Integrated Resource Planning

Meeting Logistics

Local Participants:

- World Trade Center facility
- Wireless internet access
 - Network: 2WTC_Event
 - Password: 2WTC_Event\$
- Sign-in sheets

Virtual Participants:

- Ask questions via 'chat' feature
- Meeting will stay open during breaks, but will be muted
- Electronic version of presentation: portlandgeneral.com/irp
- >> Integrated Resource Planning

Safety Moment Oroville Dam

arrules Eureka Lassen Redding National Forest PYRA LAKE P RESERV 5 Plumas Chico . ational Forest Mendocino Reno National Forest Oroville Dam 0 Carson 80 South Tahoe Sacramento 0 Santa Rosa 505 Stanislaus National Fore Yo. San Francisco Natio

By California Department of Water Resources - Lake Oroville Spillway Incident: Timeline of Major Events February 4-20, Public Domain, https://commons.wikimedia.org/w/index.php?curid=56768391

Safety Moment Oroville Dam

More information:

https://twitter.com/CANGJ3OPS

http://www.cnn.com/2017/02/13/us/california-oroville-dam-spillway-failure/ http://www.npr.org/2015/10/11/447181629/aging-and-underfunded-americasdam-safety-problem-in-4-charts

Today's Roundtable Topics

9:00a	Start
9:00a	Welcome / Safety Moment
9:15a	2016 IRP Update
9:45a	IRP Process Deep Dive
10:45a	Break (15 minutes)
11:00a 11:30a	IRP Development Schedule Resource Options & Resource Cost Studies
12:15p	Lunch (30 minutes)
12:45p	PGE's Inputs EE
1:15p	Energy Efficiency Cost- Effectiveness Methodology
2:00p	Next Steps/Wrap-Up
2:15p	Adjourn

2016 IRP Update

Franco Albi

2016 IRP Progress

Demand Reduction

- Energy Efficiency: 176 MW
- Demand Response: 77 MW

RPS Renewables

- RFP for up to ~175 MWa of RPS resources
- Maximize PTC value
- Potential NPVRR savings of ~ \$170M

Capacity

- 561 MW capacity
- Pursuing bilateral negotiations
- Plan to issue RFP for remaining need

million \$ 200 180 160 140 120 100 80 60 40 20 0 COD 2018 COD 2019 COD 2020 COD 2021

RPS Renewable Value

100% PTC Eligibility 80% PTC Eligibility

Capacity Need

Schedule

Portland General Electric

8

Acquisition with 2020 COD maximizes production tax credit (PTC) value before phase-out erodes opportunity

Renewable Value

Economics support renewable acquisition now to capture value of federal Production Tax Credits for customers

PTC value vs Delay

SB1547 RPS obligations

2016\$, Commercial Operation Date (COD)				Year	% of Retail Load	
millions	2018	2019	2020	2021	2015	15%
100% PTC	\$72.7	\$116.8	\$172.8		2020	20%
80%		\$28.4	\$88.1	\$150.2	2025	27%
PTC					2030	35%
PTC			\$3.4	\$68.7	2035	45%
40% PTC				-\$12.7	2040	50%

Values in the table represent the delta in net present value of revenue requirements (NPVRR) between the PTC/COD shown and a delayed acquisition in which incremental physical renewables are deferred using Renewable Energy Certificates (REC)

9

Action Plan working as intended; allows for load forecast updates and new executed contracts to reduce need ahead of RFP

At a minimum, 240MW of the remaining capacity need must be annual dispatchable

Capacity Need

Portland General Electric 10

PGE is always exploring opportunities to acquire reliable and costeffective energy and capacity for our customers

Bilateral Discussions

"[I]t makes sense to explore any compelling and time-limited opportunity to acquire existing capacity, particularly while market prices are historically low" - PGE Reply Comments

- PGE continues to pursue bilateral discussions to determine the feasibility for developing executable contracts
- Any such bilateral transactions would occur outside the traditional RFP process
- If the market produces a desirable solution, PGE intends to submit contracts to the Commission for review along with a request for waiver of the Commission's Competitive **Bidding Guidelines**
- PGE will provide the Commission with a report on the status of its bilateral negotiations and an update on the amount of capacity that it needs to procure (based on newly executed contracts and approved waivers) before issuing an RFP for capacity

PGE continues to explore the possibility of submitting a benchmark bid in a future renewable resource RFP

Benchmark Resources

PGE has identified a potential benchmark wind resource and is exploring the development of an energy storage site

Wind Benchmark

- PGE has identified a wind project with a nameplate capacity of up to approximately 500 MW and located in eastern Oregon
- PGE will inform the Commission and parties if, and when, it signs definitive agreements enabling it to submit the project as a benchmark bid

Storage Benchmark

• PGE continues to explore the possibility of developing a site with technical specifications that the Company could offer to potential bidders in an RFP

IRP Acknowledgement Schedule

OPUC Order expected on or before August 31, 2017

IRP Process Deep Dive

Elaine Hart Kate von Reis Baron

Feedback from Stakeholders at Roundtable #16-2 suggested that a more detailed discussion of the IRP modeling process would provide Stakeholders with important context.

Goals for today:

2

- Describe the IRP modeling process at a high level
- Establish a recurring map to help place future IRP discussions into context
- Identify key areas of interest for future technical meetings, learning more about methodology, or providing feedback

- The IRP modeling process has three primary steps, which inform the IRP Action Plan
- Both the modeling process and the development of the Action Plan rely on a common set of foundational principles and values

 The primary steps utilize input data developed in a number of subprocesses, summarized by four areas below

Zoom in on "Load Forecast" to focus on the energy efficiency forecasting process

Energy Efficiency

Long-term energy efficiency forecast process

Energy Efficiency

Short-term energy efficiency forecast process

Zoom in on "Resource Options" to focus on Supply-side Resource Options

Supply-side Resources

Performance and cost parameters for supply-side resources

The IRP process will include technical meetings to focus on the details of key topics

Technical Meetings

- Topics of interest for focused discussions
- Load forecast
- Portfolio construction
- Portfolio scoring
- AURORA modeling
- RPS strategy
- □ Additional topics?

IRP Development Schedule

Shauna Jensen

IRP Development Schedule

Resource Options & Resource Cost Studies

Sima Beitinjaneh

Consultants developed cost and technical assumptions for generic resources

Supply side options in the 2016 IRP

- In March 2015, PGE commissioned Black & Veatch and DNV-GL to develop technical and financial assumptions
- Final reports were obtained at the end of 2015.
- Results of the studies are described in detail in Chapter 7
- Full reports are attached in <u>Appendices J, K and M</u>
- 16 generic resource options were considered in the 2016 IRP

In the next IRP, PGE will work with consultants to develop resource characteristics for additional technologies

Supply side options in the next IRP

- For the 2016 IRP update, PGE is planning to engage Black
 & Veatch and DNV-GL to refresh the cost estimates
- For the next IRP, PGE will work with consultants to develop new studies with the goal of identifying and including an expanded list of resource options
- Additional, and more detailed, financial and operational characteristics will be included to better fit our constantly changing modeling capabilities
- PGE will evaluate more technologies that will be available and commercially viable during the time horizon of the next IRP

2016 IRP Supply options cost and technical parameters

Thermodynamic Resources	Renewable Resources	Energy Storage Resources
 Ten Cost Pa What are of the re- 	rameters e the fixed and va source?	riable costs
 Thirteen Tec What are 	hnical Parameter e capabilities of th	s ne resource?
 Technical Ma How will over time 	aturity Outlook the resource cos e?	ts change

Cost and Technical Parameters of Thermodynamic and Storage Resources

Cost Parameters	Technical Parameters
Overnight EPC and total capital cost	Net plant heat rate
Capital cost standard deviation	Average design life net heat rate, including degradation
Fixed O&M	Fuel consumption vs output
Nonfuel variable O&M	Minimum turndown capacity
Nonfuel variable wear and tear	Ramp rate
Capital additions/maintenance	Min Run/Down time
Nonfuel startup variable O&M	Start time to full load
Fuel startup variable O&M	Water consumption
Decommissioning cost	Scheduled maintenance
	Equivalent FOR
	Storage assumptions for : Energy capacity and round trip efficiency

Cost and Technical Parameters of Renewable Resources

Cost Assumptions	Technical Assumptions
Total overnight capital cost	Capacity/ capacity factor
Standard deviation from average overnight capital cost	Power curve
Escalation rate for capital cost over next 20 years	Expected FOR
Fixed O&M with breakdown	Panel and inverter efficiency (solar)
Nonfuel variable O&M	Maintenance cycle
Capital drawdown schedule	Approximate footprint
Ongoing expected capital additions	Construction period
Decommissioning accrual	

Timeline of Development of New Resource Options and Assumptions for the Next IRP

Progress and results will be shared with stakeholders as and when they are available throughout the public process for the next IRP

Energy Efficiency

Cost Effectiveness Methodology

Portland General Electric Energy Trust of Oregon

Background

- Energy Efficiency
- Legislative Acts
 - o SB 1149
 - o SB 838
- Energy Trust of Oregon
- Process
 - o PGE collects funds
 - o ETO develops and administers the program

Energy Efficiency

Energy Trust of Oregon Long-term EE Forecasting

Energy Trust of Oregon Energy Efficiency Resource Assessment Study May 10th, 2017

Agenda

- About Energy Trust
- Purpose & background
- Process
- Results
- Questions

About

- Independent nonprofit
- Serving 1.5 million customers of Portland General Electric, Pacific Power, NW Natural and Cascade Natural Gas
- Providing access to affordable energy
- Generating homegrown, renewable power
- Building a stronger Oregon and SW Washington

Resource Assessment Overview

What is a resource assessment?

 Estimate of cost-effective energy efficiency resource potential that is achievable over a 20-year period (2017-2036)

Energy Trust uses a model in *Analytica* that was developed by Navigant

Background – How is RA used?

- Informs utility IRP work & strategic planning / program planning
- Does not dictate what annual savings are acquired by programs
- Does not set incentive levels

Inputs:

- Utility Service Territory Data (from PGE)
 - Customer counts, 20-year load forecasts
 - Line losses, avoided costs, discount rate
- Building characteristics
 - Heating & hot water fuel, measure saturations
- Measure assumptions
 - Savings, costs, O&M, NEBs, measure life, load profile, end use, baseline, technical applicability, achievability rates

Outputs:

Not technically feasible	Technical Potential						
Not technically feasible	Market barriers	Achiev	vable Potential				
Not technically feasible	Market barriers	Not cost effective	Cost-Effective Potential				

mid ▼	Mid Value of Cumulative	Potential by C	ustomer Segr	ment (MWh, N	/W, MM Therr	ns)					
1.2	Selected Utilities 🕂 🛛 P	GE		ក្រ							
1_	Savings Type 🕂 M	Wh	ក្រ								
Page 1	Potential Type 🕂 C	ost-effective a	chievable	ិច។							
	Solootod Customor Soan		Totals								
	Selected Customer Segment V Ioldis										
	Simulation Year (year) Totals										
		2017	2018	2019	2020	2021	2022	2023	2024	2025	
C_Co	llege	10,919	11,100	11,534	11,814	11,971	12,167	12,366	12,608	12,771	
C_Da	ta Center	18	26	26	29	29	36	36	36	36	
C_Gr	ocery	29,317	32,499	35,166	41,511	43,841	46,268	48,367	50,445	52,128	
C_Ho	spital	84,811	85,950	87,052	96,913	98,173	99,277	101,046	102,382	103,243	
C_Lo	dging	18,797	19,698	20,767	21,669	23,477	25,947	27,051	27,867	28,504	
C_Off	ice	207,359	211,916	213,199	216,688	234,274	236,326	267,537	274,401	276,674	
C_Oth	her	222,961	226,179	227,925	230,259	231,950	231,662	233,920	236,744	248,466	
C_Oth	her Health	10,698	11,666	12,766	13,679	14,509	15,277	15,850	16,461	17,860	
C_Re	staurant	47,733	51,522	54,876	58,008	61,899	65,192	66,992	68,881	70,288	
C_Re	tail	138,810	141,306	145,541	148,014	148,283	151,197	164,998	170,133	172,453	
C_Sc	hool	15,747	16,509	17,247	18,959	19,763	20,419	21,086	21,864	22,429	
C_Str	eet Lights	2,467	4,770	6,919	8,925	10,797	12,544	14,175	15,697	17,118	
C_Wa	irehouse	46,933	51,476	52,105	53,231	59,889	56,687	57,416	67,146	67,737	
I_Agr	iculture	15,760	17,521	19,159	20,757	22,239	23,546	24,783	26,039	27,062	
I_Che	micals	46,698	47,320	47,978	48,428	48,938	49,267	49,575	49,886	50,137	
I_Col	d Storage	17,402	17,402	17,402	17,402	17,402	17,402	17,402	17,402	17,402	
I_Foo	d Products	61,323	61,614	61,885	62,152	62,396	62,624	62,839	63,057	63,235	
I_Hi T	ech	365,063	369,052	372,586	375,696	378,837	381,162	383,362	385,609	387,424	
I_Met	al Fab	17,717	17,837	17,949	18,061	18,161	18,268	18,369	18,471	18,555	
I_Met	al Foundries	61,759	62,110	62,440	62,766	63,061	63,374	63,670	63,970	64,216	
I_Oth	er	135,714	137,694	139,791	141,331	143,107	144,359	145,543	146,752	147,730	
I_Pul	p & Paper	89,014	89,885	90,699	91,492	92,212	92,993	93,731	94,477	95,089	
I_Trai	sportation and Equipment	65,844	66,368	66,908	67,317	67,773	68,140	68,487	68,841	69,128	
I_Woo	od Products	17,859	17,914	17,914	18,016	18,048	18,151	18,247	18,345	18,425	
R_Ma	inuf	59,928	61,696	62,393	64,101	65,619	66,987	68,915	70,006	70,978	
R_Mu	Iti Fam	161,045	172,809	184,575	196,187	209,696	223,269	239,766	252,323	264,443	
R_Sir	igle Fam	623,571	632,079	640,617	648,528	655,786	666,283	693,869	702,846	711,218	
Totals	5	2,575,267	2,635,918	2,687,421	2,751,933	2,822,128	2,868,822	2,979,399	3,042,689	3,094,748	

Determining Cost-effectiveness

Total Resource Cost (TRC) BCR =

(Lifetime Savings * Avoided Costs) + NEBs Total Cost of Measure

NEBs = quantifiable non-energy benefits

Avoided Costs

 \checkmark

f_x =(1+RegionalCredit)*P15*(1+Combined_TD_Loss_Factor)+Q15+R15

N	0	Р	Q	R	S	Т	Y	Z	AA	AB	AC	AD	AE	AF
			Av	oided Cost Calc	ulation									
		Weighted	Capacity	Premium				Annual						
Measure	Year	avoided Cost	Adders	Adder	Avoided Costs	Levelized Cost	Year	Real Value						
Life		(\$/kWh)	(\$/kWh)	(\$/kWh)	(NPV/kWh)	(\$/kWh)		for RA						
								Model						
0		<u>s</u> -	<u>s</u> -	\$ -	S -	S -	0	Ş -						
1	2017	\$ 0.0392	\$ 0.02	\$ 0.007	\$ 0.071	\$0.0745	1	\$ 0.0745						
2	2018	\$ 0.0411	\$ 0.02	\$ 0.007	\$ 0.142	\$0.0756	2	\$ 0.0769						
3	2019	\$ 0.0427	\$ 0.02	\$ 0.007	\$ 0.211	\$0.0766	3	\$ 0.0788						
4	2020	\$ 0.0439	\$ 0.02	\$ 0.013	\$ 0.283	\$0.0789	4	=(1+Region	nalCredit)'	•P15•(1+Co	mbined_1	D_Loss_F	actor)+Q15	+R15
5	2021	\$ 0.0441	\$ 0.02	\$ 0.019	\$ 0.358	\$0.0815	5	\$ 0.0931						
6	2022	\$ 0.0456	\$ 0.02	\$ 0.019	\$ 0.431	\$0.0835	6	\$ 0.0949						
/	2023	\$ 0.0475	\$ 0.02	\$ 0.019	\$ 0.502	\$0.0852	7	\$ 0.0972						
8	2024	\$ 0.0496	\$ 0.02	\$ 0.019	\$ 0.572	\$0.0868	8	\$ 0.0997						
9	2025	\$ 0.0494	\$ 0.02	\$ 0.019	\$ 0.639	\$0.0879	9	\$ 0.0995						
10	2026	\$ 0.0500	\$ 0.02	\$ 0.019	\$ 0.704	\$0.0889	10	\$ 0.1003						
11	2027	\$ 0.0497	\$ 0.02	\$ 0.019	\$ 0.765	\$0.0897	11	\$ 0.0998						
12	2028	\$ 0.0493	\$ 0.02	\$ 0.019	\$ 0.824	\$0.0904	12	\$ 0.0994						
13	2029	\$ 0.0514	\$ 0.02	\$ 0.019	\$ 0.881	\$0.0910	13	\$ 0.1020						
14	2030	\$ 0.0517	\$ 0.02	\$ 0.019	\$ 0.936	\$0.0916	14	\$ 0.1023						
15	2031	\$ 0.0519	\$ 0.02	\$ 0.019	\$ 0.989	\$0.0922	15	\$ 0.1025						

Avoided Costs continued

	A	В	C	D	E	F	G	H	I	J	K	L	M	N
1	Real Annual Avoided Cost (2017	\$)	Upd	late		Lifetimes	(years)							
2	Code	Friendly Name	0	1	2	3	4	5	6	7	8	9	10	11
3	R-All-Ref-Refrig-All-All-C	Res Refrigerator	0.0000	0.0572	0.0595	0.0614	0.0690	0.0779	0.0798	0.0820	0.0842	0.0841	0.0849	0.0841
4	R-All-Ref-Freezer-All-All-R	Res Freezer	0.0000	0.0570	0.0592	0.0611	0.0687	0.0779	0.0798	0.0819	0.0841	0.0841	0.0849	0.0841
5	R-All-Plug-Dryer-All-All-R	Res Dryer	0.0000	0.0809	0.0833	0.0852	0.0927	0.1009	0.1026	0.1046	0.1074	0.1072	0.1080	0.1074
6	R-AII-WH-Cwash-AII-AII-R	Res Clotheswasher	0.0000	0.0659	0.0683	0.0702	0.0778	0.0884	0.0902	0.0924	0.0946	0.0945	0.0954	0.0946
7	R-AII-HVAC-CAC-AII-AII-E	Res Cental AC	0.0000	0.1173	0.1199	0.1219	0.1293	0.1391	0.1413	0.1434	0.1456	0.1466	0.1475	0.1462
8	R-AII-HVAC-RAC-AII-AII-E	Res Window AC	0.0000	0.1281	0.1307	0.1327	0.1401	0.1502	0.1523	0.1545	0.1567	0.1577	0.1586	0.1573
9	Residential-res-Water Heating	Res Water Heat	0.0000	0.0647	0.0671	0.0690	0.0765	0.0869	0.0887	0.0908	0.0931	0.0930	0.0939	0.0931
10	R-AII-WH-HPWH-AII-AII-R	Res HP Water Heat	0.0000	0.0673	0.0698	0.0717	0.0792	0.0891	0.0908	0.0930	0.0953	0.0951	0.0960	0.0953
11	R-AII-WH-SWH-AII-AII-C	Res Solar Water Heat	0.0000	0.0625	0.0649	0.0668	0.0744	0.0841	0.0858	0.0880	0.0903	0.0901	0.0910	0.0903
12	R-AII-HVAC-ASHP-AII-AII-E	Res Air Source HP	0.0000	0.0745	0.0769	0.0788	0.0863	0.0931	0.0949	0.0972	0.0997	0.0995	0.1003	0.0998
13	R-AII-HVAC-DHP-HZ1-AII-N	Res Ductless HP	0.0000	0.0679	0.0703	0.0722	0.0798	0.0871	0.0888	0.0910	0.0936	0.0933	0.0940	0.0937
14	R-AII-HVAC-Zonal-AII-AII-E	Res Zonal Ele Heat	0.0000	0.0707	0.0731	0.0751	0.0826	0.0897	0.0914	0.0937	0.0962	0.0959	0.0967	0.0963
15	R-AII-HVAC-ER-AII-AII-E	Res Ele Resistance Heat	0.0000	0.0769	0.0793	0.0813	0.0888	0.0966	0.0983	0.1006	0.1031	0.1028	0.1036	0.1032
16	R-All-Lgt-Lighting-All-All-R	Res Lighting	0.0000	0.0648	0.0672	0.0692	0.0767	0.0862	0.0881	0.0902	0.0925	0.0924	0.0932	0.0926
17	Residential-res-Other	Res Other	0.0000	0.0594	0.0618	0.0637	0.0712	0.0807	0.0825	0.0846	0.0869	0.0868	0.0876	0.0869
18	R-AII-BId-BIdg-AII-AII-R	Res Whole Home	0.0000	0.0628	0.0652	0.0671	0.0747	0.0835	0.0853	0.0875	0.0899	0.0898	0.0906	0.0899
19	Residential-Spa Heater	Res Spa Cover	0.0000	0.0736	0.0760	0.0779	0.0855	0.0967	0.0987	0.1009	0.1028	0.1029	0.1037	0.1030
20	Residential-Res-TV	Res Power Strip	0.0000	0.0624	0.0648	0.0667	0.0742	0.0836	0.0853	0.0875	0.0898	0.0897	0.0905	0.0898
21	A-Irr-Irr-Irrigation-All-All-E	Ag-Irrigation	0.0000	0.0583	0.0604	0.0621	0.0698	0.0814	0.0835	0.0855	0.0873	0.0876	0.0884	0.0873
22	DSI-0	Flat	0.0000	0.0542	0.0564	0.0582	0.0658	0.0744	0.0762	0.0783	0.0805	0.0804	0.0812	0.0804
23	IndShift1	1-Shift Industrial	0.0000	0.0598	0.0622	0.0641	0.0716	0.0827	0.0844	0.0865	0.0886	0.0886	0.0894	0.0887
24	IndShift2	2-Shift Industrial	0.0000	0.0593	0.0617	0.0636	0.0710	0.0819	0.0835	0.0857	0.0878	0.0878	0.0886	0.0879
25	IndShift3	3-Shift Industrial	0.0000	0.0563	0.0586	0.0605	0.0680	0.0778	0.0795	0.0816	0.0838	0.0837	0.0846	0.0838
26	Commercial-Ref.warehouse-Refrig	Cold Storage	0.0000	0.0567	0.0590	0.0608	0.0683	0.0773	0.0792	0.0812	0.0834	0.0834	0.0842	0.0834
27	SIC 20-IND_SIC 20	Food Products	0.0000	0.0566	0.0588	0.0607	0.0682	0.0770	0.0788	0.0809	0.0831	0.0830	0.0838	0.0830
28	SIC 24-IND_SIC 24	Wood Products	0.0000	0.0561	0.0583	0.0602	0.0677	0.0766	0.0784	0.0805	0.0827	0.0826	0.0834	0.0826
29	SIC 26-IND_SIC 26	Pulp & Paper	0.0000	0.0550	0.0573	0.0591	0.0666	0.0751	0.0769	0.0789	0.0812	0.0811	0.0819	0.0811
30	SIC 28-IND_SIC 28	Chemicals	0.0000	0.0547	0.0569	0.0588	0.0663	0.0748	0.0766	0.0787	0.0809	0.0808	0.0815	0.0808
31	SIC 29-IND_SIC 29	Oil & Petroleum	0.0000	0.0542	0.0565	0.0583	0.0658	0.0746	0.0764	0.0785	0.0806	0.0806	0.0813	0.0806
32	SIC 33-IND_SIC 33	Primary Metals	0.0000	0.0549	0.0571	0.0589	0.0665	0.0750	0.0769	0.0789	0.0811	0.0810	0.0818	0.0811
33	SIC 37-IND_SIC 37	Transportation & Equipment	0.0000	0.0554	0.0577	0.0595	0.0670	0.0762	0.0780	0.0800	0.0822	0.0821	0.0829	0.0822
34	Other SICs-IND_Other SICs	Other Industrial	0.0000	0.0554	0.0577	0.0595	0.0670	0.0762	0.0780	0.0800	0.0822	0.0821	0.0829	0.0822
35	S-All-Lgt-Streetlight-All-All-U	Street Lighting	0.0000	0.0585	0.0606	0.0623	0.0701	0.0746	0.0767	0.0788	0.0811	0.0809	0.0816	0.0810
36	Commercial-college-AirComp	College Compressed Air	0.0000	0.0627	0.0652	0.0671	0.0746	0.0862	0.0878	0.0900	0.0922	0.0921	0.0930	0.0923
37	Commercial-college-Cook	College Cooking	0.0000	0.0616	0.0641	0.0660	0.0735	0.0846	0.0863	0.0885	0.0907	0.0906	0.0915	0.0907
38	Commercial-college-Cool	College Cooling	0.0000	0.0710	0.0735	0.0754	0.0829	0.0948	0.0966	0.0987	0.1008	0.1010	0.1019	0.1009
39	Commercial-college-ExtLight	College Exterior Lights	0.0000	0.0581	0.0601	0.0619	0.0696	0.0747	0.0767	0.0788	0.0811	0.0809	0.0816	0.0810

Updates for the 2016 IRP

- Refreshed measure assumptions
- Incremental measure definitions
- Better treatment of codes & standards
- New approach to emerging technologies

Incremental Measure Definition

Emerging Technologies

- Include some emerging technologies
- Factor in changing performance, cost over time
- Use risk factors to hedge against uncertainty

		Risk Factor	for Emerging Te	echnologies	
Risk Category	10%	30%	50%	70%	90%
Market Risk (25% weighting)	 High Risk: Requires ne business me business me Start-up, or manufacture Significant of infrastructure Requires tracontractors acceptance 	ew/changed odel small er changes to re ining of . Consumer barriers exist.		tractors business .S. Market er committed to ization	
Technical Risk (25% weighting)	High Risk: Prototype in first field tests. A single or unknown approach	Low volume manufacturer. Limited experience	New product with broad commercial appeal	Proven technology in different application or different region	Low Risk: Proven technology in target application. Multiple potentially viable approaches.
Data Source Risk (50% weighting)	High Risk: Based only on manufacturer claims	Manufacturer case studies	Engineering assessment or lab test	Third party case study (real world installation)	Low Risk: Evaluation results or multiple third party case studies

Emerging Technologies

dryers

Residential	Commercial	Industrial
 LED Lighting CO2 Heat Pump Water Heaters Advanced Heat 	 LED Lighting Advanced Rooftop Unit A/C Evaporative coolers 	 LED Lighting Advanced refrigeration controllers
 Pumps Home Automation/Controls 	 Energy Recovery ventilators Advanced 	 Advanced motor technologies
 Advanced window and insulation technologies 	 refrigeration technologies Smart/Dynamic 	
 Heat Pump clothes 	windows	

Example Measure: Residential Heat Pump Water Heater- Tier 1, Heating Zone 1

Key Measure Inputs:

- Baseline: 0.9 EF Water Heater (\$590)
- Measure Cost: \$1,230-\$1,835 (\$600 RETC)
- Competing Measures: Tier 2 HPWH, CO₂ HPWH
- Lifetime:12 years
- Conventional (not emerging, no risk adjustment)
- Customer Segments: SF, MF, MH
- Program Type: Replacement
- Savings: 1,516-1,530 kWh
- Density, saturation, suitability
- No Non-Energy Benefits or O&M savings

Example Measure: Residential Heat Pump Water Heater- Tier 1, Heating Zone 1

Mid Value - Cost-effective Achievable Potential							•
Mid Value of Cost-effective Achievable Potential (MWh, MW, MM Therms) Selected Replacement Type							
	Simulation	Year (year)		Totals			
	2017	2018	2019	2020	2021	2022	20 🔺
Res Bathroom Faucet Aerators 1.5 com-Electric	0	0	0	0	0	0	
Res Bathroom Faucet Aerators 1.5 opm- Gas	0	0	0	0	0	0	_
Res Kitchen Faucet Aerators, 1.5 gpm- Electric	24.71K	24.53K	24.34K	24.16K	23.98K	23.8K	23.6:
Res Kitchen Faucet Aerators, 1.5 gpm- Gas	0	0	0	0	0	0	
Res Kitchen Faucet Aerators, 2.0 gpm- Electric	0	0	0	0	0	0	
Res Kitchen Faucet Aerators, 2.0 gpm- Gas	0	0	0	0	0	0	
Res Showerheads - Elec DHW	85.68K	85.04K	84.4K	83.77K	83.14K	82.52K	81.1
Res Showerheads - Gas DHW	2545	2526	2507	2489	2470	2451	24
Res Smart Devices Home Automation (NEW)	727.4	1441	2146	2841	3464	4096	47
Res Smart Devices Home Automation (RET)	46.11K	44.72K	43.35K	41.99K	40.66K	39.34K	38.0+
Res Tankless Gas Hot Water Heater-Z1							
Res Tankless Gas Hot Water Heater-Z1 (NEW ONLY)							
Res Tankless Gas Hot Water Heater-Z2							
Res Tankless Gas Hot Water Heater-Z2 (NEW ONLY)							
Res Tier 1 Heat Pump Water Heater- Z1	8026	15.38K	22.13K	28.31K	33.98K	39.17K	43.9
Res Tier 1 Heat Pump Water Heater- Z2							
Res Tier 2 Heat Pump Water Heater-Z1	0	0	0	1095	5519	13.2K	20.2
Res Tier 2 Heat Pump Water Heater-Z1 (NEW ONLY)	3167	6369	9645	13K	15.88K	19K	22.
Res Tier 2 Heat Pump Water Heater-Z2							
Res Tier 2 Heat Pump Water Heater-Z2 (NEW ONLY)		1					E
Totals	2.575M	2.636M	2.687M	2.752M	2.822M	2.869M	2.975 -
· III							. Italia

Example Measure- Tier 1 HPWH CE Achievable Potential x Deployment Curves = Deployed DSM Savings

Cost Effective Achievable Poten	tial from RA	model (M	Wh)							
	2017	2018	2019	2020	2021	2022	2023	2024	2025	
Tier 1 HPWH Z1- Manuf.	782	1,500	2,157	2,760	3,312	3,818	4,282	4,708	5,098	
Tier 1 HPWH Z1- Multifamily	3,060	5,865	8,436	10,792	12,953	14,933	16,749	18,413	19,938	
Tier 1 HPWH Z1- Single Family	4,184	8,019	11,535	14,758	17,712	20,420	22,903	25,178	27,264	
Total	8,026	15,384	22,128	28,310	33,977	39,172	43,934	48,299	52,300	
Deployment Curves	2017	2018	2019	2020	2021	2022	2023	2024	2025	
Com-NEW	145%	130%	130%	95%	90%	85%	85%	70%	90%	
Com-RET	10%	9%	9%	8%	7%	6%	6%	5%	5%	
Com-ROB	90%	90%	90%	90%	90%	90%	90%	90%	90%	
Ind-RET	9%	9%	10%	9%	8%	7%	7%	<mark>6</mark> %	6%	
Ind-ROB	85%	85%	85%	85%	85%	85%	85%	85%	85%	
RES-NEW	80%	80%	80%	80%	80%	80%	80%	80%	80%	
RES-RET	11%	11%	10%	7%	6%	5%	4%	4%	4%	
RES-ROB	85%	85%	85%	85%	85%	85%	85%	85%	85%	
RES-CFL	4%	4%	5%	5%	5%	5%	5%	5%	5%	
Deployed Savings (MWh)										
	2017	2018	2019	2020	2021	2022	2023	2024	2025	
Tier 1 HPWH Z1- Manuf.	665	1,275	1,833	2,346	2,815	3,246	3,640	4,002	4,333	
Tier 1 HPWH Z1- Multifamily	2,601	4,985	7,170	9,174	11,010	12,693	14,236	15,651	16,947	
Tier 1 HPWH Z1- Single Family	3,556	6,817	9,805	12,544	15,055	17,357	19,467	21,401	23,174	
Total	6,822	13,076	18,809	24,063	28,880	33,296	37,344	41,054	44,455	

Example Measure- Incremental Savings

Tier 1 Z1 Residential HPWH Measures	TRC	Cumulative CE Potential (MWh)	2017	2018	2019	2020	2021	2022	2023
Tier 1 HPWH Z1- Manuf.	2.66	7,741	782	1,500	2,157	2,760	3,312	3,818	4,282
Tier 1 HPWH Z1- Multifamily	2.70	30,274	3,060	5,865	8,436	10,792	12,953	14,933	16,749
Tier 1 HPWH Z1- Single Family	2.51	41,398	4,184	8,019	11,535	14,758	17,712	20,420	22,903
Total		71,672	8,026	15,384	22,128	28,310	33,977	39,172	43,934
		Cumulative CE							
Competing Measures	TRC	Potential (MWh)	2017	2018	2019	2020	2021	2022	2023
Competing Measures Tier 2 HPWH Z1- Manuf.	TRC 1.10	Potential (MWh) 9,957	2017	2018	2019	2020 1,095	2021	2022 3,019	3,863
Competing Measures Tier 2 HPWH Z1- Manuf. Tier 2 HPWH Z1- Multifamily	TRC 1.10 1.06	Potential (MWh) 9,957 29,621	2017			2020 1,095 -	2021 2,099 3,420	2022 3,019 6,554	2023 3,863 9,428
Competing Measures Tier 2 HPWH Z1- Manuf. Tier 2 HPWH Z1- Multifamily Tier 2 HPWH Z1- Single Family	TRC 1.10 1.06 1.04	Potential (MWh) 9,957 29,621 31,753	2017	2018 - - -	2019 - - -	2020 1,095 - -	2021 2,099 3,420 -	2022 3,019 6,554 3,630	2023 3,863 9,428 6,958
Competing Measures Tier 2 HPWH Z1- Manuf. Tier 2 HPWH Z1- Multifamily Tier 2 HPWH Z1- Single Family Advanced CO2 HPWH Z1- Manuf	TRC 1.10 1.06 1.04 0.22	Potential (MWh) 9,957 29,621 31,753 -	-	2018 - - - -	2019 - - - -	2020 1,095 - - -	2021 2,099 3,420 - -	2022 3,019 6,554 3,630 -	2023 3,863 9,428 6,958 -
Competing Measures Tier 2 HPWH Z1- Manuf. Tier 2 HPWH Z1- Multifamily Tier 2 HPWH Z1- Single Family Advanced CO2 HPWH Z1- Manuf Advanced CO2 HPWH Z1- Multifamily	TRC 1.10 1.06 1.04 0.22 0.22	Potential (MWh) 9,957 29,621 31,753 - -	-	2018 - - - - -	2019 - - - - -	2020 1,095 - - - -	2021 2,099 3,420 - - -	2022 3,019 6,554 3,630 - -	2023 3,863 9,428 6,958 - -
Competing Measures Tier 2 HPWH Z1- Manuf. Tier 2 HPWH Z1- Multifamily Tier 2 HPWH Z1- Single Family Advanced CO2 HPWH Z1- Manuf Advanced CO2 HPWH Z1- Multifamily Advanced CO2 HPWH Z1- Single Family	TRC 1.10 1.06 1.04 0.22 0.22 0.22	Potential (MWh) 9,957 29,621 31,753 - - -	2017 - - -	2018 - - - - - - -	2019 - - - - - - -	2020 1,095 - - - - - -	2021 2,099 3,420 - - - -	2022 3,019 6,554 3,630 - - -	2023 3,863 9,428 6,958 - - - -

Results

Energy Efficiency Supply Curve

Energy Efficiency Deployment - Cumulative

600

Highest-Saving Cost-effective Measures

Residential	Commercial	Industrial
 CFL & LED lighting Efficient new homes Heat pump water heaters Showerheads/aerator s Refrigerator recycling Behavior Savings Advanced power strips Smart thermostats 	 Strategic energy management HVAC controls Ventilation controls LED lighting Showerheads Energy management systems 	 Fan & pump system controls Strategic energy management LED lighting Compressed air demand reduction HVAC O&M

Contribution of Emerging Technologies

6,000,000

Comparison to 7th Power Plan

Figure 3. Comparison of Energy Trust and 7th Plan Economic Potential as a Percentage of Forecast Load

Energy Trust compared to 7th Power Plan

Energy Trust has;

- Higher measure saturations than the region as a whole
- Lower electric space & water heat saturation
- Fewer savings from codes and standards
- More savings in the near term, fewer in out years

Thank You

Adam Shick, Sr. Planning Project Manager adam.shick@energytrust.org 503.445.2953

