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0 INTRODUCTION

Parametric analysis and modeling is an increasingly
common task in acoustics and audio. In this paper we
focus on audio-related problems where a target system
response can be measured and the task is to model it for
computational simulation or synthesis, or to derive an
inverse model for equalization. Representative examples
of the first group are room response modeling, including
artificial reverberation design, or just estimation of eigen-
modes at low frequencies in room acoustical studies, and
modeling of musical instruments. The second category,
inverse modeling, is common in audio, where equalization
of nonideal response properties is a frequent task in high-
quality sound reproduction as well as prevention of
acoustic feedback in sound-reinforcement systems.

The behavior of acoustic or audio systems at low fre-
quencies can often be modeled analytically and parame-
terized, at least with lumped models. Examples of such
cases are low-frequency modal behavior in a rectangular
room [1], musical instrument body [2], or loudspeaker
enclosure [3]. For irregular structures or higher frequen-
cies it is much more difficult or impossible to find ana-
lytical or numerical models that are useful in practice. In
such cases it is still possible to measure system responses
and to apply signal modeling techniques to analyze, sim-

ulate, or synthesize in real time a given response.
Particular interest of this study is focused on the reso-

nant and reverberating characteristics of complex acoustic
systems. The modal behavior, that is, the decomposition of
eigenmodes assuming a linear and time-invariant (LTI)
system, can be extremely complicated. In one-dimensional
resonators, such as strings and tubes in musical instru-
ments, the density of eigenmodes is not necessarily high,
but these modes can exhibit complicated details, such as
two-stage decay and strong beating in a decaying enve-
lope. In two- and three-dimensional resonators, such as
membranes, plates, and enclosed spaces, the modal den-
sity increases toward higher frequencies, resulting in
dense modal patterns and reverberation-type behavior
when neighboring eigenmodes overlap remarkably. Also
the temporal behavior becomes complex, especially in
rooms where direct sound and early reflections are fol-
lowed by an increasing density of reflections resulting in
late reverberation. The modeling of measured responses
may benefit from a time–frequency viewpoint where the
properties of auditory perception are taken into account.

A rich literature exists on signal modeling of LTI sys-
tems [4]–[7] in many branches of engineering, systems
sciences, and applications. Software tools for modeling
are available, for example, in MATLAB.4 Here we assume
that target systems and desired models, in addition to
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being linear and time invariant, are also stable and causal.
We also assume that the measured system responses are not
heavily noise contaminated so that estimating the system
model parameters is practical for the applications at hand.
Then a measured impulse response h(n) can be approxi-
mated by a rational expression in the z-transform domain,
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which makes it possible to simulate or synthesize the tar-
get system efficiently by various digital filter implementa-
tions [5], [10], [11] of the estimated transfer function.

In this paper we only deal with discrete-time represen-
tations for digital signal processing. Thus the easiest way
to “model” a measured response h(n) or its truncated or
windowed version is to take it directly as a finite impulse
response (FIR) filter H(z) � ΣN

k�0 h(k)z�k. For complex
systems, the length of the finite impulse response required
for suitable representation may be too long, preventing
real-time implementations. On the other hand, shortening
the filter length reduces the capabilities of identifying the
inherent resonant properties of the system under study.
Filters for infinite impulse response (IIR) can come in two
forms: 1) all-pole models where the numerator of Eq. (1)
is reduced to a single gain coefficient b0, or 2) pole–zero
models with both the numerator and the denominator
being nontrivial polynomials of z.

In systems science and engineering, such as in control
theory for estimation and identification tasks, the terms
autoregressive (AR), moving average (MA), and autore-
gressive moving average (ARMA) have been used for
modeling processes similar to all-pole, FIR, and pole–
zero filter behavior, respectively. For the sake of conven-
ient use of the abbreviations AR and ARMA, as well as to
draw attention to the rich knowledge from various fields
other than digital audio signal processing, we apply the
terms MA, AR, and ARMA here when referring to spe-
cific types of models.

Our aim does not stop at obtaining a useful approxima-
tion of a measured target system by a transfer function of
the type of Eq. (1). We are interested in decomposing it
into a parametric description of its constituent compo-
nents, particularly the complex-conjugate pole pairs, that
is, the complex-valued roots of the denominator polyno-
mial, which represent the eigenmodes of the system and
result in the resonant and reverberant behavior. In theory
pole pairs are common to all responses in a distributed
system such as a room [12] or an instrument body,
whereas zeros (roots of the numerator ΣN

k�0 bk z�k.) are
essentially position dependent. We are interested in an
accurate estimation of the modal parameters, such as pole
angle and radius or, equivalently, mode frequency and
decay time constant.

In a recent paper [13] we studied this problem of modal
parameter estimation using traditional time–frequency
analysis techniques by first trying to isolate potential
mode frequencies and then estimating the modal decay

rate from a spectrogram, such as short-time Fourier analy-
sis or cumulative decay spectrum [14]. Decay rate estima-
tion was also applied to wide-band signals, for example, to
a robust estimation of the reverberation time T60. A prob-
lem with such methods is to model overlapping modes
that result in nonexponential decay in any reasonable fre-
quency span. AR and ARMA approaches try to model the
target response globally by minimizing a given modeling
error criterion, typically a least-squares error. Thus the
interactions of overlapping modes are taken into account
simultaneously and systematically.

One problem of straightforward optimization is the
inflexibility of global optimization criteria, for example,
to take into account varying properties of different fre-
quency ranges. Also selecting proper values for the order
parameters N and P of Eq. (1) is not easy. A practical prob-
lem is that solving the (complex-valued) roots of a high-
order polynomial is an ill-posed numerical task. To avoid
problems with high-order models we propose a method
where a part of the given audio frequency range is mod-
eled at a time to obtain an accurate description of the
modes within this frequency span. Frequency-zooming
ARMA (FZ-ARMA) modeling is shown to be a powerful
way to decompose highly complex resonant responses
into modal representations, and related IIR filter imple-
mentations can be used for the simulation and synthesis of
such systems. Our research is influenced by earlier studies
on selective linear prediction [15], multiband modeling of
musical signals [16], room responses [17], loudspeaker
responses [18], and other high-resolution system model-
ing techniques.

This paper is structured as follows. Sections 1 and 2
present an overview of the AR and ARMA modeling
methods and techniques. Examples are given to illustrate
the modeling ability and limitations of these basic
approaches. Section 3 introduces the FZ-ARMA method,
which is able to analyze high-order systems with overlap-
ping modes and dense modal distributions. The effects of
nonidealities, including noise and non-LTI behavior, are
discussed. Three cases of audio applications that use AR,
ARMA, and FZ-ARMA methods are described in Section
4, including modeling of measured room responses,
inverse modeling and equalization of loudspeaker–room
responses, and modeling as well as sound synthesis of
musical instruments. The final section contains a discus-
sion and concluding remarks.

1 AR MODELING

The impulse response of a resonant system shows one or
more exponentially decaying sinusoids. Each such “mode”
can be inherently modeled by a complex-conjugate pole
pair, which suggests AR modeling with the corresponding
IIR filters. There is a long tradition for finding the least-
squares optimal fit of such models to measured LTI sys-
tem responses, either to a given impulse response or to
input–output signal pairs. Here we briefly refer to the the-
ory of linear prediction (LP), which in particular has
found application as a powerful spectral modeling tech-
nique in speech processing [19], [20].
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1.1 Linear Prediction
In linear prediction a signal sample x(n) is assumed to be

predictable as a linear combination of previous samples  ̂x(n) �
ΣP

i�1 aix(n � i). When the least-squares prediction error between
x(n) and  x̂(n) is minimized, the (auto)correlation coefficients
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play a central role. The most frequently used version of
linear prediction analysis is the autocorrelation method,
where the optimal values of the model parameters ai are
solved from a linear matrix equation (normal equations),

.

r r r r

r r r r

r r r r

r r r r

a

a

a

a

r

r

r

r

�

P

P

P

P P P P P

0 1 2 1

1 0 1 2

2 1 0 3

1 2 3 0

1

2

3

1

2

3

�

�

�

� � �

g

g

g

h h h h h

g

h h

R

T

S
S
S
S
S
S
S
S
SS

R

T

S
S
S
S
S
S
S
S
SS

R

T

S
S
S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
W
W
WW

V

X

W
W
W
W
W
W
W
W
WW

V

X

W
W
W
W
W
W
W
W
WW

(3)

Parameters rk are the autocorrelation coefficients rx(k) from
Eq. (2) for a signal frame under study and P is the order of
linear prediction analysis (order of the all-pole model fil-
ter). The coefficients ai are the estimated polynomial coef-
ficients in the denominator of Eq. (1), that is, 1 � ΣP

i�1
aiz

�i, the numerator being only a gain coefficient.5

1.2 Limitations of AR Modeling
A problem with the AR modeling of real-world sys-

tems, in the formulation described, is that the method is
not able to do time-domain fitting to a given target
response unless the target process is strictly of the AR (all-

pole) type. Fig. 1 illustrates this clearly in a simple case of
one idealized mode. For the damped sinusoid in Fig. 1(a)
the model response in Fig. 1(e) is a very accurate replica
of the target with model order 2 (one complex-conjugate
pole pair). If the initial phase is changed 90 degrees to a
damped cosine function, the second-order AR model
response (solid line) in Fig. 1(f) deviates severely from the
given target in Fig. 1(b).

Further insight into the behavior of AR modeling is
gained by noticing that the model is based entirely on the
autocorrelation coefficients, which in the frequency domain
corresponds to the power spectrum. This means pure spec-
tral modeling, whereby the spectrum of the cosine case in
Fig. 1(d) clearly deviates from the spectrum of the sine case
response in Fig. 1(c). Irregular onsets are common in
acoustic system responses, thus indicating that simple AR
modeling will have difficulties, and that more powerful
methods are needed for accurate temporal modeling.

A somewhat better match to the decaying cosine tail
mentioned can be achieved by the covariance method of
AR analysis,6 but the phase matching problem remains
and requires ARMA modeling.

2 ARMA MODELING

ARMA modeling, which yields a pole–zero filter, has
more modeling power than the AR method. It is, however,

5Linear predictive analysis is computed in MATLAB by the
function lpc, which first solves the autocorrelation coefficients rk
and then inverts the Toeplitz-type correlation matrix to yield pre-
dictor coefficients ai through the levinson recursion function
[8].

6Covariance method function ar, option ls, is found in the
System Identification Toolbox of MATLAB.

Fig. 1. AR modeling of single-mode decay with different initial phase. (a) Damped sinusoid target response. (b) Damped cosine target
function. (c) Magnitude spectrum of sine response. (d) Magnitude spectrum of cosine response. (e) AR model response for sinusoidal
case of order 2. (f ) AR model response for cosine case of order 2 (–––) and order 20 (– – –).
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more difficult because no closed-form solutions are avail-
able, thus requiring nonlinear optimization. ARMA esti-
mation algorithms are iterative, starting from a good AR
model and then iterating toward optimal parameter values.
As with any nonlinear optimization method, a lack of con-
vergence or trapping to a local optimum may occur, and
plain computational problems due to insufficient numeri-
cal precision are found.

Two methods are applied in the following: Prony’s
method and the Steiglitz–McBride method.7 A brief dis-
cussion of the problem of model order selection is fol-
lowed by motivation for the need for improved frequency
resolution, before the frequency-zooming ARMA tech-
nique is introduced.

2.1 Prony’s Method
Prony’s method [21, pp. 226–228] is a stepwise algorithm

that fits N � 1 first samples of a given response exactly,
while P poles of the denominator in Eq. (1) take care of tail
decay fitting. Because the AR part estimation is of the co-
variance type, the resulting filter can become unstable, even
in cases where the target system to be modeled is stable.

2.2 Steiglitz–McBride Iteration
The Steiglitz–McBride method [7, pp. 174–177] is an

algorithm with iterative prefiltering for the least-squares
fit of an ARMA model of Eq. (1) to a given impulse
response or a given input–output pair (system identifica-
tion problem). An initial estimate for the denominator can
be obtained, for example, by Prony’s method.

As with Prony’s method, the resulting filter from the

Steiglitz–McBride iteration can be unstable, especially
with high-order filters, even for stable target systems.
Often the model response starts in a good match with the
given time-domain response (since this is least-squares fit-
ting), but after some time it starts to explode due to a pole
or poles outside the unit circle.

2.3 Model-Order Selection
Both AR and ARMA models need a careful selection of

the filter orders P and N (N � 0 for AR models).8 There is
no general and automatic way to select optimal filter
orders. Rather they can be searched for by various rules to
obtain a good enough match to a given target response
[22], or the orders can be approximated using a priori
information about the target system.

An illustrative example on how the order of AR model-
ing (linear prediction) affects the estimated modal fre-
quencies (pole angles) is shown in Fig. 2. The magnitude
spectrum of a measured room response is plotted in com-
parison with a related map that shows the pole frequencies
for AR model orders up to 100. For lowest orders only the
most prominent spectral peaks become roughly approxi-
mated, and for increasing model orders these poles split
into new pole pairs and groups of poles.

In this study we are interested in modeling resonant and
reverberant systems by methods where the poles and the
related parameters, angles and radii, can be resolved
explicitly. This is needed in applications such as those dis-
cussed in Section 4. Selection of the model order is then
more demanding than in cases where finding the numera-
tor and denominator polynomials is enough. If the model
order is too low, not all modes are represented properly by
complex-conjugate pole pairs, or the radii of the poles
found remain underestimated. If a model order is too high,
single modes often become overmodeled, that is, more
than one pole pair will become allocated per mode.

7These methods are available as MATLAB Signal Processing
Toolbox functions prony and stmcb.

8The notation ARMA (P, N ) [see Eq. (1)] is used here to
denote model order.

Fig. 2. (a) Magnitude spectrum of measured room response. (b) Frequencies corresponding to pole angles obtained from linear pre-
diction of varying order.

(b)

(a)
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2.4 Limitations of ARMA Modeling
While powerful in simple cases for low-order models,

the methods described in the preceding exhibit difficulties
with high-order modeling of complex target systems.
Often these problems originate from limited computa-
tional precision. In Prony’s method and the Steiglitz–
McBride iteration potential instability is often a problem.
Although poles outside the unit circle can be mirrored
inside the unit circle, yielding an equivalent-magnitude
spectrum, the temporal structure of the impulse response
is changed.

Linear prediction (autocorrelation method) may yield
stable and accurate results with model orders of hun-
dreds or thousands, in particular when the poles are not
very close to the unit circle or to each other. However, if
the poles (and zeros) must be solved explicitly, numeri-
cal problems arise, as mentioned. Frequency-selective
AR and ARMA modeling can solve some of these
problems.

3 FREQUENCY-ZOOMING ARMA (FZ-ARMA)

Problems with resolving very closely positioned modes
and mode groups were the reason for experimenting with
methods that have better control over frequency resolution.
Several ideas are available for improvement, including fre-
quency warping [23] and frequency-selective modeling
such as selective linear prediction [15], multiband AR/
ARMA techniques [16], and many other high-resolution
signal modeling methods.

Frequency warping is a convenient technique when either
the lowest or the highest frequencies require enhanced fre-
quency resolution. This approach can be extended to Kautz
filters, which exhibit interesting properties of generalized
frequency resolution control [24]. These methods have,
however, been left out of the scope of this study.

Frequency-selective modeling has been applied, for
example, in the linear prediction of speech. In a simple
case a target response can be low-pass filtered and deci-
mated in order to model the low-frequency part of the
response. A range of higher frequencies can be modulated
down and decimated prior to similar modeling. Actually
any subband of a given frequency range can be modeled
this way, and finally the resulting parameters (poles and
zeros) can be mapped back to the original sample rate
domain. This is called here modeling by frequency zoom-
ing. It resembles the multiband/subband techniques used
in [16], [18], [25], [26].

3.1 Formulation of Frequency Zooming
The FZ-ARMA (or FZ-AR) analysis starts by modulat-

ing (heterodyning) the desired frequency band of impulse
response h(n) down to the neighborhood of zero frequency
[27]–[29] by

eh n h n� Ω
m

j nm^ ^h h (4)

where Ωm � 2π fm/fs, fm being the modulation frequency
and fs the sample rate. In the z domain this can be inter-

preted as clockwise rotation of poles zi by angle Ωm, that is,

argΩ Ω Ω Ωz� � � �irot, m mi i _ i (5)

but retaining the pole radius. The next step to increase the
frequency resolution is to limit the frequency range by
decimating, that is, low-pass filtering and down-sampling
the rotated response by the zooming factor Kzoom to obtain
a new sampling rate fs,zoom � fs/Kzoom. This implies map-
ping to a new z domain, where poles are scaled by the rule

.z z�, zoomi i
K zoom (6)

Together the mappings [Eqs. (5) and (6)] yield the new
poles,9

.exp arg Ωjz z z K� �, zoom zoomi i
K

i
zoom

m
t _ i8 B& 0 (7)

Now it is possible to apply any AR or ARMA modeling to
the modulated and decimated response. Notice that this
new signal is complex-valued due to the one-sided modu-
lation operation.

The advantage gained by frequency zooming is that in
the zoomed subband the order of (ARMA) analysis can be
reduced by increasing the zooming factor Kzoom, and con-
sequently, the solution of poles and zeros as roots of the
denominator and numerator polynomials of the model
function, Eq. (1), is simplified. In addition this means that
a different resolution can be used in each subband, based,
for example, on knowledge about the modal complexity of
a subband.

After the poles have been solved within a zoomed sub-
band, they can be remapped to the full sample rate by
inverse scaling the pole radii as well as rotating them
counterclockwise,

.ez z� ,
/ Ω
zoom

j
i i

K1 zoom mt t (8)

Because of the one-sided down modulation used in Eq.
(4), each pole ẑ i must be used as a complex-conjugate pair
in order to obtain real-valued filters.

Finally there are two alternatives of complete model
construction. A full audio range model can be realized as
a decimated filter-bank implementation or the subband
models can be combined into a full-rate filter. The details
of subband realization may follow any of the known mul-
tirate techniques [30]. For a full-rate case, the final step is
to combine the poles and zeros obtained from different
subbands. This is a nontrivial task, not discussed in detail
here. It is advantageous to pick poles only within the cen-
tral parts of overlapping subbands to avoid poles due to
the boundaries of subbands needed for band limitation.
The processing of the zeros is discussed briefly in the
examples of this section.

In the investigations of FZ-ARMA that follow, the
frequency-zooming method used for solving ARMA coef-

9Note that Eqs. (5) and (6) merely characterize how the z-
domain properties of a given response are changed through mod-
ulation and decimation, but the estimated pole–zero pattern of
an FZ-ARMA model will be obtained only in the next step.



PAPERS RESONANCE AND REVERBERANT SYSTEMS

J. Audio Eng. Soc., Vol. 50, No. 12, 2002 December 1017

ficients is the Steiglitz–McBride iteration. Notice that the
filter orders N and P refer to real-valued filters, with
complex-conjugate pairs constructed from one-sided zeros
and poles obtained from the model of the decimated sig-
nal. Thus the orders of real-valued filters are twice the
numbers of zeros and poles from the procedures
described.

3.2 Modeling of Higher Order Modal Decays
In this section the performance of the FZ-ARMA analy-

sis is illustrated through synthetic signals. In particular we
are interested in investigating the modeling capability
when dealing with signals exhibiting beating or two-stage
decay in their envelopes. Simple signals featuring these
characteristics can be obtained by

sin π θes n a
f

f
2� �/ τ

s
k

n f

k

M
k

k
1

�

�

s k n!
J

L

K
K^ _

N

P

O
Oh i (9)

where M is the number of modal frequencies present in
s(n), τk are decay time constants, fk are modal frequencies,
fs is the sampling frequency, and θk are the initial phases
of the modes.

Let us start with case A, in which the amplitude enve-
lope of a signal consisting of two modes shows beating.
The parameters used to generate the signal as well as those
adopted in FZ-ARMA modeling are given in Table 1. The

target responses in sine and cosine phases, their FZ-
ARMA envelopes, and their resynthesized versions are
shown in Fig. 3. The envelopes are obtained from the com-
plex decimated signals by taking the absolute values.

Each resynthesized response is computed by mapping
back the pole–zero model impulse response from the dec-
imated domain to the full sample rate. This is done by
interpolation and low-pass filtering (using the MATLAB
function resample), one-sided demodulation, taking the
real part, and multiplying by 2 (to compensate the missing
complex-conjugate part), that is, by applying the inverse
operations of the previous section. For an efficient realiza-
tion of FZ-ARMA models it is advantageous to implement
them as decimated subband filters, but this topic is beyond
the scope of this paper.

In the simulation results of case A in Fig. 3, an ARMA
(4, 4) model suffices to represent properly the envelope
decays in Fig. 3(c) and (d), while the initial phase charac-
teristics of the resynthesized signal in Fig. 3(f) deviate
from those in Fig. 3(b). Note that it is almost impossible
to distinguish between the dashed and solid lines in Fig.
3(c) and (d).

In case B we verify the FZ-ARMA modeling of a two-
mode response for which the amplitude envelope exhibits
a two-stage decay. The parameters used to generate this
signal, as well as those of FZ-ARMA modeling, are sum-
marized in Table 2, and the results of the modeling are
shown in Fig. 4. The slower decaying mode is modeled
properly although its initial level is 10 dB below the
stronger one. This capability of two-stage decay analysis
can work down to �30 dB in a clean synthetic case.

3.3 Modeling of Noisy Responses
In simulation case C, in order to verify the FZ-ARMA

modeling when dealing with noisy signals, we contami-
nate the impulse responses shown in Fig. 3(a) and (b) with
zero-mean additive white Gaussian noise. In this example
the variance of the noise is chosen to produce a signal-to-
noise ratio (SNR) of �5 dB in the beginning of the signal.
Of course, the local SNR decreases toward the end of the
signal.

The results are displayed in Fig. 5, which follows the
same structure as the previous figures. Looking at Fig.
5(c) and (d) it can be seen that the envelopes of the mod-
eled signals (solid lines) differ substantially from those of
the noisy signals (dashed lines). Moreover, the resynthe-
sized signals based on the computed models, shown in
Fig. 5(e) and (f), are free of visible noise and follow
closely their corresponding clean versions, which are
depicted in Fig. 3(a) and (b).

Fig. 3. Case A, FZ-ARMA modeling of amplitude beating due to
two modes very near in frequency. (a) Synthetic signal generated
according to Eq. (9) with parameters given in Table 1. (c) Ori-
ginal (– – –) and modeled (–––) amplitude envelopes (curves
overlap almost perfectly). (e) Resynthesized signal based on esti-
mated model. (b), (d), (f ) Another signal generated with param-
eters given in Table 1, but with phases replaced by θ1 � θ2 �
π/2.

Table 1. Parameters in simulation case A.

Synthetic Signal

f1(Hz) f2(Hz) a1 a2 τ1(s) τ2(s) θ1 θ2
100 115 0.5 0.5 0.07 0.07 0 0

FZ-ARMA

Kzoom fm(Hz) N P
228 107.5 4 4

Table 2. Parameters in simulation case B.

Synthetic Signal

f1(Hz) f2(Hz) a1 a2 τ1(s) τ2(s) θ1 θ2
100 100 0.2 0.8 0.3 0.02 0 0

FZ-ARMA

Kzoom fm(Hz) N P
245 100.0 6 6
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The highly successful result of reducing the additive
noise in simulation case C can be understood when con-
sidering the frequency zooming to a narrow band around
the modal frequencies of interest, whereby the SNR is
improved by the zooming ratio, that is, by 10 log10 228 �
23.6 dB in this case. Low-order ARMA (4, 4) modeling
further reduces the influence of noise due to a good corre-
lation with the modal signals only.

3.4 Envelope Modeling of Non-LTI Systems
A primary assumption when applying FZ-ARMA or

any LTI system modeling is that the frequencies of the
modes do not change within the duration of the analyzed
segment. Even if this requirement cannot be satisfied, for
example, in strongly plucked string instrument tones hav-
ing initial pitch shifting [31], the envelope behavior of the
target signal can still be modeled. A straightforward way,
if the frequency trajectory of the pitch shift is known, is to
resample the signal so that the shift is eliminated. Another
way is to apply FZ-ARMA modeling but adopt higher
orders for the numerator and denominator so that this can
capture the effect of the frequency shift.

Alternatively one can compute an ARMA model for the
envelope of a modulated and decimated signal (FZ-ENV-
ARMA). In that way the envelope behavior can be approx-
imated with a lower model order. Simulation case D com-
pares standard FZ-ARMA modeling with FZ-ENV-ARMA,
as shown in Fig. 6. The test signal plotted in Fig. 6(a) is a
variant of the one plotted in Fig. 3, but now the initial val-
ues of the mode frequencies start 50 Hz above the values
indicated in Table 1, and then they shift exponentially with
a time constant of 100 ms to the nominal values. The sub-
plots in the left column show original and modeled
envelopes for different FZ-ENV-ARMA model orders.
The subplots in the right column do the same, but using
FZ-ARMA models.

To resynthesize a changing pitch signal based on the FZ-

ENV-ARMA computed model, it is necessary to estimate
its pitch behavior. Then, after obtaining a model for the
amplitude envelope, a frequency modulation correspon-
ding to the original frequency shift should be employed
during synthesis. For direct FZ-ARMA modeling this is
not needed as long as the estimation is capable of captur-
ing the given behavior of the shifting modal frequencies.

It can be verified from Fig. 6 that, in contrast to what
happens with FZ-ARMA modeling, increasing the model

Fig. 5. Case C, FZ-ARMA modeling of amplitude beating of two
modes in noise. (a) Synthetic signal generated according to Eq.
(9) with parameters given in Table 1, immersed in white noise.
(c) Original (– – –) and modeled (–––) amplitude envelopes.
(e) Resynthesized signal based on estimated model. (b), (d), (f )
Another signal generated with parameters given in Table 1, but
with phases replaced by θ1 � θ2 � π/2.

Fig. 4. Case B, FZ-ARMA modeling of two-stage decay due to
two modes with equal frequencies. (a) Synthetic signal generated
according to Eq. (9) with parameters given in Table 2.
(c) Original (– – –) and modeled (–––) amplitude envelopes.
(e) Resynthesized signal based on estimated model. (b), (d), (f )
Another signal generated with parameters given in Table 2, but
with phases replaced by θ1 � θ2 � π/2.

Fig. 6. Case D, FZ-ARMA modeling of amplitude beating with
pitch shift. (a) Synthetic signal generated according to Eq. (9)
with parameters given in Table 1, but with a pitch shift. (b), (d),
(f ) Original (– – –) and modeled (–––) amplitude envelopes for
FZ-ENV-ARMA models. (b) ARMA (4, 4). (d) ARMA (8, 8).
(f ) ARMA (12, 12). (c), (e), (g) Same cases but for FZ-ARMA
modeling, with corresponding model orders.
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order in FZ-ENV-ARMA does not help to improve the
model fit substantially since the inherent phase relations
of the original signal have been lost in the computation of
the envelope that is used as a target. Nevertheless, for low-
order modeling, FZ-ENV-ARMA yields a better envelope
fit than equal-order FZ-ARMA modeling.

If the response of a target system is of highly complex
mode density, such as a room response at medium to high
frequencies, a detailed modal description may not be fea-
sible or desired. In such cases the envelope behavior can
be represented simply by fitting a lower order model to the
decaying envelope in a desired frequency range by FZ-
ENV-ARMA techniques. This can be useful in decay time
estimation.10 Simulation case E in Fig. 7 depicts the decay
envelope of an example room response for the octave band
of 1–2 kHz and a related envelope curve fitting by low-
order FZ-ARMA modeling.

Another form of non-LTI behavior is nonlinearity. A
small degree of nonlinearity in a system can be accepted,
and even a quite severe deviation from linearity can be tol-
erated if we accept the fact that the parameters are then sig-
nal dependent, such as dependent on the level of a signal.

3.5 Selection of Zooming Parameters
The choice of the FZ-ARMA parameters Ωm and Kzoom,

and of the ARMA orders N and P depends on several fac-
tors. Considering first the zoom factor, it can be said that
the larger Kzoom is, the higher the frequency resolution.
This favors cases in which the modes are densely distrib-
uted in frequency. On the other hand, high values for Kzoom
imply a more demanding signal decimation procedure and
fewer samples available for modeling in the decimated
signal.

A natural choice when there are relatively isolated
modes or mode groups is to select the frequency range of
focusing to cover such a group and its vicinity until the
neighboring modes or groups start to have an influence. It
is recommended to choose the range of focus such that
resonance peaks are not placed at the edges of the focused
subband. As a rule of thumb, a suitable choice is to set fm
to the middle of the subband of interest.11 This frequency
is then mapped to the zero frequency of the decimated fre-
quency range.

The order of an FZ-ARMA model will depend on the
number of modes associated with each resonance group.
Experiments on two-mode resonances reveal that adopting
an FZ-ARMA (4, 4) model in general yields satisfactory
results for such cases. Better modeling accuracy can be
achieved by increasing the order, although the resulting
poles may no longer be physically interpretable for a two-
mode case. High-order analysis also raises the probability
of ending up with an unstable model.

4 CASE STUDIES IN AUDIO APPLICATIONS

AR and ARMA modeling have many applications in
modern audio signal processing. Linear and time-invariant
models can be applied, for example, in room acoustics,
sound synthesis, and audio reproduction. Based on the
theoretical overview and examples given in the preceding
sections, we will study the feasibility of the methods, in
particular of the FZ-ARMA technique, in several audio
applications.

4.1 Modeling of Room Impulse Responses
A challenging application for AR/ARMA modeling is

to find compact but perceptually valid approximations for
measured (or computed) room impulse responses [12].
This is needed for modal analysis of rooms at low fre-
quencies, artificial reverberation designs, or equalization
of loudspeaker–room responses, to name a few. An exam-
ple of a similar subband modeling technique is found in
[17], [33].

In case study F an analysis of the low-frequency modal
behavior of a room impulse response is carried out using
different AR and FZ-ARMA methods. The room has
approximate dimensions of 5.5 by 6.5 by 2.7 m3. Fig. 8(a)
illustrates the time–frequency behavior (waterfall plot of
cumulative spectral decay) for frequencies below 220 Hz,
computed from a measured room impulse response. The
room shows particularly intense and long-ringing modal
decays around 45 Hz.

Straightforward AR modeling of the room impulse
response below 220 Hz using linear prediction yields
fairly accurate results when the all-pole filter order P is
about 100 or higher. Fig. 8(b) shows the decay plot model
response when P � 80. The original sample rate of 44 100
Hz was reduced by a factor of 110 prior to AR modeling.
A comparison with Fig. 8(a) reveals that the decay times
of the prominent modes are quite well modeled, but many
weaker modes are too short or too damped due to insuffi-
cient model order.

Direct ARMA modeling by the Steiglitz–McBride
method yields a better time-domain fit with a given denom-
inator order than the corresponding AR model. For exam-
ple, using a numerator N � 30 and a denominator P � 100
worked fairly well for the previous room response, although
in many cases the Steiglitz–McBride algorithm gives

Fig. 7. Case E, estimation of reverberant response decay rate and
T60 by modeling decay envelope using low-order FZ-ENV-
ARMA model. Measured response was bandpass filtered (1–2
kHz), absolute value of envelope taken and decimated by 500,
and modeled by filter orders N � 6, P � 6. The largest positive
(real) pole corresponding to the main decay component was
identified for slope estimation.

10There exist many methods that are better suited for estimat-
ing the reverberation time RT60 [13].

11 In an earlier version of this paper [32] the modulation fre-
quency fm was positioned at the lower edge of the subband of
interest.
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already an unstable result with such moderate filter orders.
FZ-ARMA is a powerful method for accurate modeling

of modal behavior in a limited frequency range. Fig. 9
depicts modeling results of the prominent modal region of
33–58 Hz in the response of Fig. 8(a). The region includes
three major modes at frequencies of 37, 46, and 55 Hz.
Fig. 9 shows the decay envelope of the modal region for
the original signal (dashed line) and when applying the
Steiglitz–McBride method of different orders (solid
lines). Increasing the filter order improves the envelope fit,
but finally it may start to model the background noise
envelope. The pole–zero plots on the right-hand side indi-
cate that for an order P � 6 the poles correspond to the
three modes, whereas for higher orders there are extra
poles and it is not easy to associate them with the modes.

At higher frequencies, above the critical frequency
(Schroeder frequency) [34] of the room, the modal behav-
ior is diffuse, that is, the modal density is high and the
modes overlap in frequency. Full audio range AR and
ARMA modeling is difficult, if not impossible, in a single
analysis. However, it is possible to apply the FZ-ARMA
analysis to any narrow enough frequency band of a rever-

berant response. Fig. 10 describes a fitting to the room
response studied within a critical band at 1 kHz (920–
1080 Hz) by different model orders. With the highest
model order P � 60, envelope fitting is good for the first
250 ms and for about a 40-dB dynamic range. Full audio
range modeling, based on this subband approach, is dis-
cussed in [35].

4.2 Loudspeaker–Room Equalization
Equalization of a loudspeaker response or a loud-

speaker–room reproduction chain means correcting the
system response closer to desired perceptual or technical
criteria. MA and ARMA modeling have been reported in
the literature in several forms for loudspeaker and in-situ
frequency response equalization, in both on-line and off-
line formulations [36]–[49], [18], [24].

Equalization of the free-field magnitude response (pos-
sibly including the phase response) of a loudspeaker by
digital signal processing can be carried out using many
known techniques. For highest quality loudspeakers there
is hardly any need to improve the free-field response, but
the loudspeaker–room combination may benefit greatly
from proper equalization.

The combined task of loudspeaker and room equaliza-
tion is demanding since it is essentially a problem of find-
ing a perceptually optimal time–frequency equalization,
instead of simple flattening of the magnitude spectrum or
phase linearization. There seems to be quite a common
misunderstanding that just flattening the response, at least
at low frequencies where it might be technically feasible,
would be an ideal solution. A better strategy is to improve
the balance of the overall acoustical parameters, particu-
larly of the reverberation time. As discussed in [50], this
can be done by controlling the decay times of individual
modes at low frequencies, typically below 200 Hz, to
match the reverberation time at midfrequencies. This is
called modal equalization. It can be followed by a tradi-
tional correction of the envelope of the magnitude
response. The need for such an active correction of the
room acoustics is particularly prominent around 100 Hz,
even in spaces designed for listening purposes such as
audio monitoring rooms [51].

In [50] we proposed a method for modal equalization.
In the present paper we suggest another technique to real-
ize modal equalization, optionally combined with magni-
tude envelope correction. The general framework of
modal equalization has been discussed in detail in the pre-
vious paper. A brief description of the procedure follows.

1) Measure the combined loudspeaker plus room
impulse response in the listening position of interest. Any
modern technique for reliable response measurement can
be applied.

2) Analyze the average reverberation time RT60 at mid-
frequencies, for example, between 500 Hz and 2 kHz.

3) Determine the upper limit of modal decay time as a
function of frequency for the low-frequency range, typi-
cally below 200 Hz. This value can be allowed to grow
slightly toward the lowest frequencies [52], [53], for
example, linearly by 0.2 s when the frequency decreases
from 300 Hz to 50 Hz.

Fig. 8. Case F. (a) Waterfall plot of measured room response
below 220 Hz for time span 0.0–1.0 s. (b) Waterfall plot com-
puted from impulse response of AR model (P � 80) for room
response of (a). Original sampling rate of 44 100 Hz was deci-
mated to 400 Hz before AR modeling. Level is limited to �50
dB.

(b)

(a)
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4) Find the modes that need equalization, that is, those
that have a longer decay time than the upper limit defined
in step 3. If the magnitude level of a mode is so low that
its tail remains below a given level, it does not need modal
equalization, even when its decay time is longer than the

upper limit. Estimate the modal parameter values for these
modes, in particular the modal frequency and the decay
time constant, and compute the angles and radii of the cor-
responding poles.

5) Design a correction filter for each mode requiring

Fig. 9. Case G, envelope match for decay of modal group between 33 and 58 Hz in room response of Fig. 8 with different FZ-ARMA
orders. ––– modeled; – – – original. (a) ARMA (6, 4). (c) ARMA (20, 4). (e) ARMA (60, 6). (b), (d), (f ) Poles (�) and zeros (o) in
decimated z domain. (Some zeros fall outside the plotting range.)

Fig. 10. Case H, fitting to room response within critical band of 920–1080 Hz by FZ-ARMA. Original (– – –) and modeled (–––)
responses. (a) ARMA (6, 6). (b) ARMA (20, 6). (c) ARMA (60, 6).
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equalization so that the filter shortens the decay time to
meet the upper limit criteria specified in step 3. This
means canceling the estimated pole pair, which represents
a mode with a long decay time, by a zero pair, and replac-
ing it with a new pole pair having the desired decay time.
This can be done with an IIR filter [50],
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where r and rc are the (complex-conjugate) pole radii of
the original decay and the corrected decay, respectively,
and θ and θc are the corresponding pole angles.

6) Compute steps 4 and 5 either in a batch mode, that is,
in parallel for each mode to be equalized, or iteratively so
that the modes are equalized one by one, starting from the
most prominent one and returning to step 4, to be applied
to the result of the previous equalization. The process is
terminated when all remaining modes meet the decay time
criteria or when a preset upper limit of correctable modes
has been reached.

7) Traditional magnitude equalization can be applied to
the result of modal equalization, if needed, by any method
or technique appropriate.

In this context we are only interested in step 4 as part of
a batch or iterative analysis. All other steps follow the gen-
eral scheme described in [50], where the mode search and
the decay time estimation were based on a time–fre-
quency representation and fitting of a logarithmic decay
plus background noise model using nonlinear optimiza-
tion. While the previously proposed method is found
robust for modes that are separated well enough, strongly
overlapping or multiple modes with closely similar fre-
quency are an inherent difficulty of that method. Since
AR/ARMA models search for a global optimum and do
not try to separate modes in the first place, they are poten-
tially a better alternative in such cases.

In the equalization cases that follow, mode finding and
parameter estimation are carried out iteratively in the fol-
lowing way.

1) Compute a function that can be used robustly to find
the most prominent modes and their frequencies. This can
be done in different ways, for example, directly by AR,
ARMA, or FZ-ARMA analysis and finding the poles with
the largest radii. Because selection of the proper model
order can be problematic, we first applied here a separate
mode detection function,

,max argΩ Ω ΩG H D H0�^ ^ ^`ach h hjk (11)

where H(Ω) is the Fourier transform of the measured
response, Ω is the normalized angular frequency (angle in
the z plane), and D is a differentiation operator (in the fre-
quency domain). An example of the G(Ω) function is plot-
ted in Fig. 11(d). Positive peaks indicate strong modes that
may need decay time equalization. Note that this function
combines the information of both magnitude level and
decay time (through a phase derivative).

2) Find the highest peak position Ωp of the detection

function G(Ω) as the best candidate for modal equaliza-
tion. Run an AR, ARMA, or FZ-ARMA analysis of pre-
defined order (for simplicity we applied order 70 AR
modeling for the low-frequency range up to 220 Hz) on
the minimum-phase version of the target response to find
poles and select the pole closest to the phase e jΩp on the
unit circle. This pole and its complex conjugate now rep-
resent the most prominent mode.

3) If the decay time of the mode is below the upper limit
allowed and the value of G(Ωp) is below a threshold deter-
mined experimentally, go to finalize the process in step 4.
If not, design a second-order modal correction filter of the
type of Eq. (10) to change the modal decay time to a
desired value below the upper limit. Apply this to the
response to be equalized and use the result when going
back to iterate from step 1.

4) Finally, collect the correction filters into a cascaded
filter, which is now the modal equalizer for the system.

A simulated modal equalization, case I, is illustrated in
Fig. 11. A measured loudspeaker impulse response is fil-
tered to add five simulated modes at frequencies of 50, 55,
100, 130, and 180 Hz, with 60-dB modal decay times of
1.4, 0.8, 1.0, 0.8, and 0.7 s, respectively. The waterfall plot
of this synthetic response is shown in Fig. 11(a). Fig.
11(b) proves that the effect of the modes can be canceled
out almost perfectly, leaving the loudspeaker response
only, by moving the pole radii to correspond to a very
short decay time (about 60 ms) using the procedure
described. In Fig. 11(c) the result of the modal equaliza-
tion depicted is more appropriate for real room conditions.
The decay time of each mode is equalized to 250 ms. The
two nearby modes overlap partly at 50 and 55 Hz, and do
not cause any difficulties. Hence the modal equalization
works almost ideally.

In case J of Fig. 12 the most prominent single mode at
46 Hz in a real room response (Fig. 8) is equalized by
shortening the decay time from a value above 1 s to about
300 ms using the algorithm described and limiting the
search for modes to only one. In Fig. 12(b) the originally
problematic mode decays now clearly faster. Furthermore,
the equalized response up to 80 Hz has a much smoother
shape since the modal equalization also affects the magni-
tude spectrum. However, the decay times of some other
modes remain long.

Multimode equalization of the same room, case K, is
shown in Fig. 13. The procedure described is iterated 100
times, yielding 100 second-order correction filter sections,
to shorten the mode decay times. The cumulative decay
spectrum of the resulting equalized response is illustrated
in Fig. 13(b). The target value for the equalized modal
decay time (60 dB) has been 150 ms.

In this case the result is not perfect as in the synthetic
case. There is about 10 dB of fast decay in the beginning,
as shown by plots of backward integrated energy in Fig.
13(c), and thereafter the decay rate follows the original
one. Although the ideal shortening of the decay time is not
achieved precisely, it already makes sound reproduction in
the room perceptually more balanced in terms of rever-
beration. Furthermore, the equalization procedure can be
improved by careful adjustment of the details.
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The final step, namely, smooth envelope equalization of
the magnitude response, is not discussed here since many
known techniques could be applied to equalize the magni-
tude response. An interesting choice to be mentioned,
however, is to integrate the magnitude equalization stage
together with the AR/ARMA modal equalization process.

4.3 Modeling of String Instrument Sounds
An appealing application of the FZ-ARMA scheme is

the modeling of musical instruments. For instance, in
sound synthesis of string instruments by any parametric
approach, such as digital waveguide modeling [54], one

Fig. 12. Case J, equalization of single mode at 46 Hz of room analyzed in Fig. 8. (a) Original response. (b) After mode equalization.

(a) (b)

Fig. 11. Case I, waterfall plots for loudspeaker plus synthetic mode equalization. (a) Original response plus five modes at frequencies
of 50, 55, 100, 130, and 180 Hz. (b) Modes fully damped. (c) Modal decay time (60 dB) equalized to 250 ms. (d) Mode detection func-
tion G(Ω) applied to original response. Decay levels in (a)–(c) are limited to �50 dB.

(a) (b)

(c) (d)
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may need to obtain information related to the partial fre-
quencies and their respective decay rates from measured
signals [55], [28]. FZ-ARMA modeling turns out to be a
suitable tool for such modal analysis purposes.

The experiments with string and bell sounds here have
been influenced by techniques published in [56]–[60],
[16]. In particular the application of Prony’s method [16]
is aiming for the same goal. We have found that the
Steiglitz–McBride iteration as part of FZ-ARMA yields
typically better results than Prony’s method.

As a simulated case to study the required orders to
model isolated partials we generated a synthetic guitar
tone using the dual-polarization model presented in [61].
Each partial has two modes with known parameters,
namely, the resonance frequencies and the time constants
of the exponentially decaying envelope. In simulations it
was found that low-order frequency-focusing models of
ARMA (4, 2), that is, with two pole pairs, suffice already
to estimate the mode frequencies properly. To match the
decay times and forms of the modes accurately, a some-
what higher model order is required. FZ-ARMA (6, 4)
worked already well.

When dealing with real instrument tones, such as guitar
tones recorded in an anechoic chamber, it is necessary to

estimate the frequencies of the resonance peaks before-
hand and select subbands around them in order to proceed
with FZ-ARMA modeling.

For harmonic signals with nonvarying pitch, a pitch
detector could be used to select both the down-modulation
frequencies fm and the subband bandwidth fs,zoom. A more
general approach should also work for inharmonic signals,
and in this case running a peak-picking algorithm over the
magnitude spectrum of the initial part of the tone seems to
be more appropriate. In addition, the estimation of the
number of resonant modes per partial may be based on a
priori information such as the number of vibrating strings
per note in a piano tone or the number of polarizations per
string.

In an example, case L, FZ-ARMA modeling was per-
formed on a guitar tone. The signal was recorded in an
anechoic chamber and corresponds to plucking the fifth
string (A2, f0 ≈ 110 Hz). The results of modeling the first
10 harmonics, fi, i � 1, … , 10, of this tone are shown in
Fig. 14. The parameters used in FZ-ARMA modeling
were fm � fi, Kzoom � 600, P � 6, and N � 6. The tem-
poral structure of the harmonics is well approximated in
this case.

As another example, case M, Fig. 15 plots the original

Fig. 13. Case K, modal equalization of room response analyzed in Fig. 8. (a) Original response. (b) After mode equalization.
(c) Backward integrated energy decay for original (– – –) and equalized (–––) responses.

(c)

(a) (b)
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and the estimated amplitude envelope curves for the first
10 harmonics fi of a D4 ( f0 ≈ 298 Hz) piano tone. The
analysis was performed using FZ-ARMA modeling with
the parameters fm � fi, Kzoom � 600, ARMA (6, 6), and
ARMA (12, 12). Order (6, 6) is able to capture the main
structure of temporal evolution in partial decays, but the
higher order (12, 12) helps with higher precision modeling
because for a three-string piano note the degrees of free-
dom correspond theoretically to 3 � 2 � 2 � 12 poles.

The string models thus obtained can be used directly for
source-filter (� subtractive) synthesis, whereby the total
filter order (N � P) for single string synthesis varies from
50 to 500, depending on the fundamental frequency and
the desired quality of synthesis. Since digital waveguide
models [54] are attractive from a computational efficiency
point of view, it would be useful to map the modal param-
eters of the partials to a loop filter of a digital waveguide.
To gain advantage from the waveguide formulation, a rel-
atively low-order loop filter is needed which approximates
the common properties of the separate modes, thus lead-
ing to a nonlinear optimization task.

4.4 Modeling of Bell Sounds
As another musical instrument, case N, the analysis and

modeling of bell sounds are presented. A characteristic

feature of bell sounds is that they are composed of an
inharmonic set of partials [2], such as the one described by
the magnitude spectrum shown in Fig. 16(b). Each partial
is a decaying sinusoid that, in a closer inspection [Fig.
16(c)], turns out to be a pair or a group of modes located
very closely in frequency. This leads to perceptually
noticeable beating. In this case the modal group consists
primarily of two modes with a frequency difference of
about 2.5 Hz.

(a)

(b)(a)

Fig. 14. Case L, analysis of guitar tone partials. (a) Envelopes (in
subbands) of first 10 partials of A2 guitar tone. (b) Correspond-
ing partial envelope estimates using FZ-ARMA (6, 6) modeling
with Kzoom � 600.

Fig. 15. Case M, analysis of piano tone partials. (a) Envelopes (in
subbands) of first 10 partials of D4 piano tone. (b) Correspond-
ing partial envelope estimates using FZ-ARMA (6, 6) modeling.
(c) FZ-ARMA (12, 12) modeling. Kzoom � 600.

(b) (c)
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FZ-ARMA is an excellent method for analyzing the
modal groups of bell sounds. Fig. 17 shows the envelope
match obtained with three different FZ-ARMA orders for
the 1310-Hz modal group. The zooming factor Kzoom is
400 in each case. In Fig. 17(a) the orders are N � 0 and
P � 4. Two pole pairs should in principle be sufficient for
a double mode, but this all-pole (AR) case with N � 0
does not allow proper phase matching, and thus the over-

all match remains poor.
For ARMA orders N � 40 and P � 4 in Fig. 17(b) the

relatively high number of zeros used allows for a good
match with just two pole pairs. The same can be achieved
in Fig. 17(c) with orders N � 2 to P � 6, that is, by adding
an extra pole pair and keeping the number of zeros mini-
mal. For all resonances up to 10 kHz for this bell sound,
filter orders of N � 2–4 and P � 4–6 are sufficient for

Fig. 17. Case N, analysis and modeling of beating envelope in bell sound mode with different FZ-ARMA model orders. (a) ARMA (4,
0). (b) ARMA (4, 40). (c) ARMA (6, 2).

Fig. 16. Acoustical behavior of small bell. (a) Recorded time-domain signal. (b) Magnitude spectrum. (c) Magnitude spectrum in modal
region around 1310 Hz. (d) Decay envelope of 1310-Hz modal group.
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good modal decay matching so that a parallel filter, composed
of modal group filters with a total order of about N � 40 and
P � 50, can implement an efficient and high-quality synthe-
sizer for the bell sound for a sampling rate of 22 050 Hz.

5 DISCUSSION AND CONCLUSIONS

In this paper we studied the modeling of acoustic and
audio system responses that exhibit resonant and reverber-
ant properties. ARMA modeling techniques were investi-
gated in particular to obtain efficient pole–zero filters.
Such modeling, if accurate enough and computationally
inexpensive, finds applications in solving many audio-
oriented problems.

The first part of the paper is a nontheoretical overview
of the AR and ARMA modeling methods to demonstrate
their inherent properties and limitations.

A specific interest of this study has been the modeling
methods that can yield a good temporal match to a given
target response and high frequency resolution, often at the
same time. Based on earlier studies, primarily on applying
Prony’s method to subbands, we showed that frequency-
zooming ARMA (FZ-ARMA) based on the Steiglitz–
McBride iteration is a powerful technique for high-
resolution modeling in subbands. Simulation examples
demonstrate the ability of this approach to model complex
modal and reverberant behaviors.

These methods were then used to solve problems of
practical interest in audio applications, covering room
impulse response modeling, inverse modeling for equal-
ization of loudspeaker–room responses, and modeling of
musical instrument sounds.

Many general and problem-specific questions remain.
Robust selection of model orders, stability and numerical
sensitivity, efficient and robust implementation of the fil-
ters obtained for subbands or full bands, adaptive formu-
lation and on-line calibration of the models, as well as
finding new applications call for more investigation.12
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