
© Cypress.io www.cypress.io

Extend Maximizes Efficiency Through Cypress 
Component Testing

Extend is a leading product and shipping protection 
platform that aims to amplify brand revenue and 
streamline issue resolution. The company boasts a robust 
engineering team of 80 professionals, which includes 7 
dedicated internal developer experience (DevX) engineers. 
Extend engineers consistently implement end-to-end 
(E2E) tests in its React-based front-end applications and 
backend AWS services, all of which are developed in Node. 

Extend uses Cypress E2E tests extensively, running 
hundreds of tests that span dozens of services and four 
primary front-end applications. As part of their continuous 
integration (CI) process, they conduct over four million 
tests, achieving impressive release times, moving from 
a pull request to production in under an hour. They have 
been using Cypress for two years, prior to which they had 
no successful automation in CI, relying on WebDriverJS 
locally and Jest with Supertest for API E2E automation. 

Recently, the company embarked on a pilot initiative to 
integrate Cypress Component Testing (CT) into its most 
extensive front-end application. This initiative aimed to 
enhance the development and testing experience for their 
front-end engineers.

Challenge
Extend’s front-end engineering team had previously used component testing 
tools like Enzyme and React Testing Library (RTL). However, they encountered 
substantial difficulties with this method. Firstly, the testing procedure was 
notably time-consuming, partly because of the requirement to perform 
intricate mocking of frequently used libraries within the React ecosystem, 
including Redux, Redux Toolkit, React Router, and Formik. Secondly, the 

03
million

01
million

< 60
minutes

< 10
minutes

Cypress end-to-end tests

Cypress component tests

From PR to production

for CI feedback with Cypress 
Cloud Parallelization

https://www.cypress.io/
https://discord.gg/XpN5mtEY2n
https://www.facebook.com/cypressio
https://github.com/cypress-io/
https://www.linkedin.com/company/cypress.io
https://twitter.com/Cypress_io
https://www.youtube.com/channel/UC-EOsTo2l2x39e4JmSaWNRQ


© Cypress.io www.cypress.io

Solution
Recognizing the urgency for a change in their low-level UI testing approach, 
Extend acknowledged that their existing solution, Enzyme, was becoming 
obsolete due to the lack of ongoing support from Airbnb. The limited testing 
coverage in their component library, extensively used across their four 
front-end applications, further underscored the necessity for a new solution. 
Cypress Component Testing (CT) emerged as the clear answer to address 
Extend’s challenges.

In Cypress CT, custom mounts serve as specialized render functions, 
efficiently mounting a component directly into the DOM, bypassing the 
entirety of the app. This approach mirrors the component’s integration 
within the actual application, but within the confines of the test context. 
By adopting custom mounts in Cypress CT, the team abstracted intricate 
application details, ensuring an authentic replication of component behavior 
during tests.

Upon embracing Cypress, the team introduced a novel approach that 
simplified the process of mocking compared to their prior methods. They 
transitioned to network-level mocking, which proved more straightforward 
and bolstered their confidence in the overall functionality of the component 
code. While they had the capability for low-level mocking with Sinon (a 
built-in Cypress feature), the shift to network-level mocking emerged as a 
preferred and more efficient choice.

The improved developer experience provided by Cypress CT rekindled the 
team’s enthusiasm, leading them to revisit and revitalize component testing 
examples in the Cypress repository. Today, the repository is a trove with over 
400 Cypress component test examples for React.

Staff engineer at Extend, Murat Ozcan, reflects:

“Component testing stands as the linchpin in front-end software 
development. It bridges unit tests and end-to-end tests. Cypress CT, with its 
transformative potential, not only refines the developer experience but also 
optimizes the development workflow. With visual feedback in the actual 
browser environment, we have full observability into our component in 
isolation. At Extend, our mission with Cypress CT was clear: master our UI 
framework and make it a joy to engineer front-end components. Immersed in 
React, we discovered patterns worth highlighting and curated these as code 
examples in the Cypress component test repository. Our evaluative efforts, 

“ Component testing 
stands as the linchpin 
in front-end software 
development. It bridges 
unit tests and end-to-
end tests. Cypress CT, 
with its transformative 
potential, not only refines 
the developer experience 
but also optimizes the 
development workflow.”
— Murat Ozcan, Staff Engineer, Extend

existing testing tools only allowed them to inspect a component within the 
command-line interface (CLI), primarily in its HTML format, which imposed 
limitations on their diagnostic capabilities.

https://www.cypress.io/
https://discord.gg/XpN5mtEY2n
https://www.facebook.com/cypressio
https://github.com/cypress-io/
https://www.linkedin.com/company/cypress.io
https://twitter.com/Cypress_io
https://www.youtube.com/channel/UC-EOsTo2l2x39e4JmSaWNRQ
https://github.com/muratkeremozcan/cypress-react-component-test-examples
https://github.com/muratkeremozcan/cypress-react-component-test-examples


© Cypress.io www.cypress.io

Results

“ Testimonials from 
our engineers 
underscore Cypress 
CT’s revolutionary 
stature. Its intuitive 
design, vivid feedback 
systems, and usability 
have transformed 
our developmental 
landscape.”
— Murat Ozcan, Staff Engineer, Extend

such as CyCT vs. RTL, highlighted Cypress’s edge over console-based tools.”

The significance of Cypress CT became particularly clear when Extend used 
combinatorial testing alongside it for their component library. Being able 
to configure their common components in dozens, sometimes hundreds of 
ways, they utilized the most effective test models to derive minimal, fault-
finding component configurations. This approach, which involved mounting 
and rendering fault-finding variations of component configurations, received 
team endorsement and offered a universal method to avoid problems 
without the need to create tests for each individual variant. Additionally, 
the ability to inspect and test common components, combined with visual 
testing integration using Cypress CT and Percy, brought about a further 
transformative impact.

Before the team-level rollout of Cypress CT, Extend’s DevX team embarked 
on initiatives to address existing E2E testing challenges. Daily office hours 
ensured all E2E testing experiences were optimized. Following that, they 
focused their efforts towards component testing, utilizing custom mounts 
to eliminate redundant component complexities and harness network-level 
mocking with Cypress’ intercept API. With the integration of Cypress’s Vite 
support, which enhances the startup time for Cypress CT, the developer 
experience was notably elevated.

“Testimonials from our engineers underscore Cypress CT’s revolutionary 
stature. Its intuitive design, vivid feedback systems, and usability have 
transformed our developmental landscape,” states Murat. To sum it up, 
Extend enthusiastically supports the capabilities of Cypress CT and 
encourages other organizations to explore its vast potential.

The adoption of Cypress CT led to remarkable outcomes for Extend. The 
DevX team efficiently trained engineers to compose component tests with 
Cypress CT in a fraction of the time compared to Enzyme. According to 
Murat, this resulted in “usually half or third of the code compared to before, 
with the added benefit of visual feedback for the engineer in the real browser 
with devtools”. He further noted, “Because of the built-in retry mechanism 
of the Cypress API, any low level tests doing meaningful work—beyond just 
rendering—are exponentially more stable with Cypress Component Testing.” 

Cypress CT also simplified and shortened the test-writing process by 
enabling effective network mocking. Tests run live during development, 
allowing developers to observe the component as opposed to relying on Jest 
watchers. This marks a significant departure from the previous need to use 
low-level mocks with Jest to mock 80% of their components, along with the 
intricate process of mocking hooks and other providers.

https://www.cypress.io/
https://discord.gg/XpN5mtEY2n
https://www.facebook.com/cypressio
https://github.com/cypress-io/
https://www.linkedin.com/company/cypress.io
https://twitter.com/Cypress_io
https://www.youtube.com/channel/UC-EOsTo2l2x39e4JmSaWNRQ
https://slides.com/muratozcan/cyct-vs-rtl


© Cypress.io www.cypress.io

“ Because of the built-
in retry mechanism of 
the Cypress API, any 
low level tests doing 
meaningful work—
beyond just rendering—
are exponentially more 
stable with Cypress 
Component Testing.” 
— Murat Ozcan, Staff Engineer, Extend

This shift was so influential that, within a quarter, Cypress CT surpassed 
E2E testing in the pilot application. The success of the approach served as a 
guiding example for all developers engaged in testing within the application.

The positive results from Cypress CT adoption were so compelling that 
developers who initially adopted it began contributing to other applications 
and advocated for a shift towards Cypress in those as well. This success has 
set the stage for Extend’s ultimate goal of fully migrating from React 16 and 
transitioning all Jest & Enzyme component testing to Cypress CT.

Extend currently executes close to 3 million Cypress E2E tests a year in CI, 
and 1 million Cypress component tests. The expected number post-migration 
is under 2 million component tests per year. Their applications generally 
can be released from a PR to production in under an hour, with migration of 
monorepos to individual repositories aimed at further reducing the mean 
time to production in the near future.

With over a thousand Cypress component tests in the pilot application, the 
CI feedback time is under 10 minutes, thanks to parallelization with Cypress 
Cloud. Comparatively, unit testing, type checking, and linting take upwards to 
15 minutes in their monorepo’s PRs.

Cypress Component tests are, on average, half to a third the lines of code 
compared to their Enzyme pre-migration counterparts. Coupled with visual 
feedback in the real browser and recorded feedback in CI, Extend’s engineers 
achieve higher value for less cost.

Extend’s journey with Cypress Component Testing showcases how a 
strategic shift in testing methodologies can significantly impact test 
efficiency and developer productivity. By embracing Cypress CT, the 
organization streamlined testing processes, reduced test creation times, 
and promoted seamless front-end engineering among its developers. The 
success of this endeavor underscores the pivotal role of component testing 
and Cypress CT in optimizing front-end software engineering processes and 
ensuring application quality.

https://www.cypress.io/
https://discord.gg/XpN5mtEY2n
https://www.facebook.com/cypressio
https://github.com/cypress-io/
https://www.linkedin.com/company/cypress.io
https://twitter.com/Cypress_io
https://www.youtube.com/channel/UC-EOsTo2l2x39e4JmSaWNRQ

