
Power up your testing with Agent Builder in Studio, the flexible, customizable 
toolkit for building AI agents tailored specifically to your testing needs. Dive into 
the world of agentic testing, where these agents work alongside you to deliver 
unprecedented efficiency, coverage, and quality:

10 steps for getting started 
building agentic testing agents

Ready to unlock flexibility for your
testing with customizable agents?
Get started building your testing agents today.

1. Start with a well-defined
testing scenario

Identify existing or new testing 
scenarios with repetitive tasks 
suitable for automation
Create flowcharts to visualize 
the testing process
Focus on testing scenarios that 
can benefit most from AI agents







2. Design focused
testing agents






Create agents with specific, narrow 
testing tasks (e.g., data retrieval, 
compliance checker)
Ensure each agent has a single, 
well-defined purpose in the
testing lifecycle
Design agents to complement your 
existing test automation framework

3. Incorporate human-in-
the-loop for testing






Implement human review and 
validation stages in your 
agent-driven testing workflow
Allow for manual intervention in 
complex test scenarios or when 
dealing with edge cases
Use human expertise to validate and 
refine agent-generated test cases

4. Establish clear testing
goals and metrics






Define specific objectives for 
each testing agent (e.g., test 
coverage, defect detection rate)
Align agent performance 
metrics with overall
testing goals
Set up measurable success 
criteria for your AI agents

5. Comprehensive agent
evaluation for testing






Test agents using diverse 
datasets covering various test 
scenarios and edge cases
Include both positive and 
negative test cases in your 
evaluation sets
Continuously expand your 
test datasets to improve agent 
performance

6. Determine realistic testing
conditions for agents






Debug agents within actual 
testing workflows to ensure 
real-world applicability
Validate agent performance 
under various system loads and 
data conditions
Simulate different testing 
environments to ensure
agent adaptability

7. Leverage context
effectively in testing agents

Provide agents with necessary 
context about the application 
under test
Use clear, concise descriptions of 
testing objectives for each agent
Reduce prompt complexity
by leveraging pre-existing
test documentation







8. Utilize well-defined tools
for testing agents






Keep testing tools focused and 
clearly described (e.g., specific test 
case generators, data validators)
Integrate agents with your existing 
testing tools and frameworks
Ensure agents can interact 
effectively with your test 
management systems

9. Continuously monitor and
analyze testing agents






Regularly review agent performance 
logs and test execution traces
Analyze patterns in 
agent-generated test cases
and results
Add problematic test scenarios
to your evaluation sets for
ongoing improvement

10. Iteratively refine
testing agents






Continuously refine agents, prompts, 
and test workflows based on results
Maintain version control for your agents 
to track improvements over time
Regularly update agents to adapt to 
changes in the software under test

https://www.uipath.com/product/agent-builder

