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ABSTRACT
Discrete-time analysis and modeling of reverberant and resonating systems has many applications in audio and
acoustics. In a recent paper (AES110, Preprint 5290) we formulated techniques for the estimation of modal decay
parameters from noisy response measurements, targeting to systems such as room reverberation and modal decay
as well as musical instrument modeling. In this paper we extend the methodology to AR and ARMA modeling of
measured responses by all-pole and pole-zero filters. In addition to an overview of standard techniques we propose a
spectral zooming technique that is useful for resolving very closely positioned modes and high-density modal clusters.
Sensitivity to background noise is also studied. Application cases are taken from analysis and modeling of room
responses, loudspeaker-room equalization, and estimation of parameters for musical instrument modeling.

1 INTRODUCTION

Parametric analysis and modeling is an increasingly common
task in acoustics and audio. In this paper we focus on such
audio related problems where a target system response can
be measured and the task is to model it for computational

simulation/synthesis or to inverse model it for equalization,
i.e., compensation for nonidealities in the observed response.
Representativeexamples of the first group, forward simulation
for synthesis, are room response modeling including artificial
reverb design, or just estimation of eigenmodes at low fre-
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quencies in room acoustical studies, and modeling of musical
instruments. The second category of inverse modeling is com-
mon in audio, where equalization of non-ideal response prop-
erties is a frequent task in high-quality sound reproduction, as
well as prevention of acoustic feedback in sound reinforcement
systems.

The behavior of acoustic/audio systems at low frequencies can
often be modeled analytically and parametrized, at least with
lumped models, for example low-frequency modal behavior of
a rectangular room [1], musical instrument body [2], or loud-
speaker enclosure [3]. For irregular structures and/or higher
frequencies it is much more difficult or impossible to find an-
alytical or numerical models that are useful in practice. In
such cases it is still possible to measure system responses and
to apply signal modeling techniques to analyze, simulate, or
real-time synthesize a given response.

Particular interest of this study is focused on the resonant
and reverberating characteristics of complex acoustic systems.
The modal behavior, i.e., decomposition of eigenmodes as-
suming a linear and time-invariant (LTI) system, can be ex-
tremely complicated. In one-dimensional resonators, such as
strings and tubes in musical instruments, the density of eigen-
modes is not necessarily high, but these modes can exhibit
complicated details, for example two-stage decay and strong
beating in a decaying envelope. In 2-D and 3-D resonators,
such as membranes, plates, and enclosed spaces, the modal
density increases towards higher frequences, resulting in dense
modal patterns and reverberation type behavior when neigh-
boring eigenmodes overlap essentially. Also the temporal be-
havior becomes complex, especially in rooms where the direct
sound and early reflections are followed by an increasing den-
sity of reflections resulting in late reverberation. Thus the
problem of modeling measured responses may benefit of a
time-frequency modeling viewpoint where the properties of
auditory perception are taken into account.

A rich literature exists on signal modeling of LTI systems [4,
5, 6, 7] from many branches of engineering, systems sciences,
and applications. Software tools for modeling are available,
for example in MATLAB1 . Here we assume that the target
system and the desired model are, in addition to linearity
and time invariance, also stable and causal. We also assume
that the measured response is not heavily noise-contaminated
so that estimating the system model parameters is practical
for the applications at hand. Then the measured impulse
response h(n) can be approximated by a rational expression
in the z-transform domain by

H(z) =
b0 + b1z−1 + . . . + bN z−N

1 + a1z−1 + . . . + aP z−P
=

�N
k=0 bkz−k

1 +
�P

k=1 akz−k

(1)

which makes it possible to efficiently simulate or synthesize
the system by various digital filter implementations [5, 10, 11]
of the given transfer function.

In this paper we only deal with discrete-time representations
for digital signal processing. Thus the easiest way “to model”
a measured response h(n) or its truncated/windowed version

is to take it directly as an FIR filter H(z) =
�N

k=0 h(k)z−k .
For complex systems, the length of a finite impulse response

1In this study we utilize particularly the functions found in
the Signal Processing Toolbox [8]. Another MATLAB toolbox of
interest is the System Identification Toolbox [9].

required for suitable representation may be too long, prevent-
ing real-time implementations. On the other hand, shortening
the filter length reduces the capabilities of identifying the in-
herent resonant properties of the system under study. IIR
filters for infinite impulse response can come in two forms:
(a) all-pole models where the numerator of Eq. (1) is reduced
to a single gain coefficient b0 or (b) pole-zero models with
both the numerator and denominator being non-trivial poly-
nomials of z.

In systems science and engineering, for example in control
theory for estimation and identification tasks, the terms au-
toregressive (AR), moving average (MA), and autoregressive
moving-average (ARMA) have been used for modeling pro-
cesses similar to all-pole, FIR, and pole-zero filter modeling,
respectively. For the sake of convenient use of abbreviations
AR and ARMA, as well as to draw attention to the rich knowl-
edge from various other fields than digital audio signal pro-
cessing, we apply the terms MA, AR, and ARMA here when
referring to specific types of models.

Our aim does not stop in obtaining a useful approximation of
a measured target system by a transfer function of Eq. (1).
We are interested in decomposing it into a parametric descrip-
tion of its constituent components, particularly the complex-
conjugate pole pairs, i.e., the complex-valued roots of the
denominator polynomial, which represent the eigenmodes of
the system and result in the resonant and reverberant be-
havior. In theory they are common in spatially distributed
systems such as a room [12] or an instrument body, while

zeros (roots of the numerator
�N

k=0 bkz−k) are essentially
position-dependent. We are interested in accurate estimation
of modal parameters, such as pole angle and radius or, equiv-
alently, mode frequency and decay coefficient.

In a recent paper [13] we studied this problem of modal pa-
rameter estimation using traditional time-frequency analysis
techniques by first trying to isolate potential mode frequen-
cies and then estimating the modal decay rate from a spec-
trogram, such as short-time Fourier analysis or cumulative
decay spectrum [14]. Decay rate estimation was also applied
to wide-band signals, for example to robust estimation of re-
verberation time T60. The problem with such methods is to
model overlappingmodes that result in non-exponential decay
in any reasonable frequency span. AR and ARMA approaches
try to model the target response as a whole by minimizing a
given modeling error criterion, typically a least squares (LS)
error. Thus the interactions of overlapping modes are taken
into account simultaneously and systematically.

One problem of straightforward optimization is the inflexi-
bility of the global optimization criteria, for example to take
into account the properties of different modes. Also the se-
lection of proper values for the order parameters N and P of
Eq. (1) is not easy. A practical problem is that solving the
(complex-valued) roots of a high-order polynomial is a diffi-
cult numerical task. To avoid problems with high-order mod-
els we use methods where a part of the given audio frequency
range is modeled at a time to obtain an accurate description
of the modes within this frequency span. Frequency zooming
ARMA modeling (FZ-ARMA) is shown to be a powerful way
to decompose highly complex resonant responses into modal
representations, and related IIR filter implementations can
be used for simulation and synthesis of such systems. Our re-
search is particularly influenced by earlier studies on selective
linear prediction [15], multiband modeling of musical signals
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[16] or loudspeaker responses [17], and other high-resolution
system modeling techniques.

This paper is structured as follows. Sections 2 and 3 present
an overview of AR and ARMA modeling methods and tech-
niques. Examples are given to illustrate the modeling ability
and limitations of these basic approaches. Section 4 intro-
duces the Frequency-Zooming ARMA (FZ-ARMA) method
that is able to analyze high-order systems with overlapping
modes and dense modal distributions. The effects of nonide-
alities, including noise and non-LTI behavior, are discussed.
Three cases of audio applications that use AR/ARMA/FZ-
ARMA methods are described in Section 5, including model-
ing of measured room responses, inverse modeling and equal-
ization of loudspeaker-room responses, and modeling as well
as sound synthesis of musical instruments. Finally a discus-
sion and concluding remarks are given.

2 AR MODELING

The impulse response of a resonant system shows one or more
exponentially decaying sinusoids. Each such ‘mode’ can be
inherently modeled by a complex conjugate pole pair, which
suggests AR modeling with corresponding infinite impulse re-
sponse (IIR) filters. There is a long tradition for finding least
squares optimal fit of such models to measured LTI system
responses, either to a given impulse response or to input-
output signal pairs. Here we shortly refer to the theory of
linear prediction (LP) which has found application especially
as a powerful spectral modeling technique in speech process-
ing [18, 19].

2.1 Linear prediction

In linear prediction a signal sample x(n) is assumed to be pre-
dictable as a linear combination of previous samples x̂(n) =�P

i=1 aix(n − i). When the least squares prediction error
between x(n) and x̂(n) is minimized, the (auto)correlation
coefficients

rx(k) =

P−1�
i = 0

x(i)x(i + k) (2)

play a central role. The most frequently used version of
LP analysis is the autocorrelation method, where the optimal
model parameters ai are solved from a linear matrix equation
(normal equations)
�
����

r0 r1 r2 . . . rP−1
r1 r0 r1 . . . rP−2
r2 r1 r0 . . . rP−3

. . . . . . . . . . . . . . .
rP−1 rP−2 rP−3 . . . r0

�
����

�
����

a1

a2

a3

. . .
aP

�
���� =

�
����

r1

r2

r3

. . .
rP

�
���� (3)

Here, rk are the autocorrelationcoefficients rx(k) from Eq. (2)
for a signal frame under study and P is the order of LP anal-
ysis (order of the all-pole model filter). The coefficients ai

are the estimated polynomial coefficients in the denominator

of Eq. (1), i.e., 1 +
�P

i=1 aiz
−i, the numerator being only a

gain coefficient2.

2.2 Limitations of AR modeling

A problem with AR modeling of real-world systems, in the
formulation described above, is that the method is not able

2Linear predictive analysis is computed in MATLAB by func-
tion lpc, which first solves the autocorrelation coefficients rk and
then inverts the Toeplitz type correlation matrix to yield predic-
tor coefficients ai through levinson recursion function [8].
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Fig. 1: AR modeling of single mode decay with different ini-
tial phase: (a) damped sinusoid target response, (b) damped
cosine target function, (c) magnitude spectrum of sine re-
sponse, (d) magnitude spectrum of cosine response, (e) AR
model response for sinusoidal response with order of 2, and
(f) AR model response for cosine case with order of 2 (solid
line) and order of 20 (dashed line).

to do time domain fitting to given target response unless the
target process is strictly of AR (all-pole) type. Figure 1 illus-
trates this clearly in a simple case of one idealized mode. For
a damped sinusoid in Fig. 1(a) the model response in Fig. 1(e)
is a very accurate replica of the target already with model or-
der of 2 (one complex conjugate pole pair). If the initial phase
is changed 90 degrees to a damped cosine function, the second
order AR model response (solid line) in Fig. 1(f) severely falls
off from the given target in Fig. 1(b).

Further insight into the behavior of AR modeling is gained by
noticing that the model is based entirely on the autocorrela-
tion coefficients, which in the frequency domain corresponds
to the power spectrum. This means pure spectral modeling,
whereby the spectrum of the cosine case in Fig. 1(d) clearly
deviates from the spectrum of sine case response in Fig. 1(c).
Irregular onsets are common in acoustic system responses,
thus indicating that simple AR modeling will have difficul-
ties, and that more powerful methods are needed in accurate
temporal modeling.

A somewhat better match to the decaying cosine tail above
can be achieved by the covariance method of AR analysis3

but the phase matching problem remains and requires ARMA
modeling.

3 ARMA MODELING

ARMA modeling, yielding a pole-zero filter, has more model-
ing power than the AR method. It is however more difficult
because no closed-form solutions are available, thus requiring

3The covariance method function ar, option ls, can be found
in the System Identification Toolbox of Matlab.
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nonlinear optimization. ARMA estimation algorithms are it-
erative, starting from a good AR model and then iterating
towards optimal parameter values. As with any nonlinear op-
timization methods, problems of divergence or convergence to
a local optimum may occur, and plain computational prob-
lems due to the lack of numerical precision are found.

Two methods are applied below: Prony’s method and
Steiglitz-McBride method4. A brief discussion is given on
the problem of model order selection followed by motivation
of the need for improved frequency resolution, before intro-
ducing the frequency-zooming ARMA technique.

3.1 Prony’s method

Prony’s method [20, pp. 226–228] is a stepwise algorithm
that fits N + 1 first samples of given response exactly, while
P poles of the denominator in Eq. (1) take care of tail decay
fitting. Because the AR part estimation is of covariance type,
the resulting filter can become unstable, even in cases where
the target system to be modeled is stable.

3.2 Steiglitz-McBride iteration

Steiglitz-McBride method [7, pp. 174–177] is an algorithm
with iterative prefiltering for least squares fit of an ARMA
model of Eq. (1) to a given impulse response or given input-
output pair (system identification problem). An initial es-
timate for the denominator can be obtained for example by
Prony’s method.

As with Prony’s method, the resultingfilter from the Steiglitz-
McBride iteration can be unstable especially with high filter
orders even for stable target systems. Often the model re-
sponse starts in good match with the given time domain re-
sponse (since this is LS fitting) but after some time it starts
to explode due to pole(s) outside the unit circle.

3.3 Model order selection

Both AR and ARMA models need careful selection of filter or-
ders N and P (N = 0 for AR models). There is no general and
automatic way to select optimal filters order(s), rather they
can be searched for by various rules to obtain good enough
match to a given target response [21] or the order(s) can be
approximatedusing a priori information about the target sys-
tem to be modeled.

An illustrative example on how the order of AR modeling (lin-
ear prediction) affects the estimated modal frequencies (pole
angles) is shown in Fig. 2. The magnitude spectrum of a mea-
sured room response is plotted in comparison with a related
pole frequency bifurcation map. For lowest orders only the
spectral peak ranges become roughly approximated, and for
increasing model order these poles split into new pole pairs
and groups of poles.

In this study we are interested in modeling resonant and re-
verberant systems by methods where the poles and related
parameters, angles and radii, can be resolved explicitly. This
is needed in applications such as those discussed below in
the application section. The selection of model order is then
more demanding than in cases where finding the numerator
and denominator coefficients is enough. If the model order
is too low, not all modes are represented properly by com-
plex conjugate pole pairs, or the radii of poles found remain
underestimated. If a model order is too high, single modes

4These methods are available as Matlab Signal Processing
Toolbox functions prony and stmcb.
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Fig. 2: Magnitude spectrum of a measured room response
(top) and frequencies corresponding to pole angles obtained
from linear prediction of varying order (bottom).

often become overmodeled, i.e., more than one pole pair will
become allocated per mode.

3.4 Limitations of ARMA modeling

While powerful in simple cases for low model orders, the meth-
ods described above exhibit difficulties with high orders and
complex target systems. Often these problems originate from
limited computational precision. In Prony’s method and the
Steiglitz-McBride iteration the potential instability is often a
problem. Although poles outside the unit circle can be mir-
rored inside the unit circle, yielding an equivalent magnitude
spectrum, the temporal structure of the impulse response is
changed.

Linear prediction (autocorrelation method) may yield stable
and accurate results with model orders of hundreds or thou-
sands, particularly when the poles are not very close to the
unit circle or to each others. However, if the poles (and zeros)
must be solved explicitly, which is of interest in this study,
solving for roots of the denominator (and numerator) is typi-
cally more problematic than obtaining these polynomials per
se. Frequency-selective AR and ARMA modeling solves some
of these problems.

4 FREQUENCY-ZOOMING ARMA (FZ-ARMA)

The problems in resolving very closely positioned modes and
mode groups was the reason in this study to experiment with
methods that have better control over frequency resolution.
Several ideas are available for improvement, including fre-
quency warping [22] and frequency selective modeling such as
selective linear prediction [15], multiband AR/ARMA tech-
niques [16], and many other high-resolution signal modeling
methods.

Frequency warping is a convenient technique when either low-
est or highest frequencies require enhanced frequency resolu-
tion. This approach can be extended to Kautz filters that
exhibit interesting properties of generalized frequency reso-
lution control [23]. These methods are, however, out of the
scope of this study.
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Frequency selective modeling has been applied for example in
linear prediction of speech. In a simple case a target response
can be low-pass filtered and decimated in order to model the
low-frequencypart of the response. A range of higher frequen-
cies can be modulated down and decimated before similar
modeling. Actually any subband of a given frequency range
can be modeled this way, and finally the resulting parameters
(poles and zeros) can be mapped back to the corresponding
original frequency range. This approach is called here mod-
eling by frequency zooming. It resembles also the multiband
techniques used in [16, 17, 24].

4.1 Formulation of frequency zooming

The FZ-ARMA (or FZ-AR) analysis starts by modulating
(heterodyning)the desired frequency range down to the neigh-
borhood of zero frequency [25, 26, 27] by

hm(n) = ejΩmn h(n) (4)

where Ωm = 2πfm/fs, fm is the modulation frequency, and
fs is the sample rate. In the z-domain this means clockwise
rotation of poles (and zeros) zi by angle Ωm, i.e.,

Ωi,rot = Ωi − Ωm = arg(zi) − Ωm (5)

but retaining the pole (or zero) radius. The next step to
increase frequency resolution is to limit the frequency range
by decimating, i.e., lowpass filtering and down-sampling the
rotated response by a zooming factor Kzoom to obtain a new
sampling rate fs,zoom = fs/Kzoom. This implies mapping to
a new z-domain where poles (and zeros) are scaled by the rule

zi,zoom = zKzoom
i (6)

Together mappings (5) and (6) yield new poles (and zeros)5

ẑi = |zi|Kzoom ej(arg(zi)−Ωm)Kzoom (7)

Now it is possible to apply any AR or ARMA modeling to
the modulated and decimated response obtained from h(n).
Notice that this new signal is complex-valued due to the one-
sided modulation operation. This approach resembles multi-
rate and subband techniques.

The advantage gained by frequency zooming is that in the
zoomed subband the order of (ARMA) analysis can be re-
duced by increasing the zooming factor Kzoom and, conse-
quently, the solution of poles and zeros as roots of denomina-
tor and numerator polynomials of the model function Eq. (1)
is simplified. Additionally this means that a different reso-
lution can be used in each subband, for example based on
knowledge about the modal complexity in each subband.

After solving the poles and zeros within a zoomed subband,
they must be remapped to the full band. This means inverse
scaling the radii of poles (and zeros) as well as rotating them
counter-clockwise, i.e.,

zi = ẑ
(1/Kzoom)
i ejΩm (8)

Due to the one-sided down-modulation in (4), each pole (and
zero) zi must be used as a complex conjugate pair in order to
obtain real-valued filters.

The final step is to combine poles and zeros obtained from
different subbands into a full model. This is a non-trivial

5Eqs. (5) and (6) characterize how the z-domain properties of a
given response are changed through modulation and decimation,
but the estimated pole-zero pattern of an ARMA model will be
obtained only in the next step.

task but on the other hand, partitioning of the whole prob-
lem and recombining again brings increased flexibility. It is
advantageous to pick poles and zeros only within the central
part of each (overlapping) subband to avoid problems at the
boundaries of subbands due to band-limitation.

In the investigations of FZ-ARMA below the frequency-
zooming method of solving the ARMA coefficients is the
Steiglitz-McBridemethod. Notice also that the filter orders N
and P refer to real-valued filters with complex conjugate pairs
constructed from one-sided zeros and poles obtained from the
above method. Thus the orders are twice the numbers of zeros
and poles from the above procedures, respectively.

4.2 Modeling of higher-order modal decays

In this section, the performance of the FZ-ARMA analysis
method is illustrated through synthetic signals. In particu-
lar we are interested in investigating the modeling capability
when dealing with signals exhibitingbeating and/or two-stage
decay in their envelopes. Simple signals featuring these char-
acteristics can be obtained by

s(n) =
M�

k=1

ake−n/τk sin(2πn
fk

fs
+ θk) (9)

where M is the number of modal frequencies present in s(n),
τk are the decay time constants, fk the modal frequencies,
fs the sampling frequency, and θk the initial phases of the
modes.

Let us start with case (A) in which the amplitude envelope of
the signal consisting of two modes shows beating. The param-
eters used to generate the signal as well as those adopted in
the FZ-ARMA modeling are given in Table 1. The target re-
sponses in sine and cosine phase, their FZ-ARMA envelopes,
and resynthesized versions are shown in Fig. 3. The envelopes
are obtained from the complex decimated signals.

Each resynthesized response is computed as the impulse re-
sponse of the filter that is obtained by combining the complex
conjugate poles and zeros from the FZ-ARMA analysis. No-
tice that the band-limitation in frequency focusing produces
compensating zeros (and poles) that show artifacts in the re-
constructed impulse response. In a typical case of focusing on
a narrow resonance band the reconstructed impulse response
has a high-amplitude impulse as its first sample (see also [27]).
This has been removed the in resynthesized response simula-
tions of this paper. This removal has only marginal effect on
the spectral properties of the response.

In the simulation results of case (A) in Fig. 3, an ARMA(4,4)
model suffices to represent properly the envelope decays in
subplots (c) and (d), while the initial phase characteristics of
the resynthesized signal in (f) deviate form (b). Note that it
is almost impossible to distinguish between the dashed and
solid lines in the subplots (c) and (d) of Fig. 3.

In case (B) we verify the FZ-ARMA modeling of a two-mode
response for which the amplitude envelope exhibits a two-
stage decay. The parameters used to generate this signal,
as well as those of FZ-ARMA modeling, are summarized in
Table 2, and the results of modeling are shown in Fig. 4. The
slower decaying mode is modeled properly although its initial
level is 10 dB below the stronger one. This ability of two-stage
decay analysis can work down to -30 dB in a clean synthetic
case.
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Table 1: Parameters in simulation case (A).

Synthetic Signal
f1/Hz f2/Hz a1 a2 τ1 τ2 θ1 θ2

100 115 0.5 0.5 0.07 0.07 0 0
FZ-ARMA

Kzoom fm/Hz N P
200 52.37 4 4
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Fig. 3: Case (A), amplitude beating due to two modes with
nearby frequencies: (a) synthetic signal generated according
to Eq. (9) with parameters given in Table 1; (c) original
(dashed line) and modeled (solid line) amplitude envelopes
(curves overlap almost perfectly); and (e) resynthesized sig-
nal based on the estimated model. Subplots (b), (d), and (f)
refer to a modified signal generated with parameters shown
in Table 1 but with phases replaced by θ1 = θ2 = π/2.

4.3 Modeling of noisy responses

In simulation case (C), in order to verify the FZ-ARMA mod-
eling when dealing with noisy signals, we contaminate the im-
pulse responses shown in the plots (a) and (b) of Fig. 3 with
zero-mean additive white Gaussian noise. In this example the
variance of the noise is chosen to produce a signal-to-noise ra-
tio (SNR) of -5 dB in the beginning of the signal. Of course,
the local SNR decreases towards the end of the signal.

The results are displayed in Fig. 5, which follows the same
structure as the previous figures. Now, by looking at subplots
(c) and (d) of Fig. 5 it can be seen that the envelopes of the
modeled signals (solid lines) differ substantially from those of
the noisy signals (dashed lines). Moreover, the resynthesized
signals based on the computed models, shown in subplots (e)
and (f), are free of visible noise and follow closely their cor-
responding clean versions, which are depicted in the subplots
(a) and (b) of Fig. 3.

The highly successful result of reducing the additive noise in
simulation case (C) can be understood when considering the

Table 2: Parameters in simulation case (B).

Synthetic Signal
f1/Hz f2/Hz a1 a2 τ1 τ2 θ1 θ2

100 100 0.2 0.8 0.3 0.02 0 0
FZ-ARMA

Kzoom fm/Hz N P
200 44.87 4 4
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Fig. 4: Case (B), two-stage decay due to two modes with
equal frequency: (a) synthetic signal generated according to
Eq. (9) with parameters given in Table 2; (c) original (dashed
line) and modeled (solid line) amplitude envelopes; and (e)
resynthesized signal based on the estimated model. Sub-
plots (b), (d), and (f) refer to another signal generated with
parameters shown in Table 2 but with phases replaced by
θ1 = θ2 = π/2.

frequency zooming to a narrow band around the modal fre-
quencies of interest, whereby SNR is improved by the zooming
ratio, i.e., by 10 log10 200 = 23 dB in this case. The low-order
ARMA(4,4) modeling further reduces the influence of noise
due to good correlation with the modal signals only.

4.4 Envelope modeling of non-LTI system

A primary assumption when applying FZ-ARMA or any LTI
system modeling is that the frequencies of modes do not
changewithin the duration of the analyzed segment. If this re-
quirement cannot be satisfied, e.g., in strongly plucked string
instrument tones having initial pitch shifting [28], the enve-
lope behavior of the target signal can still be modeled. A
straightforward way, if the frequency trajectory of the pitch
shift is know, is to resample the signal so that the shift is
eliminated. Another way is to apply FZ-ARMA modeling but
adopting higher orders for the numerator and denominator so
that this can capture the effect of frequency shift.

Alternatively, one can compute an ARMA model for the enve-
lope of a modulated and decimated signal (FZ-ENV-ARMA).
In that way the envelope behavior can be approximated with
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Fig. 5: Case (C), amplitude beating of two modes in noise:
(a) synthetic signal generated according to Eq. (9) with pa-
rameters given in Table 1 immersed in white noise; (c) original
(dashed line) and modeled (solid line) amplitude envelopes;
and (e) resynthesized signal based on the estimated model.
Subplots (b), (d), and (f) refer to a modified signal generated
with parameters shown in Table 1 but with phases replaced
by θ1 = θ2 = π/2.

a lower model order. Simulation case (D), an example that
compares the standard FZ-ARMA modeling against the FZ-
ENV-ARMA, is shown in Fig. 6. The test signal plotted in
subplot (a) is a version of that plotted in Fig. 3, but now the
frequencies of the modes start 50 Hz above the values indi-
cated in Table 1 and then converge exponentially with a time
constant of 100 ms to the nominal values. The plots on the
left column show the original and modeled envelopes for dif-
ferent FZ-ENV-ARMA model orders. The plots on the right
column do the same but employing FZ-ARMA models.

To resynthesize a changingpitch signal based on the FZ-ENV-
ARMA computed model, it is necessary to estimate its pitch
behavior. Then, after obtaining a model for the amplitude
envelope, a frequency modulation corresponding to the origi-
nal frequency shift should be employed during synthesis. For
a direct FZ-ARMA modeling this is not needed if the estima-
tion is capable of capturing the given behavior of the shifting
modal frequencies.

It can be verified from Fig. 6 that, in constrast to what hap-
pens to the FZ-ARMA modeling, increasing the model order
in the FZ-ENV-ARMA does not essentially help to improve
the model fit, since the inherent phase relations of the original
signal have been lost in the computation of the envelope that
is used as a target. Nevertheless, for low-order modeling, FZ-
ENV-ARMA yields better envelope fit than the equal order
FZ-ARMA modeling.

If the response of a target system is highly complex in mode
density, such as a room response at medium to high fre-
quences, a detailed modal description may not be feasible
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Fig. 6: Case (D), amplitude beating with pitch-shift: (a)
synthetic signal generated according to Eq. (9) with parame-
ters given in Table 1 but with a pitch shift. The plots on
the left column show the original (dashed-line) and mod-
eled (solid-line) amplitude envelopes for the FZ-ENV-ARMA
models of orders: (b) ARMA(4,4), (d) ARMA(8,8), and (f)
ARMA(12,12). Subplots (c), (e), and (g) on the right column
show the same cases but for the FZ-ARMA modeling with
corresponding model orders.

or even desired. In such cases the envelope behavior can be
representedsimply by fitting a lower order model to the decay-
ing envelope in a desired frequency range by FZ-ENV-ARMA
techniques. This can be useful in decay time estimation6.
Simulation case (E) in Fig. 7 depicts the decay envelope of an
example room response for the octave band 1–2 kHz and a
related envelope curve fitting by low-order FZ-ARMA mod-
eling.

Another form of non-LTI behavior are nonlinearities. A small
degree of nonlinearity in a system can be accepted, and even
quite severe deviation from linear can be tolerated if we accept
the fact that the parameters are then signal-dependent, for
example dependent on the level of a signal.

4.5 Selection of zooming parameters

The choice of the FZ-ARMA parameters, i.e., Ωm, Kzoom,
and the ARMA orders N and P , depends on several factors.
Considering first the zoom factor, it can be said that the
larger Kzoom is, the higher the frequency resolution. This

6There exist many methods, however, that are better moti-
vated for example in reverberation time RT60 estimation [13].
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Fig. 7: Case (E), estimation of reverberant response decay
rate and T60 by modeling the decay envelope using low-order
FZ-ENV-ARMA model. Measured response was bandpass
filtered (1–2 kHz), absolute value of Hilbert envelope taken
and decimated by 500, modeled by filter orders N = 6, P = 6,
and finally the largest positive (real) pole corresponding to the
main decay component was identified for slope estimation.

favors cases in which the modes are densely distributed in
frequency. On the other hand, high values for Kzoom im-
ply a more demanding signal decimation procedure and less
samples available for modeling in the decimated signal.

A possible strategy is to define a minimum fs,zoom beforehand
and then derive Kzoom. For instance, the criterion may be
based on the number of samples that remain in the decimated
signal. Another natural choice when there are relatively iso-
lated modes or mode groups is to select the frequency range
of focusing to cover such a group and its vicinity until neigh-
boring modes or groups start to have influence. It is recom-
mended to to choose the range of focus such that resonance
peaks are not placed at the ends of the subband. As a rule of
thumb, a suitable choice is to set fm = fr − fs,zoom/4, which
brings the resonance frequency fr in the middlepoint of the
decimated frequency range.

The order of an ARMA model will be dependent on the num-
ber of modes associated with each resonance group. Ex-
periments on two-mode resonances reveal that adopting an
ARMA(4,4) model in general yields satisfactory results for
such cases. Better modeling accuracy can be achieved by in-
creasing the order, although the result may not be physically
interpretable for a two-mode case. High-order analysis also
rises the probability of ending up with an unstable model.

Note that in FZ-ARMA the modulation frequency fm must
correspond to the lower edge of the focusing range and the
zooming factor Kzoom, in relation to sampling rate, deter-
mines the zooming bandwith.

5 CASE STUDIES IN AUDIO APPLICATIONS

AR/ARMA modeling has many applications in modern au-
dio signal processing. Linear and time-invariant models can
be applied for example in room acoustics, sound synthesis,
and audio reproduction. Based on the previous theoretical
overview and examples, in this section we will take examples
from these domains to study the feasibility of the methods,
particularly of the FZ-ARMA technique, in several audio ap-
plications.
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Fig. 8: Case (F): (a) cumulative decay spectrum of a mea-
sured room response below 220 Hz, for time span 0.0 . . . 1.0 s;
(b) cumulative decay spectrum computed from the impulse
response of an AR model (P = 80) for the room response of
Fig. 8(a). The original sampling rate 44100 Hz was decimated
to 400 Hz before AR modeling. Level is limited to -50 dB.

5.1 Modeling of room impulse responses

A challenging application for AR/ARMA modeling is to find
compact but perceptually valid approximations for measured
(or computed) room impulse responses [12]. This is needed
for example in modal analysis of rooms at low frequencies,
artificial reverb designs, or equalization of loudspeaker-room
responses.

As case study (F), an analysis of low-frequency modal behav-
ior of a room impulse response is carried out using different
AR and FZ-ARMA methods. The room has approximate di-
mensions of 5.5 x 6.5 x 2.7 m3. Figure 8(a) describes the
time-frequency behavior (cumulative decay spectrum) for fre-
quencies below 220 Hz as computed from a measured room
impulse response. The room shows particularly intense and
long modal decays around 45 Hz.

A straightforward AR modeling of the room impulse response
below 220 Hz using linear prediction yields fairly accurate re-
sults when the all-pole filter order P is about 100 or above
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Fig. 9: Case (G), envelope match for the decay of modal
group between 33 and 58 Hz in the room response of Fig.
8 with different FZ-ARMA orders: (a) ARMA(4,6), (c)
ARMA(4,20), (e)ARMA(6,60). Solid line = modeled, dot-
ted line = original. Poles (x) and zeros (o) in the decimated
z-domain are plotted in (b), (d), and (f), respectively. (Some
zeros fall outside the plotting range.)

for the low-frequency range. Fig. 8(b) shows the model re-
sponse decay plot when P = 80. The original sample rate of
44100 Hz was decimated by a factor of 110 before AR model-
ing. A comparison with Fig. 8(a) reveals that the decay times
of prominent modes are quite well modeled but many weaker
modes are too short or too damped due to insufficient model
order.

Direct ARMA modeling by Steiglitz-McBride method yields
a better time domain fit with a given denominator order than
the corresponding AR model. For example using numerator
order of N = 30 and denominator P = 100 worked fairly
well for the room response above, although in many cases the
Steiglitz-McBride algorithm gives an unstable result already
with such moderate filter orders.

FZ-ARMA is a powerful method for accurate modeling of
modal behavior in a limited frequency range. Figure 9 depicts
modeling results of the prominent modal region 33 . . . 58 Hz
in the response of Fig. 8(a). The region includes three major
modes at frequencies of 37, 46, and 55 Hz. Figure 9 shows
the decay envelope of the modal region for the original signal
(dashed line) and as a result of applying the Steiglitz-McBride
method of different orders (solid line). Increasing the filter
order improves the envelope fit, but finally it may start to
model the background noise envelope. The pole-zero plots on
the right hand side indicate that for an order of P = 6 the
poles correspond to the three modes, while for higher orders
there are extra poles and it is not easy to associate them with
the modes.
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Fig. 10: Case (H), fitting to room response within critical
band 920 . . . 1080 Hz by FZ-ARMA of orders (a) ARMA(6,6),
(b) ARMA(6,20), (c) ARMA(6,60), described by amplitude
envelopes of original (dashed line) and modeled (solid line)
responses.

At higher frequencies, above the critical frequency (Schroeder
frequency) [29] of the room, the modal behavior is diffuse, i.e.,
the modal density is high and modes overlap in frequency.
Full audio range AR and ARMA modeling is difficult, if not
impossible. However, it is possible to apply the FZ-ARMA
analysis to a narrow frequencyband of a reverberantresponse.
Figure 10 describes a fitting to the room response studied
within a critical band at 1 kHz (920 . . . 1080 Hz) by different
model orders. With the highest model order P = 60, envelope
fitting is good for the first 250 ms and for about a 40 dB
dynamic range.

5.2 Loudspeaker/room equalization

Equalization of a louspeaker response or a loudspeaker-
room reproduction chain means correcting the system re-
sponse closer to desired perceptual or technical criteria. MA
and ARMA modeling have been reported in the literature
in several forms for loudspeaker and in-situ frequency re-
sponse equalization, both in on-line and off-line formulations
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 17, 40, 41, 42, 43, 23].

Equalization of the free-field magnitude response (possibly
including the phase response) of a loudspeaker by DSP can be
carried out using many known techniques. For highest quality
loudspeakers there is hardly any need to improve its free-field
response, but the loudspeaker-room combination may benefit
greatly from proper equalization.

The combined task of loudspeaker and room equalization is
also demanding since it is essentially a problem of finding
a perceptually optimal time-frequency equalization, instead
of simple flattening of the magnitude spectrum and/or lin-
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Fig. 11: Case (I), cumulative decay spectra for equalization of loudspeaker plus synthetic modes: (a) original response plus
five modes at frequencies 50, 55, 100, 130, and 180 Hz, (b) modes fully damped, (c) modal decay time (60 dB) equalized to 250
ms, and (d) mode detection function G(Ω) for the original response. Decay levels are limited to -50 dB.

earization of phase. There seems to be quite a common mis-
understanding that just flattening the response, at least at
low frequencies where it might be technically possible, would
be an ideal solution. A better strategy is to improve the
balance of overall acoustical parameters, particularly of the
reverberation time. As discussed in [44], this can be done by
controlling the decay times of individual modes at low fre-
quencies, typically below 200 Hz, to match the reverberation
time at mid frequencies. This is called modal equalization. It
may be followed by a traditional correction of the envelope
of magnitude response. The need for such active correction
of room acoustics is particularly prominent around 100 Hz
even in spaces designed for listening purposes, such as audio
monitoring rooms [45].

In [44] we proposed a method for modal equalization. In the
present paper we suggest another technique to realize modal
equalization, optionally combined with magnitude envelope
correction. The general framework of modal equalization has
been discussed in detail in the previous paper. A brief de-
scription of the procedure is:

1. Measure the combined loudspeaker plus room impulse
response in the listening position of interest. Any mod-
ern technique for reliable response measurement can be
applied.

2. Analyze the average reverberation time RT60 at mid fre-
quencies, for example between 500 Hz . . . 2 kHz.

3. Determine an upper limit of modal decay time as a func-
tion of frequency for the low-frequency range, typically
below 200 Hz. This value can be allowed to grow slightly
toward lowest frequencies [46, 47], for example linearly
by 0.2 s when the frequency decreases from 300 Hz to
50 Hz.

4. Find the modes that need equalization, i.e., those that
have a longer decay time than the upper limit defined
above. If the magnitude level of a mode is so low that its
tail remains below a given level, it does not need modal
equalization even when its decay time is longer than the
upper limit. Estimate modal parameter values for these
modes, particularly the modal frequency and the decay
time constant, and compute the angles and radii of the
corresponding poles.
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5. Design a correction filter for each mode requiring equal-
ization so that the filter shortens the decay time to meet
the upper limit criteria specified in step 3. This means
canceling the estimated pole pair, which represents a
mode with a long decay time, by a zero pair, and re-
placing it with a new pole pair having the desired decay
time. This can be done with an IIR filter [44]

Hc(z) =
(1 − rejθz−1)(1 − re−jθz−1)

(1 − rcejθcz−1)(1 − rce−jθcz−1)
(10)

where r and rc are the (complex conjugate) pole radii of
the original decay and the corrected decay, respectively,
and θ and θc are the corresponding pole angles.

6. Compute steps 4 and 5 either in a batch mode, i.e., in
parallel for each mode to be equalized, or iteratively so
that modes are equalized one by one, starting from the
most prominent one and returning to step 4, to be ap-
plied to the result of the previous equalization. The pro-
cess is teminated when all remaining modes meet the
decay time criteria or when a preset upper limit of cor-
rectable modes has been reached.

7. Traditional magnitude equalization can be applied to the
result of modal equalization, if needed, by any method
or technique appropriate.

In this context we are only interested in step 4 as a part of
batch or iterative analysis. All other steps follow the gen-
eral scheme described in [44], where the mode search and
the decay time estimation were based on a time-frequency
representation and fitting of a logarithmic decay plus back-
ground noise model using nonlinear optimization. While the
previously proposed method is found robust for modes that
are separated well enough, strongly overlapping or multiple
modes with closely similar frequency are an inherent diffi-
culty of that method. Since AR/ARMA models search for
a global optimum and don’t try to separate modes, they are
potentially a better alternative in such cases.

In the equalization cases below, mode finding and parameter
estimation are carried out iteratively in the following way:

1. Compute a function that can be used robustly to find
the most prominent modes and their frequencies. This
can be done in different ways, for example directly by
AR or ARMA analysis and finding the poles with largest
radii. Because the selection of proper model order can be
problematic, we have first applied here a separate mode
detection function

G(Ω) =
	

|H(Ω)| max(0,D(arg(H(Ω))) (11)

where H(Ω) is the Fourier transform of the measured
response, Ω is the normalized angular frequency (angle
in the z-plane), and D is a differentiation operator (in
the frequency domain). An example of G(Ω) function
is plotted in Fig. 11(d). Positive peaks indicate strong
modes that may need decay time equalization. Note that
this function combines both the magnitude level and the
decay time (through phase derivative) information.

2. Find the highest peak position Ωp of the detection func-
tion G(Ω) as the best candidate for modal equalization.
Run AR analysis of predefined order (here we applied
orders 50 . . . 70 for the frequency range below 220 Hz)
on the minimum phase version of the target response to
find poles and select the pole closest to the point ejΩp
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Fig. 12: Case (J), equalization of a single mode at 46 Hz of
the room analyzed in Fig. 8: (a) original response, (b) after
mode equalization.

on the unit circle. This pole and its complex conjugate
now represent the most prominent mode.

3. If the decay time of the mode is below the upper limit
allowed and the value of G(Ωp) is below a threshold ex-
perimentally determined, go to finalize the process in
step 4. If not, design a second-order modal correction
filter of type Eq. (10) to change the modal decay time to
a desired value below the upper limit. Apply this to the
response to be equalized and use the result when going
back to iterate from step 1.

4. Finally, collect the correction filters into a cascaded filter
which is now the modal equalizer for the system.

A simulated modal equalization, case (I), is illustrated in
Fig. 11. A loudspeaker impulse response is filtered to add
five simulated modes at frequencies 50, 55, 100, 130, and 180
Hz, with 60 dB modal decay times of 1.4, 0.8, 1.0, 0.8, and 0.7
seconds, respectively. The cumulative decay spectrum of this
synthetic response is shown in Fig. 11(a). Figure 11(b) proves
that the effect of the modes can be cancelled out almost per-
fectly, leaving the loudspeaker response only, by moving the
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pole radii to correspond to a very short decay time (about 60
ms) using the procedure described above. In Figure 11(c) the
result of modal equalization depicted is more appropriate for
real room conditions. The decay time of each mode is equal-
ized to 250 ms. The two nearby modes partly overlapping,
at 50 and 55 Hz, do not cause any difficulties, and the modal
equalization works almost perfectly.

In case (J) of Fig. 12 the most prominent single mode at 46 Hz
is equalized by shortening the decay time from a value above
1 second to about 300 ms using the algorithm described above
and limiting the search for modes to only one. In Fig. 12(b)
the originally problematic mode decays now clearly faster.
Furthermore, the equalized response up to 80 Hz has much
smoother shape since the modal equalization also affects the
magnitude spectrum. However, the decay times of some other
modes remain long.

Multi-mode equalization of the same room, case (K), is shown
in Fig. 13. The room is the same as the one analyzed in
case (F), Fig. 8. The procedure described above is iterated
100 times, yelding 100 second-order correction filter sections,
to shorten the mode decay times. The cumulative decay
spectrum of the resulting equalized response is illustrated in
Fig. 13(b). The target value for equalized modal decay time
(60 dB) has been 150 ms.

In this case the result is not as perfect as in the synthetic or
single mode case. There is about 10 dB of fast decay in the be-
ginning, as shown by backward integrated plots in Fig. 13(c),
and thereafter the decay rate follows the original one. Al-
though the ideal shortening of the decay time is not achieved
precisely, it already makes sound reproduction in the room
more balanced in the terms of reverberation. Furthermore,
the equalization procedure can be improved by careful ad-
justment of the details.

The final step, i.e., smooth envelope equalization of the mag-
nitude response, is not discussed here since many known tech-
niques could be applied to equalize the magnitude response.
An interesting choice is, however, to integrate the magni-
tude equalization phase together with the AR/ARMA modal
equalization process.

5.3 Modeling of string instruments

An appealing application of the FZ-ARMA scheme is the
modeling of musical instruments. For instance in sound syn-
thesis of string instruments through any parametric approach,
such as digital waveguide modeling [48], one may need to ob-
tain information related to the partial frequencies and their
respective decay rates from measured signals [49, 26]. The
FZ-ARMA modeling turns out to be a suitable tool for such
modal analysis purposes.

The experiments with string and bell sounds here have been
influenced by techniques published in references [50, 16, 51,
52, 53, 54]. Particularly the application of Prony’s method
in [16] is aiming to the same goal. We have found that the
Steiglitz-McBride iteration as a part of FZ-ARMA yields typ-
ically better results than Prony’s method.

As a simulated case to study the required model orders we
generate a synthetic guitar tone using the dual polarization
model in [55]. Each partial has two modes with known pa-
rameters, i.e., resonance frequencies and time-constants of the
exponentially decaying envelope. When dealing with real in-
strument tones, for example guitar tones recorded in an ane-
choic chamber, it is necessary to estimate the frequencies of
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Fig. 13: Case (K), equalization of the room response ana-
lyzed in Fig. 8: (a) original response, (b) after mode equal-
ization, and (c) backward integrated energy decay for the orig-
inal (dashed line) and equalized (solid line) responses.

the resonance peaks beforehand and select subbands around
them in order to proceed with the FZ-ARMA modeling.

In simulations it was found that already low-order frequency-
focusing models of ARMA(2,4), i.e., with two pole pairs, suf-
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Fig. 14: Case (L), analysis of guitar tone partials. The plot
on the top shows the magnitude envelope of the first 10 par-
tials of a A2 guitar tone while the plot on the bottom depicts
the corresponding envelope estimates using the FZ-ARMA
modeling.

fice to estimate the mode frequencies properly. To match
accurately the decay times and forms of the modes, a little
higher model order is required. ARMA(4,6) worked already
well.

For harmonic signals with non-varying pitch, a pitch detector
could be used to select both the down-modulation frequen-
cies fm and the sub-band bandwidth fs,zoom. A more general
approach should also work for inharmonic signals and in this
case, running a peak-picking algorithm over the magnitude
spectrum of the initial part of the tone seems to be more
appropriate. In addition, the estimation of the number of
resonant modes per partial may be based on a priori infor-
mation, e.g., the number of strings per note vibrating in a
piano tone.

In an example, case (L), FZ-ARMA modeling is performed
on a guitar tone. The signal was recorded in an anechoic
chamber and corresponds to plucking the fifth string (A2,
f0 ≈ 110 Hz). The results of modeling the first 10 harmonics
fi, i = 1, . . . , 9, of this tone are shown in Fig. 14. Parame-
ters used in FZ-ARMA modeling were fm = fi − 0.5fs,zoom,
Kzoom = 401, P = 6, and N = 6. The temporal structure of
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Fig. 15: Case (M), analysis of piano tone partials. The plot
on the top shows the magnitude envelope of the first 10 par-
tials of a D4 piano tone while the plot on the bottom depicts
the corresponding envelope estimates using the FZ-ARMA
modeling.

harmonics is approximated well in this case.

As another example, case (M), Figure 15 plots the original
and estimated amplitude envelope curves for the first 10 har-
monics fi of a D4 (f0 ≈ 298 Hz) piano tone. The analysis
was performed using the FZ-ARMA modeling with parame-
ters fm = fi − 0.5fs,zoom, Kzoom = 247, P = 6, and N = 6.
This order is able to capture the main structure of temporal
evolution in partial decays, but higher orders are required for
high-precision modeling because for a three-string piano note
the degree of freedoms corresponds theoretically to 3·2·2 = 12
poles.

The string models obtained above can be used directly for
source-filter (= subtractive) synthesis, whereby the total fil-
ter order for single string synthesis is N = P = 50 . . . 500
depending on fundamental frequency and desired quality of
synthesis. Since digital waveguide models [48] are attractive
from a computational efficiency point of view, it would be use-
ful to map the modal parameters of partials to a loop filter
of a digital waveguide. To gain advantage by the waveguide
formulation, a relatively low-order loop filter is needed that
approximates the common properties of the separate modes,
thus leading to a nonlinear optimization task.
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Fig. 16: Acoustical behavior of a small bell: (a) recorded
time domain signal, (b) magnitude spectrum, (c) magnitude
spectrum in the modal region around 1310 Hz, (d) decay en-
velope of the 1310 Hz modal group.

5.4 Modeling of bell sounds

As another musical instrument, case (N), the analysis and
modeling of bell sounds is presented. A characteristic feature
of bell sounds is that they are composed of an inharmonic
set of partials [2], such as the one described by magnitude
spectrum in Fig. 16(b). Each partial is a decaying sinusoid
that, in a closer inspection, Fig. 16(c), turns out to be a
pair or a group of modes very closely located in frequency.
This leads to perceptually noticeable beating. In this case the
modal group consists primarily of two modes with a frequency
difference of about 2.5 Hz.

FZ-ARMA is an excellent method for analyzing the modal
groups of bell sounds. Figure 17 shows the envelope match
obtained with three different FZ-ARMA orders for the 1310
Hz modal group. The zooming factor Kzoom is 200 in each
case. In case (a) the orders are N = 0 and P = 4. Two
pole pairs should in principle be sufficient for a double mode,
but this all-pole (AR) case with N = 0 does not allow proper
phase matching, and thus the overall match remains poor.

For ARMA orders N = 40 and P = 4 in (b) the relatively
high number of zeros allows for good match with just two pole
pairs. The same can be achieved in case (c) with orders N = 2
to P = 6, i.e., by adding an extra pole pair and keeping the
number of zeros minimal. For all resonances up to 10 kHz for
this bell sound, filter orders of N = 2 . . . 4 and P = 4 . . . 6 are
sufficient for good modal decay matching so that a parallel
filter, composed of modal group filters with a total order of
about N = 40 and P = 50 can implement an efficient and
high-quality synthesizer for the bell sound for the sampling
rate of 22050 Hz.
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Fig. 17: Case (N), analysis and modeling of beating enve-
lope in a bell sound mode with different model orders: (a)
ARMA(0, 4), (b) ARMA(40, 4), and (c) ARMA(2, 6).

6 DISCUSSION AND CONCLUSIONS

In this paper we have studied the modeling of acoustic and
audio system responses that exhibit resonant and reverberant
properties. Particularly the AR and ARMA modeling tech-
niques are investigated to obtain efficient all-pole or pole-zero
filters. Such modeling, if accurate enough and computation-
ally inexpensive, finds applications in solving many audio-
oriented problems.

The first part of the paper is a non-theoretical overview of AR
and ARMA modeling methods to demonstrate their inherent
properties and limitations.

A specific interest of this study has been the modeling meth-
ods that can yield good temporal match to a given target
response and high frequency resolution, often at the same
time. Based on earlier studies, primarily on applying Prony’s
method to subbands, we show that frequency-zoomingARMA
(FZ-ARMA) based on the Steiglitz-McBride iteration is a
powerful technique for high-resolution modeling in subbands.
Simulation examples demonstrate the ability of this approach
to model complex modal and reverberant behaviors.

These methods are then used to solve problems of practical
interest in audio applications, covering room impulse response
modeling, inverse modeling for equalization of loudspeaker-
room responses, and modeling of musical instrument sounds.

Many general and problem-specific questions remain for fur-
ther studies. Robust selection of model orders, stability and
numerical sensitivity, efficient and robust implementation of
the obtained filters for applications, adaptive formulation and
on-line calibration of the models, as well as finding new ap-
plications, call for more investigation.

Matlab code, examples, and sound demonstrations are avail-
able at: www.acoustics.hut.fi/demos/AR ARMA/
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