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ABSTRACT

The low-frequency behavior of sound reproduction in listening rooms is often problematic due to long-ringing
modes that are difficult and expensive to control by acoustic means. Modal equalization has been proposed
recently to correct the low-frequency problems by shortening the decay times of problematic modes through
modification of transfer function poles. While the previous methods were based on the estimation of isolated
modes and their parameters, the new method proposed here is a technique to change the time-domain
response more directly. It is an advanced windowing technique where the temporal shaping of a given
impulse response can be done in a frequency-dependent manner. The method is compared with previous
modal equalization techniques.

1 INTRODUCTION

In a listening room it is desirable to have a bal-
anced reverberation time behavior at all frequencies.
Low-frequency modes, however, are often not well
controlled, showing too slow decay times compared
to mid- and high-frequency reverberation time, al-
though some increase toward lowest frequencies is al-
lowed [1, 2]. Designing and constructing a carefully
damped listening room is acoustically challenging,
expensive, and demands much space. Particularly
frequencies around and below 100 Hz are problem-
atic in this sense.

Decay time correction by signal processing in the
electronic reproduction channel is an attractive al-
ternative to acoustical improvement of a listening
space, particularly at low frequencies where the
wavelength is large enough. Traditional magnitude
response equalization, however, cannot control the
reverberation time nor the decay time of modes in
detail. Also, DSP equalization by the inverse filter

derived from the measured response, while possible
at low frequencies, may shorten decay times too ag-
gressively and may also lead to system overload by
boosting notched frequency areas.

We have recently proposed modal equalization of
low-frequency behavior in listening room conditions
[3, 4]. Contrary to conventional equalization, where
the aim is to flatten the magnitude response, modal
equalization attempts to balance the decay time of
low-frequency modes to correspond to the reverber-
ation time at mid-frequencies.

The previously proposed methods of modal equal-
ization are realized as follows. First, the system
response at a receiving point or area is measured.
Then the modal decay time has to be estimated as a
function of frequency. The maximum allowed decay
time is determined according to the reverberation
time at mid frequencies, allowing a slight increase
towards the lowest frequencies. A problematic mode
is equalized by designing a pole-zero correction filter
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whenever the measured decay time exceeds the tar-
get for any low-frequency mode (typically below 200
Hz). This means using a zero pair to cancel out a
pole pair associated with a physical mode that is too
close to the unit circle, and to insert a new pole pair
with the desired faster decay characteristics. This is
iterated for problematic modes until the decay time
is below the allowed limit value at all frequencies, or
until a predefined maximum number of modes has
been corrected.

Two methods were proposed for the critical task
of modal parameter estimation. The first one [3]
is based on time-frequency analysis (such as short-
time Fourier analysis) to track the envelope trajec-
tory of each prominent mode. The second method
[4] is based on parametric estimation through AR
or ARMA modeling whereby the overall response
of a selected frequency band is modeled as an all-
pole or pole-zero filter. Both of these methods
work well when the problematic modes to be equal-
ized are clearly isolated in frequency. The AR and
ARMA techniques are more powerful than the time-
frequency analysis when the modal density increases,
but they also show problems with a high modal
density. The new technique proposed in this paper
shows more promise in such cases.

The new method is based on frequency-dependent
windowing. The measured impulse response of the
reproduction channel is first analyzed to obtain an
estimate of the decay time as a function of frequency.
The allowed upper limit is determined as described
above. Next the impulse response is windowed by
an exponentially decaying window at those frequen-
cies where the decay time has to be shortened, and
at the rest of frequencies the response remains in
its original decay shape. The frequency-dependent
windowing can be realized in different ways, as de-
scribed in [5]. The equalization filter is obtained by
deconvolution of the desired and the measured re-
sponse. It is inherently of the FIR type and of rela-
tively high order, but in a multirate implementation
it is computationally efficient.

The relevance of modal equalization at low frequen-
cies is dependent on the perceptual effects of modal
behavior. Dips and peaks in the magnitude re-
sponse properties of sound reproduction have been
discussed for example in [6, 7]. The effects of tem-

Fig. 1: Basic setup for modal equalization.

poral response properties have not been studied un-
til recently. In an investigation on the incremental
improvement of using modal equalization in addi-
tion to conventional magnitude equalization it was
shown that a detailed modal equalization is only of
secondary importance and often of no noticeable dif-
ference [8]. However, careful control of modal be-
havior guarantees that equalization is well done and
may contribute to perceived sound quality in critical
conditions.

This paper is organized as follows. Section 2 is a
short description of the modal equalization principle
and its functioning. Section 3 introduces the theory
of the new method, the frequency-dependent win-
dowing of impulse responses. In Section 4 we show
how the new method works for a real room response,
and finally in Section 5 we include a summary and
conclusions.

2 MODAL EQUALIZATION

Figure 1 depicts the basic setup for equalizing loud-
speaker reproduction in a room, in the present case
for modal equalization. Another setup is to use a
secondary loudspeaker channel to produce the equal-
izing sound to the listening space [3], but here we will
discuss only the case of Fig. 1 with primary loud-
speaker equalization.

The total transfer function from the signal input to
the listening position in Fig. 1, represented in the
z-domain, is

Ht(z) = Hc(z)G(z)Hm(z) (1)

where Hc(z) is the equalizing filter, G(z) is the trans-
fer function of the sound radiator from electric input
to acoustic output, and Hm(z) is the transfer func-
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tion of the path from the sound radiator to the listen-
ing position. When a desired target response Ht(z)
is specified, the response for the equalizer Hc(z) is
achieved by

Hc(z) =
Ht(z)

G(z)Hm(z)
(2)

Now modal equalization is defined as a process that
modifies the rate of modal decay in a room. Room
modes are created by standing wave resonances. If
there is only little damping, which is typical at low
frequencies in a hard-walled room, the energy of the
modal resonance decays slowly. The idea of modal
equalization is to make the decay faster1 by modi-
fying the overall transfer function of the sound re-
production channel. This means that the (passive)
acoustics of the room is not changed, but the re-
produced sound behaves in a more controlled way.
A simplified explanation on how the decay is made
faster is that after the onset of a modal vibration
the loudspeaker starts to radiate sound properly in
opposite phase, thus actively reducing modal sound
energy in the room.

To understand the modal equalization from a sys-
temic point of view, the behavior of a single mode
can be considered. Each mode can be understood as
a time function of exponential decay

hm(t) = Ame−τmt sin(ωmt + φm) (3)

where Am is the initial envelope amplitude of the
decaying sinusoid, τm is a coefficient that denotes
the decay rate, ωm is the angular frequency of the
mode, and φm is the initial phase of oscillation. The
modal resonance is represented in the z-domain by a
transfer function having a pole pair with pole radius
r and pole angle θ

Hm(z) =
1

(1− rejθz−1)(1− re−jθz−1)
(4)

To shorten the decay time, i.e., to increase the decay
rate and to decrease the Q-value of the resonance,
the pole pair re±jθ related to the mode must be
moved closer to the origin by reducing radius r.

The impulse response of the acoustic path measured
from the loudspeaker to the listening position is

1We may also lengthen the modal decay, or even create
new artificial modes, but such boosting must be made with
caution to avoid overloading the reproduction system.

needed in order to design a modal equalization fil-
ter. In practice modal equalization concentrates to
frequencies below 200 Hz and within a restricted lis-
tening area.

The process of modal equalization starts with the
estimation of mid-range reverberation time, for oc-
tave bands between 500 Hz and 2 kHz, by calculat-
ing the mean of them. This mean decay time T60

at mid-frequencies is the basis for maximum allowed
mode decay time at low-frequencies, but allowing
the decay time to increase maximally by for exam-
ple 0.2 seconds as the frequency decreases from 300
Hz down to 50 Hz.

We have previously developed two methods to de-
sign modal equalizer filters [3, 4]. The first method
(called AMK) attempts to directly identify mode fre-
quencies in the magnitude response and then to ob-
tain the decay rate τm and mode (angular) frequency
ωm by using a time-frequency presentation of the
impulse response at frequencies below 200 Hz [9, 3].
The decay rate for each identified mode frequency is
calculated using a nonlinear fitting technique mod-
eling the data as a sum of an exponential decay
and background noise. The modal equalizer filter is
then designed using the mode parameter data. The
longest decay time is first corrected by filtering with
the equalizer filter, and the process is then iterated
until all decay rates are within desired bounds.

The second method (called ARMA) [4] identifies the
pole and zero pairs describing a modal resonance
by fitting a pole-zero least-squares model directly to
the room impulse response. Similarly to the AMK
method, the longest decay rate detected by finding
the pole closest to the unit circle is compensated by
designing an equalizer filter for it, and the method
is then iteratively applied until all decay rates are
within the desired bound. This second method does
not require the explicit stage of fitting to the decay
rate of a mode, and is better able to estimate the
parameters of closely spaced modes.

The new method proposed in this paper deviates
from the two previous ones in the sense that there
is no need to deal with individual modes directly,
but to shape the entire time-frequency properties of
the measured impulse response. Before introducing
this frequency-dependent windowing method, a syn-
thetic example of modal equalization is shown to
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Fig. 2: Waterfall plot of a time-frequency response
with five synthetic modes.

Fig. 3: Waterfall plot of the five synthetic mode case
after modal equalization.

demonstrate the effect achieved by modal equaliza-
tion.

2.1 Synthetic example of modal equalization

A case study with synthetic modes presented here
clarifies the idea of modal equalization. Figure 2
shows the waterfall plot of a loudspeaker response
measured in an anechoic chamber, with five syn-
thetic modes added at frequencies 50, 55, 100, 130,
and 180 Hz. The corresponding decay times are 1.4,
0.8, 1.0, 0.8, and 0.7 s. Now we set up a modal
equalizer design target to reduce these decay times
to 0.30, 0.30, 0.26, 0.24, and 0.20 s. After process-
ing the synthetic response with an equalizer designed
by the AMK algorithm, the decay times have been

reduced, see Fig. 3. However, the decay at 50 and
55 Hz continues with the original rate after an initial
rapid decay of 15-20 dB. This shows that the method
is able to control the decay rate of individual modes,
but its performance is limited when modes are close
to each other in frequency.

The ARMA method performs better in such cases,
but for a dense distribution of modes, often found
in real rooms, both the AMK and ARMA methods
are problematic. Only the beginning of the decay
is then accelerated through modal equalization, but
soon the decay rate starts to follow the unequalized
rate, as it occured in Fig. 3 for the modes at 50 and
55 Hz.

3 THEORY OF FREQUENCY-DEPEND-
ENT WINDOWING

Signal windowing is one of the most common oper-
ations in signal processing. It is motivated by the
fact that finite support (span, range) is needed ei-
ther due to limited processing capacity or most often
due to non-stationarity of signals whereby they have
to be processed frame by frame to obtain temporally
localized representations.

Windowing in its traditional form is a multiplica-
tive operation (·) in the time domain and thus cor-
responds to convolution (�) in the frequency domain,
i.e.,

y(t) = w(t)x(t)
Y (ω) = W (ω) � X(ω)

(5)

where x(t) is a signal to be windowed, w(t) is a win-
dowing function, and y(t) is the windowed signal.
Upper case symbols denote Fourier transforms, re-
spectively.

The form of a windowing function w(t) can be any,
but most often it is monotonically decreasing to-
wards positive and negative time directions from
its maximum value point, and for practical reasons
achieves value 0 outside a specific span. Among most
common symmetrical window functions are Ham-
ming, Hann(ing), Blackman, Kaiser, and rectangu-
lar (or boxcar) window [10]. An asymmetrical win-
dow may be for example an exponentially decaying
(and truncated) window. The selection of window
type and possible parameters associated with it de-
pends on the criteria of each specific application at
hand.
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Traditional signal windowing works in a frequency-
independent manner. This is a straightforward solu-
tion, and with proper overlap-add or concatenation
processing yields perfect reconstruction from consec-
utive windowed signal slices. In audio and acous-
tics applications, however, it is often useful to ap-
ply nonuniform time-frequency resolution. In this
paper we discuss ways of controlling resolution, par-
ticularly methods that are based on time-frequency
shaping of system responses.

The two different basic methods of frequency-
dependent windowing are: (a) frequency-domain
and (b) time-domain techniques. The first one mod-
ifies the convolution rule of Eq. (5). The second one
applies warping techniques, and it can be done either
through frequency-domain resampling or through
warped mappings.

3.1 Frequency-domain formulation of gener-
alized windowing

According to the frequency-domain version of win-
dowing [5] in Eq. (5), the Fourier transform of a
windowed signal is obtained by (complex) convolu-
tion. When this is rewritten in the discrete Fourier
transform case for frequency bin m by

Y (m) =
N−1∑

k=0

Wm(k)X(m − k) (6)

where indices are modulo N, it becomes obvious that
if we wish to obtain frequency-dependent window-
ing, the windowing term Wm(k) cannot be a fixed
vector but should be made bin-dependent. Each bin
m can be treated separately by different ’window
spreading’ vector, designed according to the desired
window for that specific bin. These vectors can be
composed into an N × N matrix W for operation

y = Wx (7)

where x and y are the original and the windowed
DFT vectors, respectively. Furthermore, the DFT
and IDFT transforms can be formulated as matrix
operations q = Fp and p =Gq where p is a signal
vector, q is a spectrum vector, and F and G are
the transform and its inverse transform composed of
complex exponentials, respectively. Thus the whole
chain of Fourier transform of signal s, frequency-
dependent windowing, and inverse transform to win-
dowed signal t, can be formulated [5] as
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Fig. 4: Frequency-dependent windowing of a sum of
two sinusoids: (a) sum of sinusoids, (b) two Hann
windows (solid line for high frequencies, dashed line
for low frequencies), and (c) result of frequency-
dependent windowing.

t = GWFs = Ms (8)

where M is an N ×N matrix when the length of sig-
nal span s to be windowed is N , and the frequency-
domain windowmatrixW is also N×N . For a tradi-
tional frequency-independent window,M reduces to
a diagonal matrix, i.e., to a sample-by-sample prod-
uct of signal and window.

Due to the circularity of DFT and IDFT, frequency-
dependent windowing may cause folding problems if
not applied properly.

An example of using this method is given in Fig. 4
where the sum of two sinusoids is windowed so that
a Hann window applied is shorter for the higher
frequency signal component than for the lower fre-
quency one.

3.2 Generalized windowing by time-
frequency warping

The idea of time-frequency warping [11] can be char-
acterized as follows. A sinusoid is scaled (expanded
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or compressed) in time by factor β(f) depending on
frequency f , which operation in the frequency do-
main corresponds to remapping of frequencies (re-
sampling of frequency to keep uniform bin distribu-
tion):

A sin(2πf [β(f)t] + ϕ) ↔ A sin(2π[β(f)f ]t +ϕ) (9)

Notice that warping is not a shift-invariant opera-
tion, thus the selection of time origin is of special
importance. For impulse responses, which we are
interested in here, time origin t = 0 is an inherently
determined moment.

Time-frequency warping can be realized in two ways,
(a) by frequency-domain resampling or (b) by ana-
lytical mappings. Frequency resampling [12] of sig-
nal x(t) is realized by a sequence of operations

y(t) = F−1{R{F(x(t))}}

where R(·) is a resampling operator, and F(·) and
F−1(·) are the Fourier transform and the inverse
Fourier transform, respectively. While frequency re-
sampling yields a high degree of freedom for the
warping function β(f), the method is complicated
and computationally expensive, and is not discussed
further in this paper.

The second method of warping is based on trans-
forms that map the complex z-domain unit disk onto
itself. This approach is known from the design of
warped digital filters [11]. Since the bilinear map-
ping of warped filters has only one degree of freedom,
it may not be suitable in modal equalization tasks
if high frequency resolution needed. Modeling by
Kautz filters [14, 5] is a more attractive technique
for this purpose, but this approach remains outside
of the scope of this paper.

4 MODAL EQUALIZATION BY THE
WINDOWING TECHNIQUE

In this section we will explore the use of the
frequency-dependent windowing in modal equaliza-
tion, applied to a case study of a specific room (di-
mensions 5.5 x 6.5 x 2.7 m3) with relatively long
modal decay at low frequencies.

The process starts with a measurement of the im-
pulse response from a loudspeaker to the desired
listening position. Any modern measurement tech-
nique such as the MLS method may be applied; we

0

50

100

150

200

250

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-100

-90

-80

-70

-60

-50

-40

Frequency [Hz]Time [s]

Le
ve

l [
dB

]

Fig. 5: Waterfall plot of the measured and prepro-
cessed impulse response for the case study room.

have preferred the logarithmic sweep proposed in
[15] due to its good tolerance of nonlinearities. The
measured response is then preprocessed to remove
the bulk delay due to acoustic and measurement sys-
tem delay, as well as applying high-pass filtering to
remove possible infrasound components. Figure 5
shows a waterfall plot computed from the measured
and preprocessed impulse response that is used as a
case study here.

4.1 Estimation of decay time

The next step of the new modal equalization is to
estimate the decay rate in the impulse response as
a function of frequency. We have applied first a
backward in time (to avoid lengthening of decay)
bandpass filtering in frequency bands of about 10–
20 Hz width between 20 Hz and 220 Hz and then a
nonlinear fitting of an exponential decay plus noise
model [3] to estimate the decay time in each fre-
quency band. There is no need to solve mode fre-
quencies and only a moderately accurate estimate
of decay rate as a function of frequency is required
in this approach. The solid curve in Fig. 6 depicts
the decay time vs. frequency curve of the case study
response.

4.2 Target response computation

The allowed decay time can be specified by start-
ing from the mid-frequency reverberation time of the
room. The mean value of octave bands 500-1000 Hz
and 1000-2000 Hz is taken as a reference, and a lin-
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Fig. 6: Decay time as a function of frequency for
the measured response (solid curve) and the target
maximum decay time (dashed line).

ear increase of modal decay time can be allowed at
low frequencies. In Fig. 6 the dotted line shows the
maximum allowed decay time for the response of the
present case study. It is specified to grow from the
mid-frequency value T60 ≈ 0.35 s allowed at 200 Hz
by 0.3 s down to 30 Hz. As seen from the figure,
there is need to shorten the decay time at frequen-
cies up to 200 Hz.

4.3 Frequency-dependent exponential win-
dowing

The next phase is to determine the frequency-
dependent window that is able to modify the mea-
sured response to meet the target requirements. In
each frequency bin the most natural window type is
an exponential one since it retains the exponentially
decaying character of each single mode, i.e.,

e−τdt = e−τmt e−τet = e−(τm+τw)t (10)

where τd is the desired decay rate, τm is the mea-
sured decay rate, and τw is the decay rate of the
exponential equalization window. Now τw can be
computed by

τw = τd − τm =
− log(0.001)

T60d
− − log(0.001)

T60m
(11)

where T60d and T60m are the desired and measured
T60 values, respectively, using the relation between
T60 and decay rate τ .

Now the frequency-dependent exponential window-
ing can be carried out through the discrete Fourier
transform in the following way. The computation
can be done for the frequency range of interest, such
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Fig. 7: Impulse response of modal equalizer com-
puted by Eq. 13 for the case study response in the
frequency range of 0-220 Hz.

as 0–220 Hz in our case. The impulse response
x(n) to be windowed is first DFT transformed by
X(k) = DF T (x(n)) to form the vector x of Eq. 7.

For each frequency bin a new exponential window
e−τmt is formed as a vector that is then DFT trans-
formed, and these bin-related transformed vectors
are combined to matrix W of Eq. 7. The windowed
impulse response is achieved now simply by multi-
plication and inverse DFT as

y =Wx, y(n) = DF T−1(y(k)) (12)

This yields the target impulse response of modal
equalization.

4.4 Equalizer filter design

In the process above we have obtained the measured
impulse and the target impulse response, x(n) and
y(n), respectively. The next problem is to realize a
digital filter that properly approximates the required
modal equalizer transfer function

Hc(z) = Y (z)/X(z), hc(n) = DF T−1Hc(z) (13)

This equation actually defines the way to obtain a
full accuracy FIR version of the desired equalizer di-
rectly by inverse DFT of Hc(z). Figure 7 shows the
impulse response obtained in this way for our case
study. The response consists of an initial impulse
and a slowly decaying ripple. This response cannot
simply be shortened by truncation, otherwise the ef-
fect of temporal equalization is lost after the length
of the response used, as can be seen in Fig. 8, where
the impulse response achieved by the equalizer of
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Fig. 8: Equalized response when only part (500 ms)
of the equalizer impulse response is used. Notice the
echo-like increase in level after 0.5 s.

Fig. 7 is shortened to 500 ms length. Such sudden
increase in response is perceived as a disturbing echo
effect and must be avoided2.

An important question from the practical point of
view is that the frame size for DFT-based windowing
has to be long enough in order to avoid truncation
and folding effects. The frequency bin related ex-
ponential windows as well as the measured impulse
response become truncated, which introduces error,
and the circularity of DFT may bring problems un-
less properly dealt with3.

Another problem with the equalizer response Hc(z),
as obtained from Eq. 13, is that it may introduce
boosting of the magnitude response at some fre-
quencies. This can be seen in Fig. 9, which plots
the magnitude response of the equalizer shown in
Fig. 7. Narrow-band peaks higher than a few dB
can be problematic by driving the loudspeaker and
amplifier to overloading. A simple way to avoid the
boosting is to limit the magnitude level before in-
verse DFT in Eq. 13. This is problematic, however,
because it degrades the Hilbert relation of magni-
tude vs. phase in minimum-phase systems. A better
way to control this detail is thus needed.

2Since the temporal shape of the window used in the
method is free, a properly adjusted window with a temporal
dip could be used to counteract an echo in a given impulse
response. Furthermore, this windowing technique to generate
a new impulse response from a given impulse response can
be used also for audio effects, whereby the peculiarities of a
response may be a useful feature.

3In fact, the windowed and inverse transformed target re-
sponse y(n) typically contains a small imaginary component
that has to be removed to get a real-valued signal. However,
the effect of this is typically negligible.
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Fig. 9: Magnitude response of the modal equalizer
designed for the case of the study.

The question in techical focus is that of finding an ef-
ficient yet accurate realization for the derived equal-
ization response. The direct solution of FIR filter-
ing with hc(n) of Eq. 13 is of prohibitively high order
for practical real-time processing at full sample rate,
unless some type of fast convolution is used instead,
which has a tendency to introduce latency.

Fortunately the need of filtering is here for the low-
frequency range only, which means that by a prop-
erly decimated multirate implementation the com-
putational load remains light. For example in our
case study an FIR of order 512 at a sample rate of
440 Hz can do the frequency range of interest up
to 200 Hz with a filter response length of 1.16 sec-
onds. Using of most efficient filter structures means,
however, a demanding design and additional latency
compared to more direct computation at a higher
sampling rate.

A more detailed comparison of different DSP realiza-
tions of the modal equalizer is left for future study.
It is good to notice that for best results FIR type
solutions are necessary, since the main task of the
equalizer is to counteract modal pole pairs, and this
can be done properly only by using enough zeros
(zero pairs).

4.5 Analysis of equalization results

The result of applying the designed modal equal-
izer to the measured response is illustrated in the
waterfall plot of Fig. 10 and the decay rate profile
of Fig. 11. Figure 10 shows clearly an accelerated
modal decay at most frequencies, when compared to
the original response in Fig. 5. Only some of the
lowest frequences remain long-ringing. The decay

AES 23RD INTERNATIONAL CONFERENCE, COPENHAGEN, DENMARK, 2003 MAY 23–25 8



KARJALAINEN ET AL. TEMPORAL SHAPING . . .

0

50

100

150

200

250

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-100

-90

-80

-70

-60

-50

-40

Frequency [Hz]Time [s]

Le
ve

l [
dB

]

Fig. 10: Waterfall plot of the modal equalized re-
sponse of the system under study.
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Fig. 11: Decay time as function of frequency for
original response (dash-dot line), the target curve
(dashed line), and for the equalized response (solid
line) using the windowing technique.

rate profile in Fig. 11 gives more information on the
performance of the equalization and nonidealities in
it.

From Fig. 11 we can find that the proposed window-
ing technique has shortened the (early) decay times
almost as desired. At some frequencies it still ex-
ceeds the allowed maximum but only slightly. This
nonideality is due to several reasons. First, the de-
cay time estimation, applied here both to the origi-
nal and to the equalized response, is not ideal. Sec-
ondly the FIR equalizer was only 0.7 seconds long
instead of 1.3 seconds of the original response. One
undesirable feature is that the decay time is short-
ened also around 200 Hz although it should not be
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Fig. 12: Decay envelopes (Schroeder-integrated) for
the original impulse response (upper solid line), for
the AMK equalized (dotted line), for the ARMA
equalized (dashed line), and for the windowing mode
equalized response (lower solid line).

reduced. However, the overall accuracy achieved is
good from a practical point of view.

From Fig. 10 it can be learnt that the decay rate
remains slow at 50 Hz after about 0.5 seconds and
at about 25 Hz already much earlier. This is no
problem in practice, because the loudspeaker used
hardly radiates at 25 Hz, and the reduced sensitivity
of hearing at low frequencies relaxes the tolerance for
long decay time.

4.6 Comparison to prior methods of modal
equalization

We applied the AMK and ARMA methods of modal
equalization to the case of study to compare the per-
formance of the windowing method to them. When
no hand-tuning of design parameters was done, both
the AMK and the ARMA method showed only lit-
tle if any improvement in this demanding modal
equalization case. The reason to this is that both
of these metods try to correct the response mode
by mode. When a prominent mode has been de-
tected and equalized, the magnitude spectrum is also
reduced around this peak remarkably, whereby the
neighbouring modes gain in relative prominence. If
there is a high density of problematic modes, these
techniques are limited in their ability to detect and
correct all the modes.
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Figure 12 shows very clearly how the windowing
method is able to control the total decay envelope
of the low-frequency part (below 200 Hz) in our
case, while the AMK and the ARMA methods with-
out hand-tuning of their design parameters show
hardly any improvement. The curves are achieved
by backwards Schroeder integration of their impulse
responses. By careful adjustment the AMK and
ARMA methods may achieve about 5–10 dB of fast
initial decay and then the decay rate follows the orig-
inal one [3, 4]. Thus the new windowing method is
found more capable and robust particularly in cases
where a densely distributed set of problematically
long ringing modes are to be corrected.

5 SUMMARY AND CONCLUSIONS

In this paper we have proposed a new method to
realize modal equalization of loudspeaker-room re-
sponses, i.e., to control by DSP the temporal decay
of system response in sound reproduction for rooms
with too low level of absorption at low frequencies.
The method is based on shaping the time-frequency
properties of a given impulse response by applying
a frequency-dependent windowing technique.

The method is able to implement temporal response
shaping for complex impulse responses, also for non-
exponential decay envelopes, although in this pa-
per we have only applied exponential windowing to
shorten excessive modal decay times. The window-
ing method is found more accurate and robust than
the AMK and ARMA methods proposed before.

The critical phases in the realization of the method
are: first the measurement of system impulse re-
sponse with good enough signal-to-noise ratio at low
frequencies is needed, then the decay time profile
must be estimated reliably, and finally an accurate
yet efficient implementation for the equalization fil-
ter is to be found. Tradeoff between processing la-
tency and computational efficiency must be done in
filter design, since efficient multirate or frame-based
structures introduce processing delay, while direct
filter implementation may be beyond present pro-
cessor capabilities. A remaining research task is also
to gain deeper understanding of perceptual aspects
related to room mode behavior.
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V. Välimäki, “Low-Frequency Modal Equal-
ization of Loudspeaker-Room Responses,”
Preprint 5480, AES 111th Convention, New
York, USA, 2001 Nov/Dec.

[4] M. Karjalainen, P. A. A. Esquef, P. Antsalo,
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