Gerard van Doornum Ton van Helvoort Neeraja Sankaran

Leeuwenhoek's Legatees and Beijerinck's Beneficiaries

A History of Medical Virology in The Netherlands

Amsterdam University Press Leeuwenhoek's Legatees and Beijerinck's Beneficiaries

Leeuwenhoek's Legatees and Beijerinck's Beneficiaries

A History of Medical Virology in the Netherlands

Gerard van Doornum Ton van Helvoort Neeraja Sankaran

Amsterdam University Press

The publication of this book has been made possible by financial contributions from:

- Beijerinck Virology Fund of the KNAW
- Stichting Historia Medicinae
- Stichting Pathologie, Onderzoek en Ontwikkeling

The funds bear no responsibility for the content.

Cover illustration: Edvard Munch, *Self-Portrait with the Spanish Flu*, 1919 It is a sick and enfeebled artist who meets our gaze in *Self-Portrait with the Spanish Flu*. Edvard Munch became ill at the turn of the year 1918-1919, having apparently contracted the Spanish flu, which became a serious worldwide epidemic, taking the lives of many millions of people in the years from 1917 to 1920. In a series of studies, sketches and paintings, Munch followed the various stages of the illness, illustrating how close death came to life. The painting was donated to the National Gallery by Charlotte and Christian Mustad in 1937. Source: Nasjonalmuseet, Oslo, http://samling.nasjonalmuseet.no/en/object/NG.M.01867, latest access August 2019

Cover design: Coördesign, Leiden Typesetting: Crius Group, Hulshout

ISBN	978 94 6372 011 3
e-ISBN	978 90 4854 406 6 (pdf)
DOI	10.5117/9789463720113
NUR	685

Creative Commons License CC BY NC ND (http://creativecommons.org/licenses/by-nc-nd/3.0)

© The authors / Amsterdam University Press B.V., Amsterdam 2020

Some rights reserved. Without limiting the rights under copyright reserved above, any part of this book may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise).

Every effort has been made to obtain permission to use all copyrighted illustrations reproduced in this book. Nonetheless, whosoever believes to have rights to this material is advised to contact the publisher.

To the memory of Jan van der Noordaa A true legatee and beneficiary of Leeuwenhoek and Beijerinck Nestor of Dutch medical virology

Jan van der Noordaa (1934-2015)

By courtesy of E. van der Noordaa

Table of Contents

Ac	Acknowledgements	
Ał	Abbreviations	
Pr	eface	21
1	Origins in the dark Virus diseases in the Netherlands before the discovery of viruses Smallpox, public health measures and immunization Measles, lack of prevention? Rabies, treatment and public health measures Poliomyelitis, the summer disease Influenza, not just a common cold Human and animal medicine in the nineteenth century Progress from confluence: The meeting of public health and laboratory science	29 35 46 49 56 58 63 65
2	Redefining viruses The development and reception of the virus concept in the Netherlands The discovery of a remarkable anomaly Bacteriophages and the re-definition of viruses Advances in virus research and the rediscovery of Beijerinck's virus concept The relevance of Beijerinck in the Dutch medical context Viruses after the 1930s: New insights in light of technical developments	67 69 74 77 80 81
3	On the fringes The Dutch work on viruses, 1900-1950 In the immediate wake of the first discoveries The Spanish influenza pandemic of 1918: Its impact in the Netherlands Dutch progress on rabies, smallpox, polio, and measles, 1900-1950 The early Dutch centres of activity on virus diseases	87 88 91 94 96

	Amsterdam	97
	Laboratory for Hygiene, University of Amsterdam, and	
	Laboratory of the Department for Tropical Hygiene of the	
	Colonial Institute	97
	The State Veterinary Research Institute	102
	Leiden	103
	Laboratory for Tropical Hygiene, Leiden University	104
	Laboratory for Bacteriology, Leiden University	106
	Laboratory for Bacteriology and Experimental Pathology of the	
	Netherlands Institute for Preventive Medicine	107
	Clinic of Internal Medicine of the Academic Hospital	108
	Utrecht	109
	Laboratory for Hygiene, State University of Utrecht	109
	National Laboratory of the National Institute of Public Health	
	in Utrecht	109
	Groningen	111
	Laboratory for Hygiene, State University of Groningen	111
	International developments in techniques	112
4	From cell culture to the molecular revolution	115
	The rise of medical virology and its organization	0
	The first wave: Virus culture	117
	First wave developments in Dutch clinical virology	119
	The second wave: Immunological and visualization techniques	
	for rapid detection	122
	Second wave developments in Dutch clinical virology	124
	The third wave: The molecular revolution	125
	Third wave developments in Dutch clinical virology	126
	Public health laboratories and medical virology	127
	The basic and the applied: Separate or joint ways of organization?	130
	Dutch Societies and medical virology	130
	The Netherlands Society for Microbiology	130
	The Netherlands Society for Medical Microbiology	132
	The Dutch Working Group for Clinical Virology	132
	Expansion of the working group	134
	Working group meetings	134
	Epidemiological reports	135
	Professionalization	137
	Standardization and external quality control	137

	The Working Group for Molecular Diagnostics of Infectious	
	Diseases (WMDI)	138
	European societies and Dutch medical virology	138
	European Group for Rapid Viral Diagnosis	138
	European Association against Virus Diseases	139
	European Society for Clinical Virology	139
	European Society for Virology	139
	Waves of development and organization of clinical and	
	fundamental virology	140
5	Medical virology in the Netherlands after 1950	143
	Laboratories and institutes	
	The impact of the AIDS pandemic on Dutch virology	144
	Amsterdam	145
	University of Amsterdam and the Academic Medical Center	
	(AMC)	145
	State Veterinary Research Institute	147
	Regional Public Health Laboratory of the Municipal Health	
	Service of Amsterdam	147
	Central Laboratory of the Netherlands Red Cross Blood Transfusion	
	Service (CLB) and Red Cross Blood Bank of Amsterdam	148
	VU University Medical Center Amsterdam (VUmc)	149
	Amsterdam Cohort Studies (ACS)	150
	Leiden	154
	Leiden University Medical Centre	154
	Laboratory of Bacteriology and Experimental Pathology and	
	Central Clinical Virology Laboratory	155
	Department of Clinical Respiratory Virology	156
	Laboratory for Tropical Hygiene	157
	Utrecht/Bilthoven	158
	National Institute of Public Health and Environment Bilthoven	158
	Laboratory for Medical Microbiology, UMC Utrecht	163
	University of Utrecht, Veterinary Faculty	163
	Groningen	164
	UMC Groningen and Virology Unit of the Regional Public Health	
	Laboratory of the Municipal Health Service	164
	Nijmegen/Tilburg	165
	Radboud University Nijmegen	165
	St Elisabeth Hospital, Tilburg	167

	Rotterdam	168
	Regional Public Health Laboratory of the Municipal Health	
	Service of Rotterdam	168
	Erasmus MC	170
	Maastricht	173
	Maastricht UMC	173
	General hospitals	173
	Military Medical Service	174
	Commercial companies	174
	Philips Duphar	175
	Organon Teknika	175
	Crucell	176
	Delft Diagnostic Laboratory (DDL)	177
	Viroclinics Biosciences BV	177
6	Techniques and instruments	179
	Their introduction in the Netherlands and the main contributions of	
	the Dutch	
	Four types of filters	181
	Light microscopy	182
	Tissue culture – early days	182
	Tissue culture and cell monolayers	185
	Cell culture and vaccine production	189
	Phase-contrast microscopy	190
	Electron microscopy	190
	Reception of the electron microscope in the virology field in the	
	Netherlands	193
	Immunofluorescence	194
	Enzyme-immunoassay or enzyme-linked immunosorbent assay	195
	Agar gel electrophoresis	196
	Introducing DNA into mammalian cells	197
	Pepscan and combinatorial chemistry	198
	Nucleic acid purification	199
	Nucleic acid extraction and the isothermal nucleic acid sequence-	
	based amplification	200
	Excerpta Medica	200
	Conclusion: Offstage in the spotlight	201

7	Dutch virology in the tropics	203
	From colonial to international virology	
	Indonesia and the former Dutch East Indies	206
	Smallpox	207
	Yellow fever, dengue and scrub typhus	210
	Poliomyelitis	212
	Rabies	213
	Suriname and the Netherlands Antilles, former West Indies	214
	Smallpox	215
	Yellow fever	216
	Dengue	219
	Other arboviruses	219
	Poliomyelitis	220
	Rabies	222
	Africa: Kenya, Uganda and Ethiopia and West Africa	223
	Kenya	224
	Uganda	227
	Ethiopia	228
	West Africa	229
	Accessibility of essential medicines	229
8	From cancer mice in the roaring 1920s to oncogenes and	
	signalling molecules in the booming 1990s	231
	Amsterdam	233
	Netherlands Cancer Institute	233
	Laboratory for Hygiene, later the Department of Medical	
	Microbiology and the Department of Virology, University of	
	Amsterdam	242
	Department of Pathology, Free University of Amsterdam	243
	Leiden	243
	Laboratory of Physiological Chemistry, Leiden University	243
	Laboratory of Immuno-haematology, Leiden University	244
	Utrecht	245
	Laboratory of Physiological Chemistry, Utrecht University	245
	Nijmegen	246
	Laboratory for Biochemistry, Department of Biochemistry,	
	Radboud University	246

	Rijswijk	247
	Radiobiological Institute and Primate Centre	247
	Rotterdam	247
	Erasmus MC	247
	Groningen	248
	Laboratory of Molecular Virology, State University of	
	Groningen	248
	Delft/Rijswijk	248
	Delft Diagnostic Laboratory	248
	Working Group on Persistent Virus Infections and Oncogenesis	249
	Conclusion	250
9	Virus vaccines and immunization programmes	253
	Introduction	253
	Smallpox vaccine	256
	Rabies vaccine	258
	Poliomyelitis vaccine	259
	Rubella, mumps, measles combination vaccine	262
	Special Department Immunobiology	263
	Influenza vaccine	264
	Influenza immunization in specific risk groups	264
	Commercial production of influenza vaccines	265
	Hepatitis B vaccine	265
	Production of hepatitis B vaccine in the Netherlands	267
	Occupationally acquired infections in vaccine-production	
	laboratories	267
	Cooperation in the development of vaccine-production methods	269
	Ultimate sale of public health sector vaccine production	270
	Success of the RVP	271
10	Conclusions	273
Li	ist of institutes and laboratories	291
Re	eferences	295
In	ıdex	349
	Index of names	349
	Index of subjects	354

List of illustrations

Figure 1	Jan van der Noordaa (1934-2015)	5
Figure 2	Antoni van Leeuwenhoek (1632-1723)	22
Figure 3	Louis Pasteur (1822-1895)	32
Figure 4	Jan Ingen Housz (1730-1799)	37
Figure 5	M.W. Beijerinck (1859-1931)	68
Figure 6	L.W. Janssen's (1901-1975) hypothetical scheme to	
0	interpret biochemical findings: normal situation	84
Figure 7	L.W. Janssen's (1901-1975) hypothetical scheme to	
0 1	interpret biochemical findings: virus infection of a	
	host cell	84
Figure 8	Plaque at entrance of Institute for Tropical Hygiene,	
0	Amsterdam	97
Figure 9	The staff members of the Laboratory for Tropical	51
0	Hygiene, Amsterdam	101
Figure 10	P.C. Flu (1884-1945)	105
Figure 11	Institute for Tropical Medicine and Laboratory for	5
1.801011	Tropical Hygiene and Parasitology, Leiden	106
Figure 12	Entrance of Institute for Preventive Medicine, Leiden	108
Figure 13	R. Gispen (1910-2000) and Jacoba G. Kapsenberg	110
Figure 14	John F. Enders (1897-1985)	117
Figure 15	F. Dekking (1913-2004)	121
Figure 16	Collaborators of the Amsterdam Cohort Studies on HIV	121
1.801010	infection and AIDS (1998)	153
Figure 17	Collaborators of the Erasmus MC Department of	-00
1.9410.17	Virology (2019)	
	a: A.D.M.E. Osterhaus; b: R.A.M. Fouchier;	
	c: G.F. Rimmelzwaan	171
Figure 18	Equipment for purification of a poliovirus by means of	-7-
8	gel filtration	189
Figure 19	Presentation of the EM 100 at Philips in 1949	192
Figure 20	A. Schuurs and B. van Weemen on the occasion of	-5-
8	the presentation of the Saal van Zwanenberg Prize in	
	Nijmegen, 22 April 1980	197
Figure 21	Sophronisba: of, de gelukkige moeder door de inëntinge	-57
1 19 11 0 21	<i>van haare dochters</i> (Sophronisba; or, The happy mother	
	who had her daughters inoculated), 1779	208
Figure 22	Institute Pasteur and s'Lands Koepok Inrichting',	_00
	Bandung	210
	0	_10

Figure 23	Nairobi Medical Research Centre	225
Figure 24	D. Metselaar (1914-2006) in northern Kenya	227
Figure 25	R. Korteweg (1884-1961)	234
Figure 26	A working map of the mouse <i>int-1</i> locus as drawn by	
	Roel Nusse used from 1982 to 1984	240
Figure 27	Inoculation of fertilized eggs for the cultivation of	
	influenza virus	266
Figure 28	A cell culture forming a monolayer four days after	
	inoculation	269
Figure 29	Roel Nusse and Harold Varmus as enthusiastic cyclists	287

Acknowledgements

The authors would like to express their sincere thanks to the foundations M.W. Beijerinck Virology Fund of the Royal Netherlands Academy of Arts and Sciences and the Foundation Historia Medicinae, respectively, which made it possible to publish the book.

Additional funding was received for copy-editing and proofreading from the Foundation Pathology Research and Education SPOO that is related to the DDL.

The British historian M. Worboys worked on the field of the history of tropical medicine and acknowledged that he was drawing almost entirely on the work of other historians. Likewise, in the event of scarcity of original sources we had to do the same. Of course, we apologize for any misinterpretations of the work of our forebears.

During the long period it has taken to research and write this book we approached a great number of persons for information or comment. Perhaps their help is already forgotten by now, but we hasten to acknowledge our debt to their information, comments or feedback. With their help many amendments were made to original versions of the book. Their support was very valuable in helping us sort out the forest from the trees.

As it is impossible to specify everyone's contributions, we limit ourselves to thanking the people below for their help:

C. Aitken, H.G.A.M. van der Avoort, W. Beekhuizen, E.P. Beem, P.A.J. Bentvelzen, K. van Berkel, H. Bijlmer, D. M. Birkenhäger-Frenkel, H.P.J. Bloemers, R.J.F. Burgmeijer, R.A. Coutinho, G. Dekker, A.M. Dingemans-Dumas, A.J. van der Eb, B.E. Fabius-Vleghert, T. Ferwerda, P.K. Flu, R.A.M. Fouchier, J. Galama, J. Goudsmit, P.D. Griffiths, C. Haarnack, B. Hofman, E. Houwaart, J. Huisman († 2016), J.C. de Jong († 2017), M. de Jonge, P. Kager, J.C. Kapsenberg, A.E. Kersten, A.C. Koppen-Murk, A.C.M. Kroes, J. Leeuwenburg, M. van Lieburg, L. van Lieshout, A.M van Loon, P.J. van der Maas, C.R. Madeley, A.E. Marble, C. van Maris, W. Maruanaya, J. Meijer, R. Meloen, P. P. Mortimer, R.P. Mouton, E. van der Noordaa, J. van der Noordaa († 2015), R. Nusse, E. Ombre, A.D.M.E. Osterhaus, M.F. Peeters († 2011), R. Plasterk, A.M. Polderman, J.D. Querido, W.G.V. Quint, J. Rahamat-Langendoen, W. Rakhorst, M. van Ranst, P.J.M. Rottier, E.J. Ruitenberg, H.C. Rümke, J. ter Schegget, J. Schirm, P. Schröder, A.H.W.M. Schuurs, K.W. Slaterus († 2014), G.L. Smith, S.K. Somerwil-Ayrton, P.C. van der Vliet, H.J.C. de Vries, D. van Waarde, C. Walboomers-van Rijn, E.D. Waleson-Mollinger († 2016), B. van Weemen, K. Weijer, H.T. Weiland, G.J.S. Wilde († 2019), R. Woudenberg, B.A.M. van der Zeist.

Nevertheless, a special thanks to the reviewers who have commented on the manuscript on behalf of the M.W. Beijerinck Virology Foundation of the KNAW, and to those who have commented on versions of chapters (in whole or in part) of the book at the request of the authors: H.G.A.M. van der Avoort, E.P. Beem, H.P.J. Bloemers, R.J.F. Burgmeijer, A.M. Dingemans-Dumas, R.A.M. Fouchier, J. Huisman, P. Kager, J.C. Kapsenberg, A.C.M. Kroes, J. Leeuwenburg, A.M. van Loon, J. van der Noordaa, A.D.M.E. Osterhaus, J. ter Schegget, J. Schirm, D. van Waarde, and B.A.M. van der Zeist. Of course, the authors of the book remain responsible for any ambiguities or inaccuracies that remain. We apologize for any errors or omissions and if contacted, the authors will be pleased to rectify them at the earliest opportunity.

Our main sources of information have been articles of scientists who published in the past on their work. We are grateful to the Erasmus MC Medical Library and the Central Medical Library of the University Medical Centre Groningen for the numerous deliveries of articles we have asked for.

We would also like to thank Inge van der Bijl and Julie Benschop-Plokker, our editors at the Amsterdam University Press, for their help, and Leslie Reperant of Pikado for correcting our usage of the English language in Chapters 4, 7, 8, 9 and 10 of the manuscript.

A final acknowledgment is to the Van der Noordaa family with regard of our dedication of the book to the memory of Jan van der Noordaa, the pater familias of Dutch medical virologists through the last quarter of the twentieth century.

Gerard van Doornum Ton van Helvoort Neeraja Sankaran

Abbreviations

AAI	Accelerating Access Initiative
ACS	Amsterdam Cohort Studies on HIV infection and AIDS
AFP	Acute flaccid paralysis
AIDS	Acquired immunodeficiency syndrome
AMC	Amsterdam Medical Center (Academisch Medisch Centrum), since
	2018 location AMC of Amsterdam UMC
Amsterdam UMC	Amsterdam University Medical Center, locations AMC and VUmc
ASM	American Society for Microbiology
AvL	Antoni van Leeuwenhoek Hospital (Antoni van Leeuwenhoek
	Ziekenhuis)
AZL	Academisch Ziekenhuis Leiden
AZR	Academisch Ziekenhuis Rotterdam
AZU	Academisch Ziekenhuis Utrecht
CLB/Sanquin	Central Laboratory of the Blood Transfusion Service of the
	Netherlands Red Cross, since 1998 Sanquin (Centraal Laboratorium
	van de Bloedtransfusiedienst van het Nederlandse Rode Kruis)
CMV	Cytomegalovirus
COTG	Central Organ Tariffs Healthcare (Centraal Orgaan Tarieven
	Gezondheidszorg)
CPE	Cytopathic effect
CVI Lelystad	Central Veterinary Institute, Lelystad
DAVS	Dutch Annual Virology Symposium
DDL	Delft Diagnostic Laboratories, moved to Rijswijk in 2003
DTA	Direction of Technical Assistance of the Ministry of Foreign Affairs
DTaP/IPV	Diphtheria, tetanus, acellular pertussis, inactivated poliovirus
DTaP/IPV/Hib	Diphtheria, tetanus, acellular pertussis, inactivated poliovirus,
	Haemophilus influenzae type B
DTP	Diphtheria, tetanus, pertussis
EAVRI	East African Virus Research Institute
EBV	Epstein-Barr virus
EGRVD	European Group for Rapid Viral Diagnosis
EIA	Enzyme immunoassays
ELISA	Enzyme-linked immunosorbent assay
EMBO	European Molecular Biology Organization
ERL	Epidemiological Research Laboratory, London
EHNRI	Ethiopian Health and Nutrition Research Institute
ENARP	Ethiopian-Netherlands HIV/AIDS Research Project

Erasmus MC	Erasmus Medical Center, Rotterdam
ESAVD	European Association against Virus Diseases
ESCMID	European Society of Clinical Microbiology and Infectious Diseases
ESCV	European Society for Clinical Virology
ESV	European Society for Virology
FUNGO	Fundamental Medical Research
GG&GD Amsterdam	Municipal Health Service, Amsterdam
GGD Amsterdam	Municipal Health Service Amsterdam, since 2005
GHI	Health Inspectorate, until 1995
GNGH	Society for the Advancement of Science, Medicine and Surgery
	(Genootschap ter bevordering van Natuur- Genees- en Heelkunde)
GPLN	Global Polio Laboratory Network
GR	Health Council of the Netherlands (Gezondheidsraad Nederland)
HAV	Hepatitis A virus
HBV	Hepatitis B virus
HCV	Hepatitis C virus
HIV	Human immunodeficiency virus
HMPV	Human metapneumovirus
HPV	Human papillomavirus
IGZ	Health Inspectorate, since 1995 (Inspectie voor de
	Gezondheidszorg)
IPV	Inactivated polio virus vaccine (Salk)
KEMRI/KMRI	Kenyan Medical Research Institute
KIT	Royal Tropical Institute (Koninklijk Instituut voor de Tropen)
KNAW	Royal Netherlands Academy of Arts and Sciences
KNMG	Royal Netherlands Medical Association (Koninklijke Nederlandsche
	Maatschappij tot Bevordering der Geneeskunst)
KNMP	Royal Dutch Pharmacists Association (Koninklijke Nederlandse
	Maatschappij ter bevordering der Pharmacie)
KNVM	Royal Netherlands Society for Microbiology (Koninklijke
	Nederlandse Vereniging voor Microbiologie)
KWF	Queen Wilhelmina Fund (Netherlands Cancer Society)
LCI	National Coordination Structure for Infectious Diseases (Landelijke
	Coördinatiestructuur Infectieziekten)
LHV	National Association of General Practitioners (Landelijke
	Huisartsen Vereniging)
LUMC	Leiden University Medical Centre
Maastricht UMC	Maastricht University Medical Center
MTI	Mammary tumour inciter
MMTV	Mouse mammary tumour virus

MRC	Medical Research Council, London
MSM	Men having sex with men
NASBA	Nucleic acid sequence-based amplification
NATEC	National Antiviral Therapy Evaluation Centre, at AMC
NHI	Netherlands Institute of General Practitioners (Nederlands
	Huisartsen Instituut)
NIH	National Institutes of Health, USA
NIPG	Netherlands Institute for Preventive Medicine, Leiden
NKI-AVL	Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital
	(Nederlands Kanker Instituut-Antoni van Leeuwenhoek Ziekenhuis)
NMG	Nederlandse Maatschappij tot Bevordering der Geneeskunst
NTvG	Netherlands Journal of Medicine (Nederlands Tijdschrift voor
	Geneeskunde)
NVTG	Netherlands Society for Tropical Medicine (Nederlandse Vereniging
	voor Tropische Geneeskunde)
NWO	Dutch Research Council (Nederlandse Organisatie voor
	Wetenschappelijk Onderzoek)
NVI	Netherlands Vaccine Institute, RIVM, Bilthoven
NVLA	Netherlands Society of Laboratory Medical Doctors (Vereniging van
	Laboratorium Artsen)
NVMM	Netherlands Society for Medical Microbiology
NVvB	Netherlands Society for Biochemistry
NVvM	Netherlands Society for Microbiology, since 2011 designation Royal
NWKV	Dutch Working Group for Clinical Virology (Nederlandse
	Werkgroep Klinische Virologie)
OPV	Oral poliovaccine (Sabin)
PAGRVD	Pan American Group for Rapid Viral Diagnosis
PCR	Polymerase chain reaction
PHLS	Public Health Laboratory Service, UK
QCMD	Quality Control for Molecular Diagnostics
Radboudumc	Radboud University Medical Centre
R.I.T.	Recherche et Industrie Therapeutique, Rixensart, Belgium
RIV	National Institute of Public Health (Rijks Instituut voor de
	Volksgezondheid), relocated from Utrecht through 1953-1965 to
	Bilthoven
RIVM	National Institute for Public Health and the Environment
	(Rijksinstituut voor Volksgezondheid en Milieu), since 1984
RVP	National immunization programme (Rijksvaccinatieprogramma)
RSV	Respiratory syncytial virus
SARS	Severe acute respiratory syndrome

SAZU	Stads- en Academisch Ziekenhuis Utrecht, since 1971 AZU, and
	since 1999 UMC Utrecht
SGM	Society for General Microbiology
SIIL	Serum Institute of India Ltd
SIV	Simian immunodeficiency virus
SKML	Foundation for the Quality Control of Medical Laboratory
	Diagnostics (Stichting Kwaliteitsbewaking Medische
	Laboratoriumdiagnostiek)
SKMM	Foundation for the Quality Control of Medical Microbiology
	(Stichting Kwaliteit Medische Microbiologie)
SSDZ	Foundation of Collaborating Delft Hospitals (Stichting
	Samenwerkende Delftse Ziekenhuizen)
SVM	Foundation for the Advancement of Public Health and the
	Environment (Stichting tot Bevordering van de Volksgezondheid en
	Milieuhygiëne)
SVOI	State Veterinary Research Institute (Staatsveterinair
	Onderzoekingsinstituut)
TMD	Tobacco mosaic disease
TMV	Tobacco mosaic virus
TNO	Netherlands Organisation for Applied Scientific Research (Nederlandse
	Organisatie voor Toegepast-Natuurwetenschappelijk Onderzoek)
TNO-NGO	Netherlands Organisation for Applied Scientific Research: Health
	Organisation, or Dutch Health Organisation
TNO-RVO	Netherlands Organisation for Applied Scientific Research: Defence,
	Safety and Security
UICC	Union Internationale contre le Cancer
UMC	University Medical Centre
UMCG	University Medical Center Groningen
UMC Utrecht	University Medical Centre of the University of Utrecht
UVRI	Uganda Virus Research Institute
VOC	Dutch East India Company (Vereenigde Oostindische Compagnie)
VRL	Virus Reference Laboratory, PHLS, London
VUmc	VU University Medical Center, Amsterdam
WHO	World Health Organization
WIC	Dutch West India Company (West-Indische Compagnie)
WMDI	Working Group for Molecular Diagnosis of Infectious Diseases
	(Werkgroep Moleculaire Diagnostiek van Infectieziekten)
ZWO	Netherlands Organisation for Pure Scientific Research (Nederlandse
	Organisatie voor Zuiver-Wetenschappelijk Onderzoek)

Preface

To me it seems most desirable that the collaborative character of these investigations should be understood, not solely for personal reasons but because much of all modern medical research is conducted in this way. – John F. Enders (1961)

The title of the book pays tribute to two Dutch scientists without whom virology would arguably not exist today, at least not in its present guise. The first is Antony van Leeuwenhoek, whose reports of microscopic discoveries in the early eighteenth century aroused interest in the world of invisible creatures. His findings laid the basis for a theory of a particulate cause of infectious diseases, but, as George Rosen wrote, without any tangible results in support of the theory (1993/1958, pp. 84-85). Some 250 years later Martinus Willem Beijerinck launched the discipline of virology with his idea that tobacco mosaic disease (TMD) was caused by a living contagious fluid or filterable living pathogen.

When asked why he wanted to climb Mount Everest, George Mallory famously replied, "Because it's there" (New York Times. 1923. Climbing Mount Everest is work for supermen. New York Times, 18 March). Our answer to the question of why we decided to write a book about the history of medical virology in the Netherlands is : Because there isn't one. Although there are a fair number of books about the history of medical, experimental, animal, or plant virology in the Western world more generally (Booss and August, 2013; Calisher and Horzinek, 1999; Chastel, 1992; Grafe, 1991; Waterson and Wilkinson, 1978), only a few talk about virology in the Netherlands. A lacuna surely, considering that it was the birthplace for the discipline; the place where Beijerinck first characterized the principle 'contagium vivum fluidum'. Even with the publication of Bos's and Thung's histories of plant virology in the Netherlands (Bos, 2000; Thung, 1957) and Offringa's history of the veterinary faculty of the University of Utrecht (1971, 1981), a history of Dutch medical virology is still lacking. This is why we decided to make it our focus in this book.

Travelling through Dutch virology we compared the developments in the Netherlands with other Western countries; this voyage may also give insight in the connections and communication between scientists in former days. Travelling companions were medical doctors, self-taught

Figure 2 Antoni van Leeuwenhoek (1632-1723)

Portrait by Jan Verkolje, c. 1680-1686 Reproduction by courtesy of Rijks Museum, Amsterdam

scientists, biologists, graduate engineers, veterinarians, biochemists, physicists, epidemiologists, and molecular biologists. As the Nobel Prize winner John F. Enders (1961) wrote in a commentary on a for him very laudatory editorial about his accomplishment in developing a vaccine against measles: 'To us it seems most desirable that the collaborative character of these investigations should be understood, not solely for personal reasons but because much of all modern medical research is conducted in this way.'

The work of Dutch researchers during the last decades of the twentieth century, such as that of R.A. (Roel) Coutinho, J. (Jaap) Goudsmit, F. (Frank) Miedema, S.A. (Sven) Danner, and J.M.A. (Joep) Lange in the Amsterdam Cohort Studies on HIV infection and AIDS, was made possible by building on the tradition of J.J. van Loghem and A. Charlotte Ruys from the first half of the century. R. (Roel) Nusse, a biologist at the NKI, could use the laboratory mice which were introduced in the Netherlands by R. Korteweg in 1931. Nusse continued his career in the USA, when he joined the laboratory of Harold Varmus at the University of California. A.D.M.E (Albert) Osterhaus could proceed in Rotterdam on the influenza track beaten earlier by J. Mulder in

Groningen, who moved to Leiden in 1946, and by N. Masurel from the late 1950s in Leiden and since 1967 in Rotterdam.

Of course, we are aware that connections between the various fields of virology, which persist to this day, mean that we will often have to cross the borders between them. For instance, Martinus W. Beijerinck, the father of the virus concept, made his seminal discoveries through his experiments on tobacco plants and not on any human disease. About a hundred years later, vectors that were developed towards the end of the twentieth century for delivering genes to mammalian cells were derived from the work of among others investigators at the Wageningen University, such as R.W. Goldbach, J.M. Vlak and A. van Kammen on recombinant baculoviruses from invertebrate hosts during the last decades of the twentieth century. In the 1930s the veterinarian H.M. Frenkel worked together with medical doctor H.W. Julius to improve the continuous flow cell culture instrument of J. de Haan; later, after 1945 Frenkel initiated among others the medical doctors J. Huisman and J.G. (Cootje) Kapsenberg into the secrets of virology. The veterinarian J.D. Verlinde was head of the Department for Medical Microbiology of the Netherlands Institute for Preventive Medicine and professor at the Medical Faculty in Leiden, and likewise his student H.A.E. van Tongeren who was also a veterinarian became professor at the Free University in Amsterdam. Several of the scientific students or co-workers of the veterinarian M. Horzinek were appointed at medical faculties in the Netherlands: A.D.M.E. Osterhaus, W.J.M. Spaan, H.G.M. Niesters, B.A.M. van der Zeijst, M.P.G. Koopmans. Not only do virologists cross borders, but as we know, viral pathogens in humans can be transmitted by animals without causing disease in the intermediary reservoirs or vice versa. The interspecies transmission plays an important role in emerging viral diseases.

According to the medical historian Michael Worboys, the case for a Bacteriological Revolution in late-nineteenth-century medicine in Britain remains unproven (Worboys, 2000, 2007). Although Worboys restricted his argument to Britain on the grounds that the rate and extent of change might have been different in other countries, we believe that similar forces were operative for development of virology as scientific discipline and medical specialism in the Netherlands as well. When was the start of medical virology? Was it a revolution or an evolution? Which people were involved in medical virology?

We should note that although the terms 'human', 'medical' or 'clinical virology' are often used interchangeably in the wider medical literature, in this book we have used the term 'clinical virology' more specifically to represent that part of virology directly involved in patient care, namely the

fields of diagnostic and therapeutic virology. Medical virology encompasses the study of human virus infections in a much broader sense and includes basic research, vaccine technology, tumour virology, research on antiviral drugs, and epidemiology, in addition to clinical virology.

The objective of this book is to give a chronicle of medical virology in the Netherlands in a wider, international context. We approached the project with the idea that most chapters would give factual, chronological accounts of the environment in which medical virology developed – i.e. the main institutions and laboratories in the Netherlands - combined with short biographical notes on leading figures. Unfortunately, we came across the fact that primary sources are very scant. Luckily, that problem could be overcome by information in medical journals, obituaries, reports of conferences or meetings of learned societies, commemorative books, historical records, and annual scientific reports of the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL).¹ In addition, different editions of textbooks published from the late 1930s to the late 1950s provided information on the international position of Dutch virology in the first half of the twentieth century. The following textbooks were used for insight in the international developments: Van Rooyen and Rhodes, Virus diseases of man (1948, rev. ed.); Doerr and Hallauer, Handbuch der Virusforschung (1938-1950); Gildemeister, Haagen and Waldmann, Handbuch der Viruskrankheiten (1939); Rivers and Horsfall, Viral and rickettsial infections of man (1959). The Reflections on a life in medicine and science of Tom Rivers and prepared by Samuel Benison were also very useful. An update for the period until 1980 was provided by Frank Fenner and Adrian Gibbs who published Portraits of viruses: A history of virology in 1988. The author of the first mentioned textbook, Clennel Evelyn van Rooyen, is a descendent of a Dutch ancestor, who travelled in the service of the Dutch East India Company (VOC) to Ceylon (Halifax Chronicle Herald, 1989).

Some chapters are built around specific themes, such as the reception and redefinition of virus concept in Dutch medical circles, the Dutch Working Group for Clinical Virology, Dutch virology in the tropics, tumour virology, contributions from the Netherlands to technical innovations, and immunizations.

As we were interested in the circumstances under which virology in the Netherlands began, we have explored nineteenth-century notions about five infectious diseases which came later to be recognized as viral diseases: smallpox, measles, rabies, poliomyelitis, and influenza. Therefore, the first

1 Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL).

PREFACE

chapter begins in the nineteenth century – even the eighteenth century in the case of smallpox – and describes the understanding of and measures against these diseases. The pathway from the first insights into the nature of viruses at the end of the nineteenth century to medical virology was a long and protracted one. It is not surprising that the relatively recent science of virology has been considered as part of modern medicine built on foundations established in the nineteenth century. The origins of virology are various, and the discipline stems more from botany and veterinary medicine than from human medicine.

The second chapter deals with the concept of virus as put forward by M.W. Beijerinck in 1898, the reception of this concept among medical circles in the Netherlands, and also with redefinition of concepts of virus or bacteriophages by other Dutch researchers later in the twentieth century. Were they but spectators while the action took place in Germany, France, United Kingdom, or the United States?

In the third chapter we have attempted to describe the developments in the first half of the twentieth century – of institutes, research and diagnostic facilities in the laboratories – interspersed with short biographical details of the leading figures. Scientific research in the Netherlands was conducted almost exclusively in three venues: university laboratories, the laboratory of the NKI, and the institutes for tropical hygiene which were connected with the universities in Amsterdam and Leiden, respectively.

Chapter four is concerned with the general developments in virology and the organization of virologists over the latter half of the twentieth century. In common with developments in other countries, medical virology in the Netherlands really began to take off sometime in the middle of the twentieth century, with the practice of diagnostic virology gradually taking hold in general hospitals after the 1970s. There is consensus that the advance of virology in the 1950s can be ascribed to the application of the monolayer cell culture as first described by Enders, Weller and Robbins in their pivotal paper of 1949 (Enders et al., 1949; Mortimer, 2009; Booss and August, 2013). This development in cell culture technique was readily introduced into the Netherlands in the 1950s and contributed strongly to the commencement of clinical virology in the Netherlands. However, diagnostic virology remained from 1950 until 1970 of limited practical use for the patient. This chapter then pursues the development of clinical virology in the 1960s and 1970s when diagnosing virus infections started to be executed in a timely manner to benefit the management of the treatment of patients. Before the application of cell culture techniques, use of animals and tissues for virus identification was very cumbersome and in practical terms the results were

often too late to help the patient. The development of immunofluorescence techniques in the 1960s and enzyme-linked immunosorbent assay (ELISA) techniques and further fruits of immunology (such as the monoclonal antibodies) were introduced in the 1970s. This caused a rapid and decisive step forwards in the 1970s. During the 1980s and, in particular, during the 1990s the spectacular advances in molecular biology together with the rise of information technology facilitated the expansion of diagnostic virology in the last decades of the twentieth century. This growth encompassed epidemiology, diagnosis and treatment, and viro-immunology research of new emerging virus infections. With the epidemic of human immunodeficiency virus infections, the application of antiviral therapy proceeded with rapid strides from the 1980s after a hesitant start.

The chapter continues with the way in which virologists organized themselves. The Virology section within the Royal Netherlands Society for Microbiology² deals with the activities of the different branches of virology: fundamental research, medical virology, plant virology, and veterinary virology. The Section organizes the successful "Dutch Annual Virology Symposium". The Dutch Working Group for Clinical Virology of which the epidemiologist M.F. Polak of the National Institute of Public Health³ was the initiator, is part of the Netherlands Society for Medical Microbiology. This working group played an important role in the 'devolution' of virus diagnostic work from some specialized virology, public health laboratories to general hospital microbiological laboratories. The position of medical virology within the national as well international virology and microbiology community is ascertained on the basis of the history of the Dutch Working Group for Clinical Virology, the DAVS, and the annual General Spring Meeting of both Societies.

Chapter 5 pays attention to the institutes where medical virology was practised in the second half of the twentieth century. Over the first decades of this period the leading laboratories were in Amsterdam, Leiden and Utrecht. The authors also focus on the Amsterdam Cohort Studies in the discussion on the institutes in Amsterdam. The Laboratory of Virology of the Central Public Health Laboratory of RIV in Utrecht and since 1958 in Bilthoven, the Department of Bacteriology and Experimental Pathology of the Netherlands Institute for Preventive Medicine in Leiden, and the Laboratory for Hygiene in Amsterdam played important roles in the 1950s and 1960s. This picture changed with the establishment of four new medical faculties:

2 Nederlandse Vereniging voor Microbiologie (NVVM).

3 Rijksinstituut voor de Volksgezondheid (RIV).

the new medical faculties at the existing Free University in Amsterdam and Radboud University in Nijmegen in the 1950s, and thereafter the medical faculties at the new universities in Rotterdam and Maastricht, in 1964 and 1974, respectively. In addition to the university laboratories, some municipal public health laboratories and, later, the larger general hospitals offered diagnostic virological services. At the end of the chapter attention is paid to a number of commercial companies that produce vaccines or diagnostic kits or offer other services related to medical virology.

The core theme in Chapter 6 is the Dutch contributions in a variety of technical developments. It covers the phase-contrast microscope, the electron microscope, enzyme-linked immunosorbent assays, agar gel electrophoresis, the introduction of DNA in mammalian cells, the various methods using synthetic peptides (Pepscan), and nucleic acid purification.

Chapter 7 traces the Dutch contribution to medical virology in the tropics. This chapter does not provide a comprehensive picture of medical virology in the tropics, but is rather confined to a short overview of control and public health measures as well as the laboratory facilities for diagnostics of virus infections in the former Dutch colonies. The chapter also covers Dutch activities in the field of virology in Africa from the 1960s onwards.

Chapter 8 is again thematic and deals with tumour virology and persistent virus infections. This chapter encompasses the environment of the NKI and the academic centres which played a substantial role in tumour virology throughout the twentieth century. The rise and fading of the Working Group on Persistent Virus Infections and Oncogenesis is also described. Concurrent with the vanishing of this working group was the rise of molecular biology and cell biology.

Chapter 9 explores the organization of national immunization programmes with regard to viral infections polio, rubella, measles, mumps, hepatitis B, influenza, and human papilloma virus. The role of the Central Laboratory of the National Institute of Public Health in the production of vaccines will get attention, of course.

The book ends with conclusions and short summaries. Each written history has an end, and we decided to limit ours to the close of the twentieth century. Nevertheless, as movements and developments do not always occur in synchronicity, sometimes we had to cross over into the twenty-first century. We hope that others will do further research on the revolution that is still unfolding, thanks to such developments in next-generation sequencing, immunology, vaccines, epidemiology and antiviral drugs.