	December 6, 2021	
2 Non-wires Technical Education & Listening Session	January 12, 2022	All - Partner Workshop
Draft criteria for prioritizing projects and screening of NWS	January 12, 2022	
3 Community Workshop Brainstorming	January 31, 2022	
Development of community definitions and priority areas	Sundary 51, 2022	
4 Non-wires Technical Reiteration Session	February 9, 2022	All - Partner Workshop
Draft final criteria for prioritizing projects and screening of NWS	1 6614419 7, 2022	
5 Community Workshop Education	February 28, 2022	FJC
Identification of existing projects with analyses identifying opportunities for NWS	1 0010019 20, 2022	200
6 Non-wires Technical Listening Session	March 9, 2022	All - Partner Workshop
Identification of existing projects with analyses identifying opportunities for NWS		
7 Community Workshop Brainstorming	March 31, 2022	FJC
Finalization of prioritized project list - ACTION REQUESTED		
8 Non-wires Technical Information Session	April 13, 2022	All - Partner Workshop
Notice of finalization priorized project list		
9 Community Workshop Brainstorming	April 29 2022	EJC
Identification of pilot projects with analyses identifying opportunities	, (p , , 2022	
10 Non-wires Technical Non-wires Technical Information Session	May 11, 2022	All - Partner Workshop
Identification of pilot projects with analyses identifying opportunities		
11 Community Workshop Recommendation	May 20, 2022	EJC
Recommended two pilots concepts - ACTION REQUESTED		
12 Non-wires Technical Information & Feedback Session		
Final recommended two pilots concepts	June 8, 2022	All - Partner Workshop

Non-wires Solutions (NWS): Definitions, Solutions & Locations

Andy Eiden, Distribute Resources Planning, Principal Analyst

DSP – Part 2

Purpose of Update

What we hope to gain from today's update on Non-wires Solutions (NWS)

Information sharing (where we are, definitions, process proposals)

Gather feedback and input on how to define and incorporate new metrics for prioritizing NWS projects

Grid of the Future

Non-wires Solutions (NWS)

Definition

• An **investment** intended to **defer**, **reduce**, or **remove** the need for a **specific wired solution** in a specific geographical region to mitigate an identified grid need such as risk of thermal overload, voltage violation, and/or other wide-ranging grid needs.

Location

• An NWS can be located at the transmission system, subtransmission system, distribution system, and/or a customer site. We will focus on distribution and customer-sited NWS.

Solution Types

A Non-wires Solution (NWS) can include any action, strategy, program, policy, or technology that meets the definition and solution requirements.

NWS projects can include individual investments or a combination to meet the specified need in a cost-effective manner, considering the need to meet state policy goals, ensure compliance, or enhance the customer experience.

NWS to Solve a Problem

PROBLEM

Load growth at the end of a feeder exceeds the capacity of the existing utility system.

Source: https://www.sandc.com/en/solutions/non-wires-alternatives/

CONVENTIONAL RESPONSE

Upgrade the feeder or build a new substation to accommodate the increased load.

The Downside:

Expensive distributioninfrastructure upgrades in densely populated areas take years to complete.

NON-WIRES ALTERNATIVE

Create demand-response + energy-efficiency programs coupled with existing distributed energy resources (DERs).

Why It's Better:

Manages peak demand to accommodate load growth.

NWS Screening

Larger Job Type

- Typical lead time > 2 years to design and construct
- Cost of project is typically higher (>\$1 million)
- Geographic footprint is likely to cover a larger area

Smaller Job Type

- Typical lead time 9 months to 2 years to design
- Cost of project is typically lower (<\$1 million)
- Geographic footprint is also likely to cover a smaller area than a large project

Aligning Grid Needs with NWS

Grid need type	Example of traditional solution	Example NWS product and/or service
Load growth driven thermal capacity upgrade projects or (N-0) capacity projects	Substation transformer capacity upgradeReconductoring of circuitBuild new feeder	• DERs that can reliably shape or be dispatched to alleviate existing or forecast peak load on the distribution circuit or at substation transformer
Reliability solutions driven by N-1 contingency requirements	 Substation transformer capacity upgrade Reconductoring of circuit Build new feeders 	 DERs that can be reliably dispatched to provide contingency relief at a requested time, duration and/or frequency. Distribution automation
Hosting capacity and volt-VAR improvements	 Capacitor banks Change load tap changer settings Line voltage regulators Protection Upgrades (Hot Line Blocking, 3V0 Protection) Phase balancing 	 Smart inverters and batteries could be used to provide volt- var and Conservative Voltage Reduction (CVR) services, supporting power quality, reducing losses and net energy consumption on the feeder
Resiliency upgrades: new supply paths for increased resiliency	 New substation or feeders New switching points or tie lines Reconductors Substation Upgrades 	 Microgrids for back-up power during grid and/or wildfire related emergencies. Distribution automation 41

Community Engagement Principles

Engagement

- Develop relationships and channels for communication with local communities
- Share potential NWS project information
- Work with the community to understand preferences
- Incorporate community preferences
- Survey customers after implementation of NWS to learn and improve the process
- Engage customers in an approachable, fully accessible manner
- Empower all customers with authentic choices

Development of NWS

- Create inclusive and equitable access to opportunities across customer types, with particular attention to opportunities that reduce energy burden
- Create procedural inclusion for new stakeholders who are traditionally not represented
- Promote collaboration between utilities and community-based organizations (CBOs) to broaden perspectives and representation in planning processes and outcomes

Adding Community Lens to Planning

- We aim to include a community lens to our work within a variety of channels
- Open to feedback as to which touch points are appropriate or desired, and what content of each should be

NWS Development Process

 Determines which resources or Solution Types are applicable to address 	• Determines the potential capacity or energy contributions of a resource of a given length of time	 NWS solutions are integrated with CYME through modified load profiles 	 Existing/new PGE, Energy Trust, or third-party programs Partnership / hybrid solution approach RFP 	 Lifecycle Cost of Ownership Benefit Cost (B/C) Ratio Near-term Risk Near-term Customer Interruptions (CI) Near-Term Customer Minutes Interrupted (CMI)
Resource Contribution	Resource Supply Curve	Integrating NWS solutions with CYME	Solution Approaches	Cost Benefit Analyses

10 Minute Break

Preparing for more DERs (specifically, rooftop solar)

Joe Boyles, Distributed Resource Planning, DSP Project Designer December 8, 2021

Understanding How Much Generation There Is

Problems (potentially outages) are created when a large amount of customersited generation decreases over a short period of time, e.g., at sunset

PGE needs to know how much generation is being produced to anticipate how much energy might need to be supplied by the utility in the event customer-sited generation suddenly drops off

PGE does not require installation of monitoring devices with customer-sited generation

Disaggregation is a process we use to derive how much active generation there is

We're evaluating tools that will enable us to effectively perform disaggregation

Preparing for More DERs

We're reviewing

• Design standards across the country to understand how other utilities are managing DERs

• Our standards to identify opportunities/gaps

Evaluating System Impact of More DERs

How much capacity do we have and where (HCA)

Where/how do we expect the system to break

What options do we have to proactively address weak points

What regulatory changes are required to support options

Next Steps

DRAFT Agenda for 2022

January

- DSP Updates
- DER Forecasting & Adoption
- NWS
- Community Engagement

February

- DSP Updates
- DER Forecasting & Adoption
- Current & Future Grid Needs Identification Process
- NWS
- Interconnection
- Community Engagement

March

- DSP Updates
- DER Forecasting & Adoption
- Current & Future Grid Needs Identification Process
- NWS
- Interconnection
- Community Engagement

You can reach us at:

<u>DSP@PGN.com</u>

Let's meet the future together.

