

# Long-Term Assessment of Load-Resource Balance in the Pacific Northwest

October 31st, 2018

Nick Schlag, Director Arne Olson, Sr. Partner Kiran Chawla, Consultant Manohar Mogadali, Associate



- + Study scope & overview
- + Review of existing regional studies
- + Modeling overview & approach
- + Scenario inputs & assumptions
- Results & conclusions



- + In 2017, the OPUC acknowledged PGE's request to conduct a study related to the treatment of existing capacity available in the market in future Integrated Resource Plans
- + To inform the development of its 2019 Integrated Resource Plan (IRP), PGE is seeking to understand:
  - How future changes in resources and loads in the Pacific Northwest might affect the region's overall capacity position;
  - How constraints within the region might impact the ability to deliver excess capacity in the region to PGE loads; and
  - What implications of these factors have for PGE's long-term planning assumptions of market purchases of available surplus capacity



# Key Trends in the Northwest Drivers of Capacity Need

- The key trends shaping the Northwest power sector are:
  - Increasing peak loads, especially in the summer
  - Coal plant retirements
  - Few thermal power plants being expected to be built in the coming years
  - Addition of new renewables
  - The high level of energy efficiency that is already achieved as well as expected to be realized by utilities



*Image source: PNUCC* 

+ The expected capacity need is primarily driven by the retirement of almost 1,800 MW of coal over the next few years



#### 1. Review existing studies by regional entities

- Northwest Power & Conservation Council (NWPCC)
- Bonneville Power Administration (BPA)
- Pacific Northwest Utilities Conference Committee (PNUCC)
- 2. Develop a simple heuristic-based scenario tool to test impact of various assumptions on market surplus and deficit results
  - Designed to be consistent with existing studies, but provides more flexibility for scenario analysis
- 3. Use spreadsheet tool to design a range of scenarios to inform recommended assumptions for PGE 2019 IRP





#### **Four Existing Studies Surveyed**

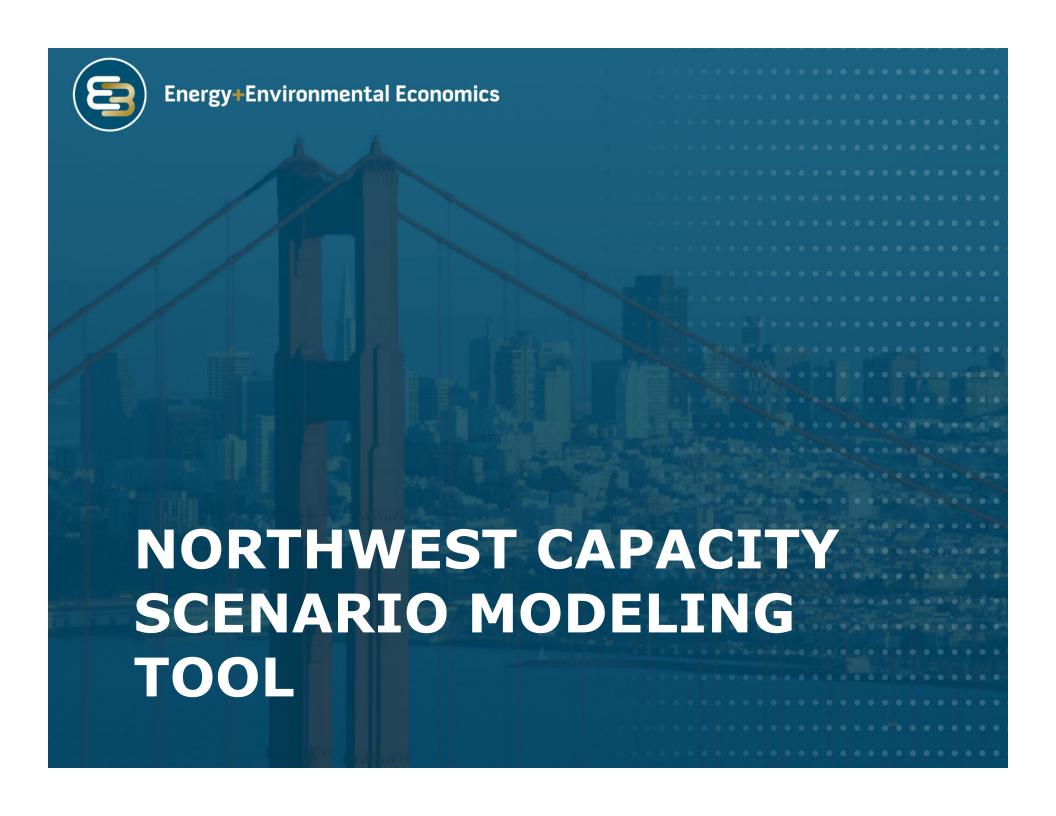
- + NWPCC: Pacific Northwest Power Supply Adequacy Assessment for 2023
  - Time horizon: 2023
  - Seasons: winter & summer
- + NWPCC: 7th Northwest Conservation and Electric Power Plan
  - Time horizon: 2015-2035
  - Seasons: winter & summer
- **+** PNUCC: Northwest Regional Forecast of Power Loads & Resources
  - Time horizon: 2019-2028
  - Seasons: winter & summer
- + BPA: 2017 Pacific Northwest Loads and Resources Study (The White Book)
  - Time horizon: 2019-2028
  - Seasons: winter only



### **Key Assumptions Comparison**

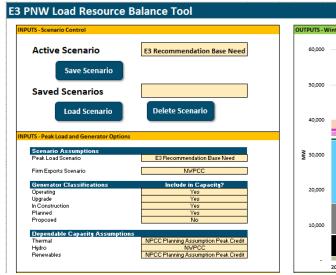
| Assumption               | PNUCC Study 2018                                     | BPA Whitebook<br>2017                                                                 | NWPCC 7 <sup>th</sup> Power<br>Plan       | NWPCC 2023<br>Assessment                                                       |
|--------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------|
| Analytical Approach      | Deterministic                                        | Deterministic                                                                         | Deterministic                             | Stochastic                                                                     |
| Peak Load<br>Calculation | NCP of all participating utilities                   | BPA Load Forecasts                                                                    | Ranges of load forecasts tested           | Distribution of peak<br>loads for 80<br>temperature year<br>modeled in GENESYS |
| Resources                | Existing and committed;<br>IPPs not included         | As per utility IRPs, IPPs<br>included                                                 | Existing, IPPs included                   | Existing and planned,<br>IPPs included                                         |
| Adequacy Metric          | PRM of 16%                                           | Adjustment to available resources based on operating reserves and transmission losses | Adequacy Reserve<br>Margin instead of PRM | LOLP                                                                           |
| Hydro Capacity           | 8 <sup>th</sup> percentile based on<br>average water | BPA internal Hourly<br>Operating and<br>Scheduling Simulator<br>(HOSS) model          | P2.5% 10-hour sustained peaking ability   | A wide range of hydro<br>conditions modeled in<br>GENESYS                      |
| Wind Capacity            | 5%                                                   | Wind capacity not counted as firm                                                     | 5% for Adequacy<br>Reserve Margin         | ELCC endogenously calculated in GENESYS                                        |

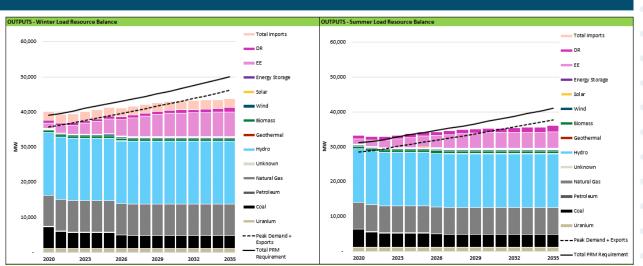



#### **Key Results of Existing Studies**

- + PNUCC study shows a ~1.8 GW winter capacity in 2020, and ~0.5 GW summer capacity need starting in 2021
  - Primarily different from BPA White Book and NWPCC in not including regional IPPs
- BPA White Book shows a winter capacity need starting in 2021 of 1.1 GW
  - No summer analysis provided
- + NWPCC RA assessment shows a need of 300-400 MW by 2021, with an additional 300-400 MW needed by 2022
  - RA assessment shows need only for the winter by 2022
- + NWPCC 7<sup>th</sup> Power Plan shows a capacity need of 1 GW in 2021 for the high need scenario, and a capacity surplus of 700 MW for the low need scenario




#### **Summary of Literature Review**


- + Under current assumptions, new capacity is required by 2021 in all studies reviewed
  - If unknown status in-region IPP generation is not available, new capacity is required in 2019
- PNUCC and BPA White Book use different metrics and have a different time horizon compared to NWPCC
  - Comparing across studies is difficult due to range of approaches and time horizons
- + Key uncertainties include loads, new build expected to come online before 2021, level of DSM that is realized, contribution of unknown status IPP generation, and external market purchases





- E3 developed a spreadsheet tool to analyze expected regional net capacity position under a range of different assumptions
- + Model uses input assumptions from regional outlook studies
- Model can be used to replicate results from studies or create custom scenarios
  - E3 calibrated the model to align with NWPCC 2023 RA assessment





- + E3 developed a spreadsheet tool to analyze expected regional net capacity position under a range of different assumptions
- Model uses input assumptions from regional outlook studies
- Model can be used to replicate results from studies or create custom scenarios
  - E3 calibrated the model to align with NWPCC 2023 RA assessment
- Calibration helps benchmark to regional outlook studies
- Using the calibrated model, additional scenarios and sensitivities not tested in the existing studies can be examined



#### + E3 used the NWPCC 2023 RA Assessment to calibrate the E3 model

- For calibration, assumptions are consistent with NWPCC 2023 assessment for 2023; NWPCC 7<sup>th</sup> Power Plan values are used when applicable
- + The PRM requirement assumed in E3's model is derived from the results of NWPCC's RA assessment
  - PRM value was calculated to yield "need" results consistent with NWPCC's 2023 assessment

| Category        | GENESYS                                          | <b>E3</b>                                        |
|-----------------|--------------------------------------------------|--------------------------------------------------|
| Approach        | Stochastic                                       | Deterministic                                    |
| Adequacy Metric | LOLP                                             | PRM                                              |
| Horizon         | One year snapshot                                | 10 year outlook                                  |
| Hydro           | Stochastic simulation of 80+ years               | Assumed contribution (%) to winter & summer peak |
| Renewables      | Stochastic simulation of hourly renewable output | Static assumed ELCC (%)                          |



+ E3's capacity model uses a PRM approach that is calibrated to yield comparable results to the NWPCC 2023 Adequacy Assessment:

1

Gather key
assumptions from
2023 Adequacy
Assessment
(demand forecast,
installed capacity, etc.)

2

Choose capacity
counting conventions
for each type of
resource
(firm, variable, hydro,
etc.)

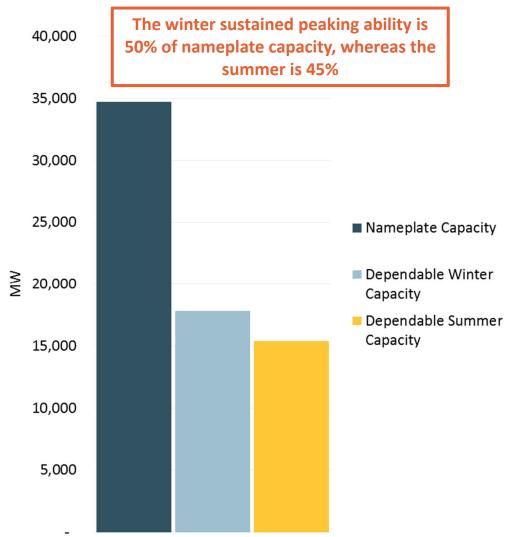
3

Derive PRM requirement to align timing and magnitude of "need" with 2023 Adequacy Assessment

+ After calibration process, inputs & assumptions may be varied to examine alternative scenarios

# Model Calibration NWPCC GENESYS vs E3 Model

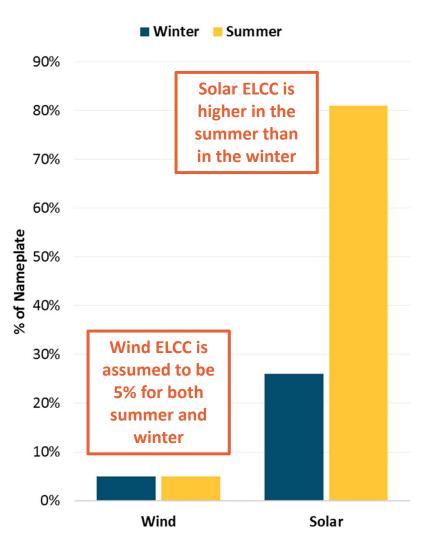
| + | Align 2023 <u>summer and winter peak</u> loads net of EE                                          | V                       |
|---|---------------------------------------------------------------------------------------------------|-------------------------|
| + | Use NWPCC 2023 estimates of <u>DR</u>                                                             |                         |
| + | Use NWPCC 2023 contracted non-NW imports + exports                                                | $\overline{\mathbf{V}}$ |
| + | Benchmark total thermal dependable capacity                                                       | $\overline{\checkmark}$ |
| + | Assume NWPCC 2023 in-region unknown status IPPs                                                   |                         |
| + | Assume NWPCC 2023 <u>seasonal external markets imports</u>                                        |                         |
| + | Estimate renewables ELCC                                                                          | <b>V</b>                |
|   | <ul> <li>NWPCC 7<sup>th</sup> Power Plan wind ELCC; E3 estimates for solar ELCC in sun</li> </ul> | nmer                    |
| + | Estimate <u>hydro dependable capacity</u>                                                         | <b>V</b>                |
|   | NWPCC 7 <sup>th</sup> Power Plan 10 hr sustained winter and summer peaking                        |                         |
| + | Calculate implied PRM to yield NWPCC 2023 capacity need                                           | V                       |


**M** NWPCC 2023 Assessment

✓ NWPCC 7<sup>th</sup> Power Plan

**☑** Calibration Parameter




# **Key Assumptions for Model Calibration Hydro Dependable Capacity**



- The Pacific Northwest region has more than 34 GW of nameplate hydro capacity
- However, the hydro resources are limited in their ability to provide power during a sustained peak load event
  - Hydro resources are energy limited and cannot output generation at their full nameplate capacity for multiple consecutive hours
  - To account for their energy limits, the nameplate capacity is derated to reflect the hydro fleet's sustained peaking ability
    - Similar to assumption used by NWPCC 7<sup>th</sup> Power Plan for its system adequacy assessment
    - Use of critical water year to determine capacity credit does not imply analysis assumes critical water conditions exist



### Key Assumptions for Model Calibration Renewables ELCC



- + Due to their intermittent generation, variable renewables usually do not contribute their full nameplate capacity towards meeting system peak
- + To estimate the contribution of renewables to system peak, effective load carrying capacity (ELCC) of renewables is used
  - Determines renewable production as a fraction of nameplate capacity during peak load event
- For wind and solar ELCC estimates, E3 used the NWPCC 7<sup>th</sup> Power Plan
  - Adequacy reserve margin results for wind peaking capability
  - Associated system capacity contribution (ASCC) for seasonal solar ELCC



# Derivation of a Planning Heuristic for the Northwest

| Resource            | Nameplate<br>MW | Dependable<br>MW | Notes                                                        |
|---------------------|-----------------|------------------|--------------------------------------------------------------|
| Thermal             | 14,667          | 14,667           | Assumed 100% availability                                    |
| Hydro               | 34,697          | 17,790           | Based on critical water 10-hr sustained peaking capability   |
| Solar               | 448             | 116              | Assumed 26% ELCC                                             |
| Wind                | 6,264           | 313              | Assumed 5% ELCC                                              |
| Other               | 1,200           | 784              | Biomass, geothermal, energy storage                          |
| DR                  | 740             | 740              | Assumed 100% availability                                    |
| Imports             |                 | 2,565            | 2,500 MW from CA + 65 MW firm imports                        |
| Generic Need        |                 | 700              | Need identified in 2023 RA Assessment                        |
| Total Resources     |                 | 37,675           |                                                              |
| Loads               |                 | Load MW          | Notes                                                        |
| 1-in-2 Peak Demand  |                 | 34,070           | Based on 2023 RA Assessment (includes all cost-effective EE) |
| Firm Exports        |                 | 462              | Based on 2023 RA Assessment                                  |
| Total Load          |                 | 34,532           |                                                              |
| Reserve Margin Need |                 | 10%              | Ratio between Total Resources & Total Load                   |



# Derivation of a Planning Heuristic for the Northwest

| Resource            | Nameplate<br>MW           | Dependable<br>MW | Notes                                                        |                           |        |
|---------------------|---------------------------|------------------|--------------------------------------------------------------|---------------------------|--------|
| Thermal             | 14,667                    | 14,667           | Assumed 100% availability                                    |                           |        |
| Hydro               | 34,697                    | 17,790           | Rased on critical water 10-hr sust                           | ained peaking capability  | 0 0 0  |
| Solar               | 448                       | 116              | Assumed 26% ELCC                                             |                           |        |
| Wind                | 6,264                     | 313              | Assumed 5% ELCC                                              | Reserve margin require    | ment   |
| Other               | 1,200                     | 784              | Biomass, geothermal, energy sto                              | is directly tied to conve | ntions |
| DR                  | 740                       | 740              | Assumed 100% availability                                    | used to count hydro capac |        |
| Imports             |                           | 2,565            | 2,500 MW from CA + 65 MW firm                                | n imports                 |        |
| Generic Need        |                           | 700              | Need identified in 2023 RA Assess                            | sment                     |        |
| Total Resources     |                           | 37,675           |                                                              |                           | • • •  |
| Loads               |                           | Load MW          | Notes                                                        |                           |        |
| 1-in-2 Peak Demand  | 1-in-2 Peak Demand 34,070 |                  | Based on 2023 RA Assessment (includes all cost-effective EE) |                           |        |
| Firm Exports        |                           | 462              | Based on 2023 RA Assessment                                  |                           | 0 0 0  |
| Total Load          |                           | 34,532           |                                                              |                           |        |
| Reserve Margin Need |                           | 10%              | Ratio between Total Resources 8                              | k Total Load              |        |



#### Alternative Hydro Conventions Yields Same Capacity Need

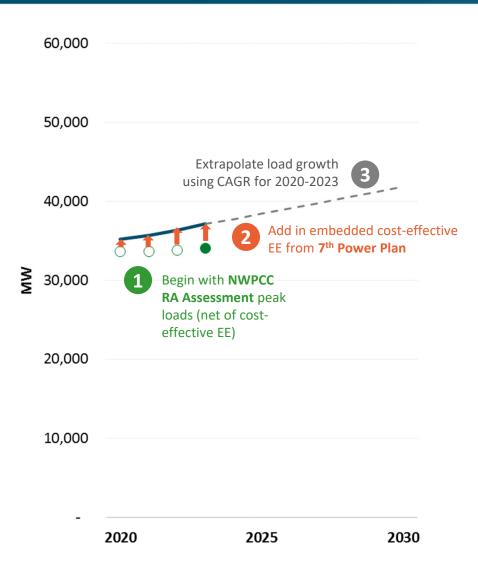
| Resource            | Nameplate<br>MW | Dependable<br>MW | Notes                          |                                                               |
|---------------------|-----------------|------------------|--------------------------------|---------------------------------------------------------------|
| Thermal             | 14,667          | 14,667           | Assumed 100% availability      |                                                               |
| Hydro               | 34,697          | 21,330           | Based on BPA White Book sus    | stained peaking capability                                    |
| Solar               | 448             | 116              | Assumed 26% ELCC               | • • •                                                         |
| Wind                | 6,264           | 313              | Assumed 5% ELCC                | Changing the convention used to                               |
| Other               | 1,200           | 784              | Biomass, geothermal, energy    | count hydro towards the reserve<br>margin does not change the |
| DR                  | 740             | 740              | Assumed 100% availability      | capacity need                                                 |
| Imports             |                 | 2,565            | 2,500 MW from CA + 65 MW       | firm imports                                                  |
| Generic Need        |                 | 700              | iveed identified in 2023 RA As | ssessment                                                     |
| Total Resources     |                 | 37,675           |                                | • • •                                                         |
| Loads               |                 | Load MW          | Notes                          |                                                               |
| 1-in-2 Peak Demand  | emand 34,070    |                  |                                |                                                               |
| Firm Exports        |                 | 462              | Based on 2023 RA Assessmen     | nt                                                            |
| Total Load          |                 | 34,532           |                                | 0 0 0                                                         |
| Reserve Margin Need |                 | 19%              | Ratio between Total Resourc    |                                                               |



#### **Summary of Model Conventions**

- Load-resource tool estimates resulting regional capacity surplus or deficit in the Northwest for the summer and winter using implied planning reserve margin
- + Planning reserve margin (PRM) requirement of 10% calibrated based on MW of need in NWPCC 2023 RA Assessment
- PRM calculation dependent on capacity accounting conventions in load-resource tool:
  - Contribution of hydro towards reserve margin based on seasonal
     2.5 percentile <u>10-hr sustained peaking capability</u>
  - Wind and solar resource contributions based on assumed <u>effective</u> <u>load carrying capability</u>
- + Assumptions & conventions used in this tool are derived to reflect loads & resources of the broader Northwest, but are not directly applicable to individual utilities (e.g. PGE)



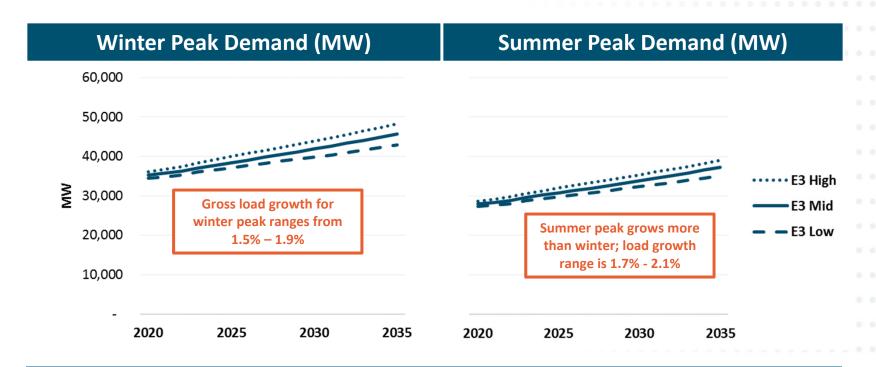



### **Scenario Input Summary**

| Assumption                                   | Low Need                                                                                                  | Base Need                            | High Need                                             |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------|--|
| Load Forecast<br>(pre-EE)                    | 1.46%/yr (W)<br>1.73%/yr (S)                                                                              | 1.74%/yr (W)<br>1.92%/yr (S)         | 1.94%/yr (W)<br>2.21%/yr (S)                          |  |
| Energy Efficiency<br>(treated as a resource) | <b>100%</b> of cost-<br>effective EE                                                                      | <b>100%</b> of cost-<br>effective EE | <b>75%</b> of cost-effective EE                       |  |
| <b>Demand Response</b>                       | NWPCC Low                                                                                                 | NWPCC Med                            | NWPCC High                                            |  |
| Thermal Generation                           | Announced retirements                                                                                     |                                      |                                                       |  |
| Hydro Generation                             | Constant at today's levels                                                                                |                                      | ls                                                    |  |
| Renewable Generation                         | Current plans                                                                                             |                                      |                                                       |  |
| Market Imports                               | 3400 MW through<br>2023, 2100 MW by<br>2030 (W)<br>1400 MW in the<br>near term, 0 in the<br>long term (S) | 2500 MW (W)<br>0 (S)                 | 3400 MW through<br>2021, 0 after 2023<br>(W)<br>0 (S) |  |



# E3 Load Forecasts using NWPCC RA Assessment Loads

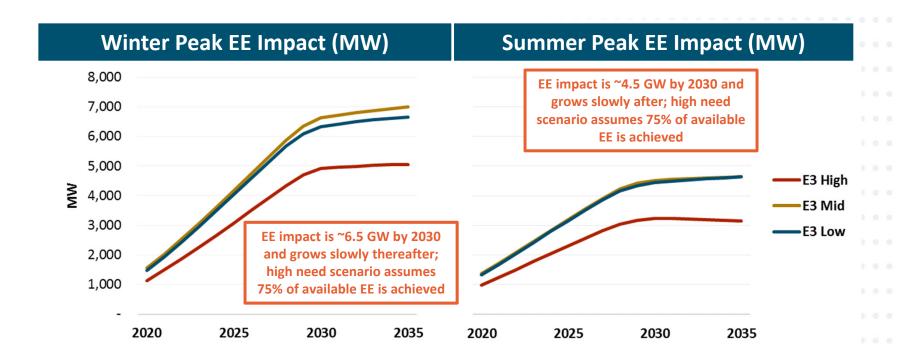



- + NWPCC sources are used to develop a "pre-EE" demand forecast in three steps:
  - 1. NWPCC RA assessment peak loads net of EE for 2023 are used as a starting point
    - E3 received additional data from NWPCC for 2020-22 peak loads net of EE from their RA assessment
  - 2. Loads before the impact of EE are backed out by adding back in the embedded cost-effective EE from NWPCC 7<sup>th</sup> Power Plan
  - 3. The implied gross peak loads for the 2020-2023 period are used to extrapolate the gross loads post 2023



#### **Recommended Demand Forecasts**

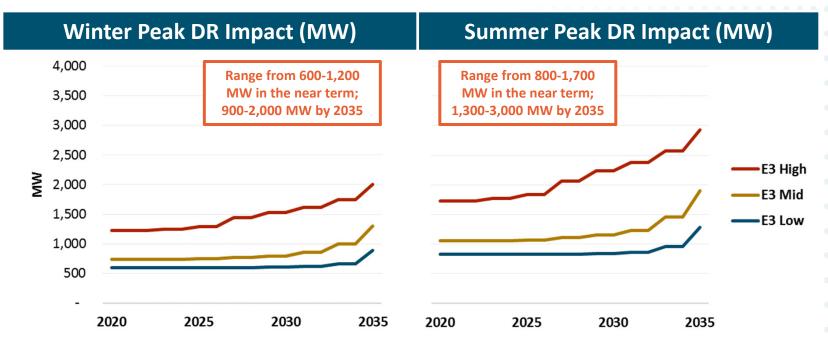
- + "Mid" load forecast consistent with NWPCC RA Assessment
- "High" and "Low" forecasts reflect range of long-term growth rates considered in the NWPCC 7<sup>th</sup> Power Plan




<sup>\*</sup> Note: demand forecast does not include impact of EE, which is treated as a resource



#### **Energy Efficiency**

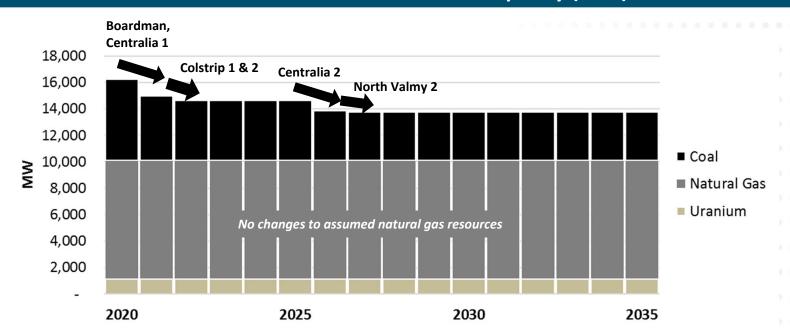

+ NWPCC 7<sup>th</sup> Power Plan assumes lower levels of realized energy efficiency for low load and mid load forecasts; for high loads 75% of cost-effective EE is assumed to be achieved





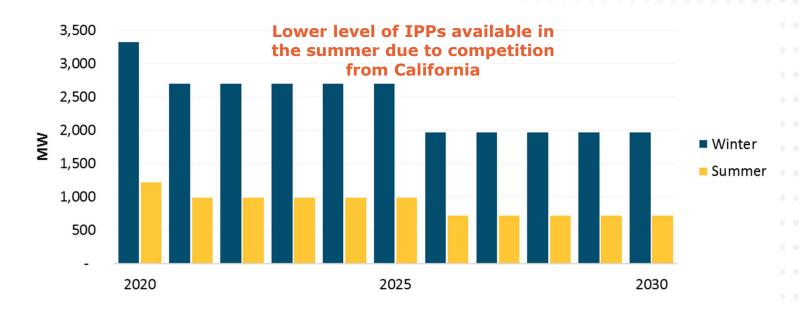
#### **Demand Response**

- Demand Response (DR) assumptions from NWPCC 7<sup>th</sup> Power Plan are used
- Winter DR availability is reduced to 2/3<sup>rd</sup> of that identified in the NWPCC 7<sup>th</sup> Power Plan based on RA adequacy assessment






#### **Thermal Generation Resources**

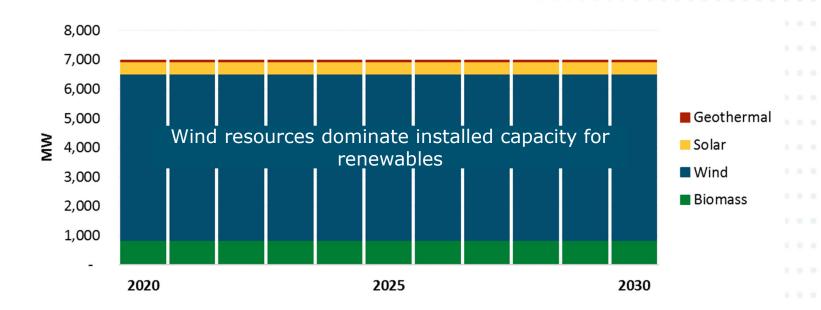

- Characterization of coal & gas resources in the Northwest based on NWPCC powerplant database
- + Key planned retirements based on announced retirements

#### **Thermal Generation Installed Capacity (MW)**



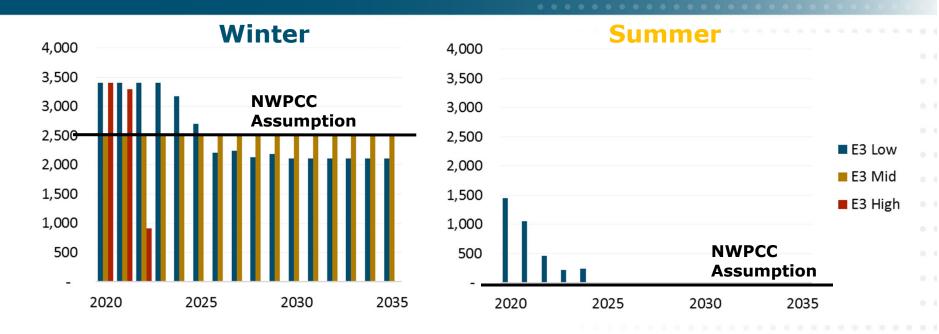


### **Key Assumptions for Model Calibration IPPs Availability**



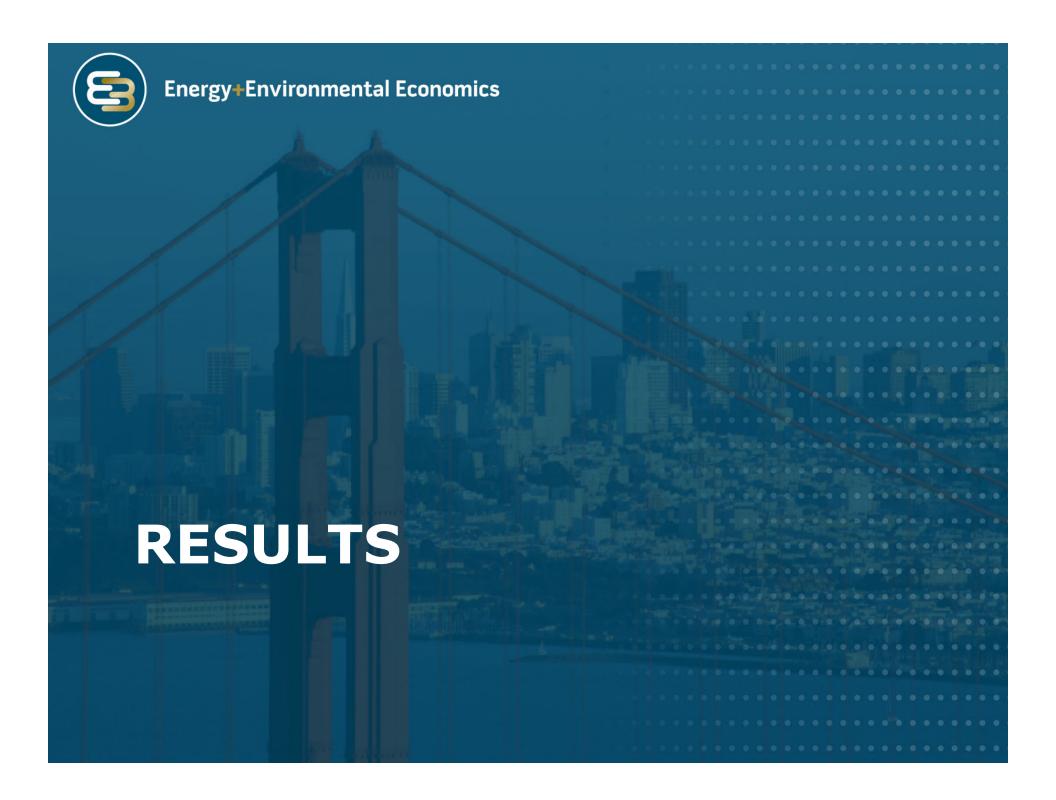

- + Unknown status IPPs assumption for winter is derived using the NWPCC power plants database
- + For the summer, the winter capacity is derated to account for competing demands for capacity from California, consistent with the NWPCC's approach

#### Renewable Resources


 Existing renewables resources are assumed to stay online through the analysis period

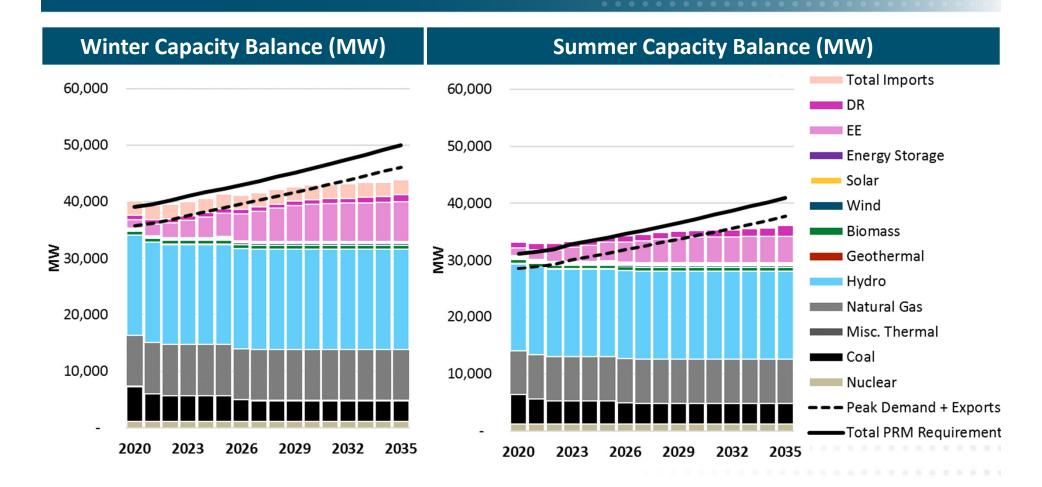
#### **Renewables Generation Installed Capacity (MW)**






# **External Market Imports Availability Scenario Specific**

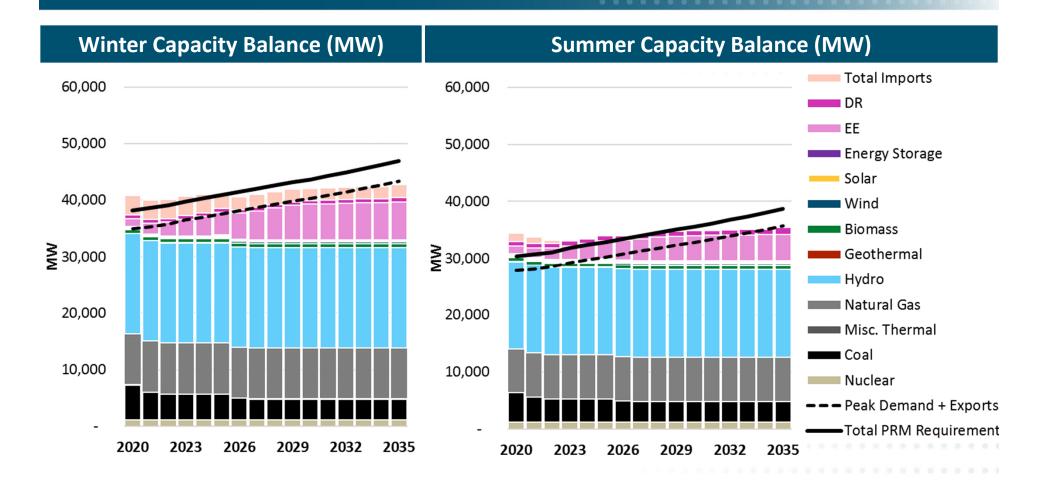



| Scenario  | Winter                        | Summer                        |
|-----------|-------------------------------|-------------------------------|
| Low Need  | E3 CAISO Surplus Calculations | E3 CAISO Surplus Calculations |
| Base Need | NWPCC                         | NWPCC                         |
| High Need | E3 CAISO Surplus Calculations | E3 CAISO Surplus Calculations |

Total surplus capped at 3400 MW developed by the NWPCC as the available capacity 95% of the times (actual transfer capacity is ~4 GW from CAISO)



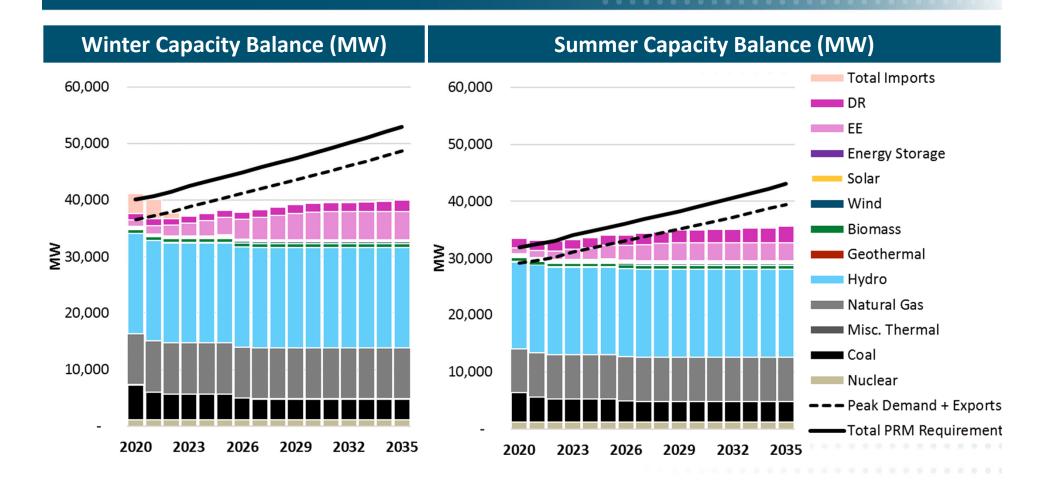



#### **Results: Base Need Scenario**



- + Winter: Capacity deficit starting in 2021
- Summer: Capacity deficit starting in 2026




#### **Results: Low Need Scenario**



- + Winter: Capacity deficit starting in 2026
- + Summer: Capacity deficit starting in 2029



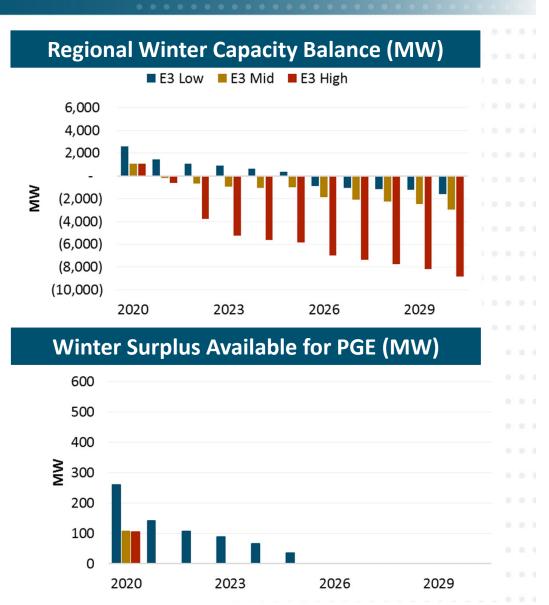
#### **Results: High Need Scenario**



- + Winter: Capacity deficit starting in 2021
- Summer: Capacity deficit starting in 2023

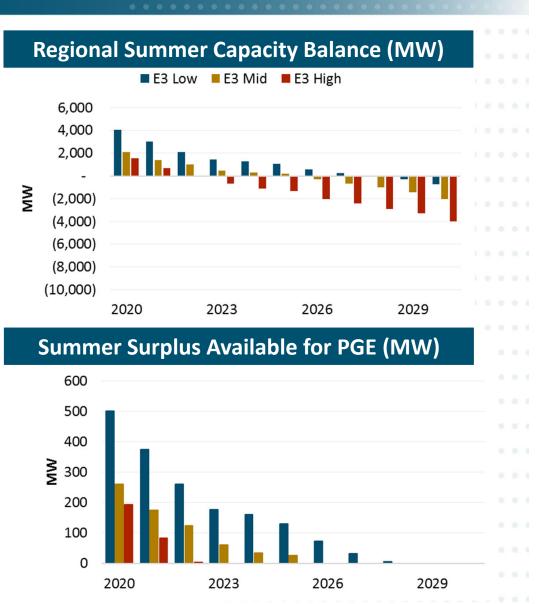
- + Scenarios show region will reach winter load resource balance between 2021-2026 and summer balance between 2023-2029
- + Region remains tighter on capacity in the winter despite growing summer peak demands

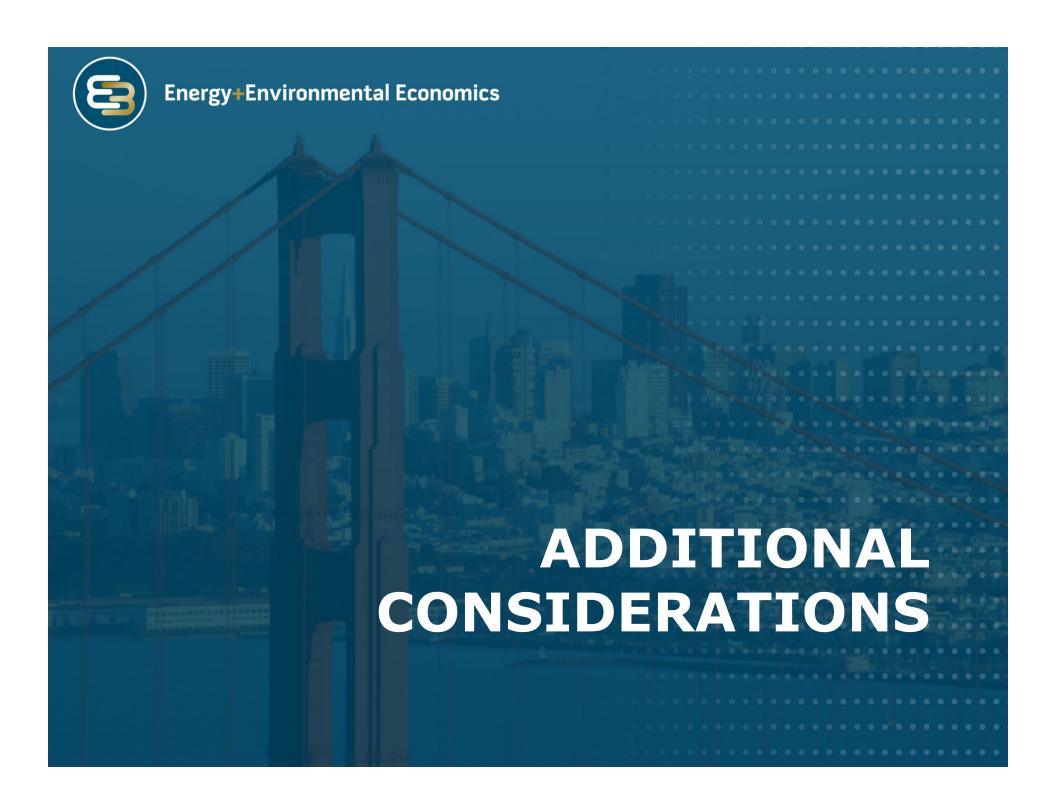
| Scenario           | Winter Year of Capacity<br>Deficit | Summer Year of Capacity Deficit |
|--------------------|------------------------------------|---------------------------------|
| Low Need Scenario  | 2026                               | 2029                            |
| Base Need Scenario | 2021                               | 2026                            |
| High Need Scenario | 2021                               | 2023                            |




#### **Allocating Regional Surplus to PGE**

- In years of regional capacity surplus, PGE is allocated its peak load share of the market surplus capacity
  - In years of regional capacity deficit, no market surplus is available for PGE
- + PGE's share of market surplus is assumed to be ~10% in the winter, and ~12% in the summer
  - Share of available surplus is calculated using the ratio between PGE winter and summer peak and the winter and summer peak for the region





- Except for the Low need scenario, the region is capacity short in the winter starting in 2021
  - No market surplus available for PGE if region is net short
- + For the Low need scenario, surplus capacity is available through 2025





- + Region has surplus summer capacity through 2022 for all scenarios
- + For the High need scenario, no market surplus capacity is available starting in 2023, whereas for the Base scenario, a small market surplus is available through 2025







#### **Additional Considerations**

- In addition to loads, resource additions and retirements could change the net capacity position of the region
  - Economic thermal plant retirements could result in a net short position sooner
  - New resource buildout in the near term could push out the need for capacity in the region to a later year
- + Higher level of IPP resources being contracted to in-region entities in the summer could push out need for new capacity to meet summer peak



#### Thank You!

Energy and Environmental Economics, Inc. (E3)

101 Montgomery Street, Suite 1600

San Francisco, CA 94104

Tel 415-391-5100

Web http://www.ethree.com

Arne Olson, Sr. Partner (arne@ethree.com)

Nick Schlag, Director (nick@ethree.com)

Kiran Chawla, Consultant (kiran@ethree.com)

Manohar Mogadali, Associate (manu@ethree.com)