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SUMMARY 

This paper proposes a new technique based on an adaptive weighted regression procedure to verify the 

presence of convergence clubs in a cross-section of regions. The approach extends a procedure originally 

proposed in the field of image analysis based on the assumption of local homogeneity of the signal. The 

presence of the heterogeneity is a criterion to divide the sample of observations (regions) into smaller 

homogenous groups (clubs). Our results highlight the presence of five different clubs with different laws 

of motion for growth within each subgroup. Spatial dependence is also considered in the definition of the 

economic convergence model. 
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1. INTRODUCTION 

 

In the past few years the economic convergence hypothesis has been the subject of 

intense debate (Baumol 1986, Barro 1991, Mankiw et al. 1992). The controversy has 

been largely empirical, focusing on three different competing hypotheses: absolute, 

conditional and convergence clubs.  

Empirical evidence on convergence of national economies has usually been investigated 

by regressing growth rates of real Gross Domestic Product (GDP) on initial levels, 

sometimes after correcting for some exogenous variables. A negative regression 

coefficient (the !-coefficient) is interpreted as an evidence of convergence, as it implies 

that, on average, countries with low per-capita initial GDP are growing faster than those 

with high initial per-capita GDP. Moreover the conditional convergence hypothesis 



suggests that among countries that are similar in preferences, technologies, population 

growth rates, political stability, the lower the levels of output per capita the higher the 

growth rates. Thus, countries that are similar except for their initial conditions are 

expected to converge to the same steady-state and hence to one another (Barro and Sala-

i-Martin 1995).  

The question why some countries grow faster than others has been the focus of the 

extensive empirical literature on conditional convergence. Mankiw et al. (1992), Barro 

and Sala-i-Martin (1992), Islam (1995), Canova and Marcet (1995), and Caselli et al. 

(1996), among the others, find evidence that countries are converging to their individual 

balanced growth paths. Despite the availability of many complementary and alternative 

definitions of convergence, economists seem to agree that unconditional convergence is 

not realized in a sample of cross-country regressions. This led Baumol (1986) to suggest 

that economic convergence could be achieved if we consider groups of countries, within 

which we observe convergence, but that do not converge to each other. This hypothesis 

is known as convergence clubs (Galor 1996). Countries that are identical in their 

structural characteristics but differ in their initial level or distribution of human capital 

may cluster around different steady-state equilibria in the presence of i.e. social 

increasing returns to scale from human capital accumulation (e.g. Azariadis and Drazen 

1990), capital market imperfections (Galor and Zeira 1993), parental and local effects in 

human capital formation (Durlauf 1996), imperfect information (Tsiddon 1992) and 

non-convex production function of human capital (Becker et al. 1990). 

The issue of convergence clubs requires the application of non-standard econometric 

techniques that allow us to divide the whole sample into smaller groups. Instead of 



assuming that the regression coefficients are the same for all units belonging to one 

group, it allows for a further layer of heterogeneity within groups.  

Two main approaches are used to verify the presence of convergence clubs. The first 

selects the composition of the potential convergence clubs according to some 

externalities, such as threshold or discriminant variables and often applies cluster 

analysis techniques. The second focused on the knowledge of the distribution and 

density of the per-capita growth rate.  

In the first class we find Durlauf and Johnson (1995), who study cross-country 

heterogeneity, providing evidence that there are multiple poles of attraction in the 

growth process. They use a regression-tree procedure to determine threshold levels of 

initial per-capita GDP and literacy rates, which imply groups of countries satisfying 

common linear cross-sectional regression equations. Azariadis and Drazen (1990), Feve 

and LePen (2000), and Ramajo et al. (2008) apply threshold switching procedures to 

identify convergence clubs relating to the determination of the clusters thresholds to 

critical level in i.e. the accumulation of physical and human capital. Desdoigts (1999) 

investigates the sources of heterogeneity across a worldwide set of countries by using 

the Exploratory Projection Pursuit (EPP) data analysis. Postiglione et al. (2010) propose 

a modified regression tree algorithm for both the classical and the spatial !-convergence 

model in order to identify convergence clubs in European regions. The recent Unified 

Growth Theory (Galor 2007) also suggests that the presence of various convergence 

clubs is linked primarily with critical changes in the rates of technological progress, 

population growth and human capital formation. 

Referring to the second approach for the determination of convergence clubs, Quah 

(1996, 1997), Bianchi (1997) and Canova (2004) estimate the distribution density 



function of the data allowing for heterogeneity within groups, where equilibria may 

display multiple basins of attraction. Quah (1997) has analyzed patterns of economic 

growth across countries from the perspective of distribution dynamics, considering the 

distribution of GDP across countries. Thus, the problem considered in the Quah’s study 

differs from the classical set of questions prominently considered by many authors (e.g. 

Galor and Zeira 1993). He found that the distributions weighted by the relative numbers 

of people in each economy present a profound empirical regularity: an “emerging twin 

peaks” cross-sectional distribution. Bianchi (1997) considers bootstrap non-parametric 

techniques for the estimation of the density distribution of GDP across countries and 

proposes a multimodality tests for intra-distribution dynamics. Canova (1999, 2004) 

applies an Empirical Bayesian method based on the distribution density of per-capita 

GDP and concludes that European regional data clusters around four poles of attraction 

with different economic features.        

The main purpose of this paper is to introduce a new method for the identification of 

convergence clubs. Our approach refers to a technique first described by Polzehl and 

Spokoiny (2000) for the image segmentation and extended here for the estimation of 

local homogeneous geographical zones that can be interpreted as convergence clubs. 

The approach is general and uses an adaptive weighted regression procedure.  

The starting point of the analysis is the hypothesis that there may be significant 

heterogeneities in the cross-sectional data and natural clustering of geographical units 

around different poles of attraction. To study cross-country growth behaviour in favour 

of multiple regime alternatives, we use geographically weighted regression. The use of 

geographically weighted regression provides estimates of coefficients for each variable 

and each geographical location. Similarity in the local estimated models will suggest the 



aggregation of the corresponding regions into the same group. The procedure is applied 

iteratively. Thus heterogeneity is a criterion to divide the whole sample of regions into 

smaller homogeneous clubs. 

Many features distinguish the proposed approach from existing ones. First the 

identification of groups is made without considering some control variables or external 

information, but is data-driven. The absence of hypothesis on the number of clubs 

represents an important feature of our technique.  

The use of geographically weighted regression allows to implicitly incorporating non-

stationarity in the space in the modelling process. Furthermore we focus on the presence 

of spatial dependence and on its role in the identification of convergence clubs, as 

evidenced by many authors (e.g. Ramajo et al. 2007, Ertur and Koch 2007).   

We use the neoclassical Solow growth model as a general framework to analyze 

economic convergence across the 187 NUTS 2 EU regions, for the period 1981-2004.  

In light of the next Eastern enlargement of the European Union (EU), it is interesting to 

look deeper into the economic progress of past accession candidates and to verify if the 

EU integration conduces to convergence through EU regions, to evaluate the 

effectiveness of the Cohesion Policies.  

The paper is organized as follows!""Section 2 reviews the economic convergence models 

describing both the classical and the spatial one. In section 3 we briefly present the 

geographical weighted regression and our proposed adaptive procedure to identify 

convergence clubs. Section 4 uses the adaptive weighted regression procedure to 

identify the clubs of European regions and summaries the empirical results. Section 5 

concludes. 

 



2. THE ECONOMETRIC MODEL 

 

The starting point of our analysis is the augmented Solow-Swan growth model assumed 

by Mankiw et al. (1992), hereafter MRW. In their paper the authors included 

accumulation of human capital as well as physical capital, to provide a more complete 

explanation of why some countries are rich and other poor. Hence, the Cobb-Douglas 

production function at time t becomes: 
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where Y is the output, C is the physical capital stock, H is the human capital stock, L is 

the labour, A is the technology level and, u and v are constants, with u + v < 1.  The 

technology term is assumed to increase exponentially, 
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A
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 with constant rate x 

and each country augments its physical and human capital stocks at the constant saving 

rate sc and sh, while both stocks depreciate at the same rate ". 

The Cobb-Douglas function can be written in its intensive form, with quantities 

effective unit per-worker. The conditions for the changes in the capital-labour ratio c 

and human-labour ratio h over time are: 
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where a dot over a variable denotes the derivative with respect to time, " > 0 and 

! 

n = ˙ L /L.   



Solving equation (2) we obtain: 
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Therefore the steady-state of capital-labour ratio is related directly to the rate of saving 

and inversely to the rate of population growth. Substituting equation (3) into the 

production function expressed in its intensive form, taking logs and subtracting per-

worker initial GDP, the growth of per-worker output between period 0 and t is: 

 

ln(yt ) ! ln(y0 ) = "
u

1! u ! v
ln(sc ) +"

u

1! u ! v
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1! u ! v
ln(x + n + # ) !" ln(y

0
)

           
(4) 

 

where 

! 

" =1# e
#$t  and # is the rate of convergence. From equation (4) we can see that the 

presence of human-capital accumulation increases the impact of physical capital 

accumulation on per-worker GDP. 

The model estimated in our application, for each region i, is expressed in an unrestricted 

form as in MRW framework: 
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i
" N(0,#!

2
)  is the disturbance term.  



The conditional !-convergence hypothesis is verified if !<0 is statistically significant"!

The MRW model says that differences in saving, human capital and population growth 

should explain cross-country differences in per-worker GDP. 

However, in our analysis, we want to see if this model is consistent with the presence of 

multiple steady-state equilibria that classify regions into different groups with different 

convergence characteristics. The identification of such multiple regimes and the 

evidence of convergence clubs take explicitly into account for parameter heterogeneity.  

To detect distinct poles of attraction we estimate the model with adaptive 

geographically weighted regression method (henceforth AGWR). A brief review of the 

basic concepts of classical GWR and its modified adaptive version will be presented in 

the next section.  

Finally, we are aware that spatial externalities involve technological interdependence 

among countries, therefore models of economic growth need to include spatial 

proximity (contiguity) effects, associated, for example, with localized knowledge 

spillovers and interfirm demand-supply networks. Various tests to detect the presence of 

spatial effects in the estimation of the appropriate !-convergence model have been 

described in Anselin et al. (1996). To provide empirical evidence of spatial effects on 

growth, the MRW model for the identification of convergence clubs can be extended to 

incorporate spatial dependence. The Spatial Autocorrelation Model (SAM) introduces 

an autoregressive term in the model as: 
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where D, the spatial weight matrix, and $ is the spatial autoregressive coefficient. 

An alternative way to include spatial effects is represented by the Spatial Error Model 

(SEM), where spatial dependence is taken into account through the error term, that 

follows an autoregressive scheme: 
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In the SEM model " determine the degree to which the values of individual locations 

depend on their neighbours. 

 

 

 

3. THE ALGORITHM FOR THE IDENTIFICATION OF CONVERGENCE 

CLUBS 

 

The identification of convergence clubs is obtained through a partition of an area into 

groups of geographical zones not necessarily conterminous that have similar growth 

path.  In this article, in order to identify these geographical clusters we use a modified 

adaptive version of GWR. 

The GWR extends the traditional regression framework by allowing local rather than 

global parameters to be estimated. The general regression model can be rewritten as: 

 

! 

yi = b
0
(i) + bh (i)xih + "i

h
#                                           (8) 

 



where i=1,…,n is the geographical region on the observed space, and xih, h=1,.., H are 

the explanatory variables. Thus GWR equation recognizes that spatial heterogeneity in 

the model might exist and provides a way to measured it.  

As evidenced by Fotheringam et al. (2002), observed data that are contiguous to region i 

have more influence in the estimation of the bh(i)s than data located farther from i. In 

GWR an observation is weighted in accordance with its proximity to location i and the 

vector estimate of bh(i), 

! 

ˆ b (i), is given by: 

 

 

! 
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"1

X'W(i)y                                             (9) 

 

where 

! 

ˆ b (i)  is the locally stationary parameter vector and W(i) is an n#n matrix whose 

off-diagonal elements are zero and diagonal elements denote the weights of each of the 

n observed data for regression region i and is defined as: 
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The equation (9) represents a weighted least squares estimator but rather than having a 

constant weight matrix, the weights in GWR vary according to the region i. To 

overcome the problem of overparametrization, we need to express the weights w
ij
 as a 

Kernel function of d
ij
, the distance between region i and region j: 

! 

wij = Kd (dij ) . 

Generally, desirable features of a Kernel function Kd are: 



 

a) Kd(0) = 1 

b) 

! 

lim
d"#

K
d
(d) = 0

                                   (11) 

c) Kd is a monotone decreasing function for positive real numbers. 

 

Expression (9) can be written for i = 1,…,n as a matrix, with each 

! 

ˆ b (i) corresponding to 

a column whose elements are 

! 

ˆ b 
h
(i) . In this way it is possible to see how a coefficient 

corresponding to a given explanatory variable changes geographically.  

In this paper we extend the GWR iteratively, by computing at each iteration new 

weights in (10) by comparing the estimated coefficients 

! 

ˆ b (i)  over all the regions i = 

1,…, n and aggregating in a group regions that present similar estimates.   

 

This adaptive weighted regression procedure (AWR) was originally introduced by 

Polzehl and Spokoiny (2000) in the context of image denoising and was generalized to 

the case of an arbitrary local linear parametric structure (Polzehl and Spokoiny 2003a, 

2003b).  

The idea was to estimate a constant function 

! 

f (Xi;b(i)) = b(i) separately at each design 

point i by using locally constant modelling with an adaptive choice of the 

neighbourhood in which the applied model fits the data well. The n design points were 

partitioned into M disjoints heterogeneous groups A1,..,AM and the function is constant 

within each group Am. The adaptive procedure suggested how to recover for every point 

i the corresponding group Am by analyzing the similarity of the estimated local constant 

models. The number of groups, the difference between values of the image function f 



for different groups and the regularity of edges are unknown and may be different for 

different parts of the study area. 

The problem is similar to the aim of the present paper, where the function is the MRW 

model and the image design points are the n regions. Therefore we combine the GWR 

with the AWR, modifying some rule in the procedure and apply the new adaptive GWR 

technique (hereafter AGWR) on the EU-NUTS2 regions to investigate the presence of 

convergence clubs. 

For the initial step, the estimates 

! 

ˆ b 
(0)

(i)  are computed for each region i = 1,…,n 

applying (9), where X(i) is the vector of explanatory variables in the MRW model (5). 

The starting weights are: 

 

wij

0
= Kd (dij ) = e

!" dij

                                             (12) 

 

where the exponential function was chosen for the Kernel function according to 

Fotheringam et al. (2002). 

Polzehl and Spokoiny (2003b) define the location Kernel Kd for the choice of the 

weights fixing a bandwidth, and computing in each iteration the distances dij for all 

points included in the neighbourhood U(i) of the point i. We do not impose such a 

restriction and take into account all the regions j$i. 

In the next steps the weights wij in W(i) are iteratively calculated to assign each region i 

to a locally homogeneous zone. We aim to develop a data driven rule to evaluate 

whether the local model corresponding to region j is not different from the model at 

region i and therefore to define new weights wij that assign region i and j to the same 

local model in the next algorithm’s iteration. At each iteration l we compute updated 



weights wl(i,j) defined by comparing the estimates b̂l!1(i)  and b̂l!1( j)  obtained in the 

previous iteration; if the statistic b̂l!1(i) ! b̂l!1( j)  is large compared to its standard 

deviation, then these two regions i and j are classified in different groups. These weights 

are then used to compute new improved estimates. Therefore we propose to compute 

the statistics Tl
ij: 

 

Tij
l = b̂

l!1
(i) ! b̂

l!1
( j)( )"!1
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l!1
(i) ! b̂

l!1
( j)( )

t

                              (13) 

 

where ! is the pooled estimator of the variance (i.e. Casella and Berger, 1996) and t 

indicates the transpose. The value of this statistics is considered as a penalty, that is, the 

new weights at the next iteration step w
l
ij is penalized by large values of Tl

ij. 

In some cases including even one region j into the new local model of region i may 

significantly change the estimate b̂l!1(i) . To prevent from this change we need to adjust 

Kd for the penality for extending the model in each iteration. This control step 

guarantees that further iterations do not lead to an essential decrease in the accuracy 

estimation. In that situation, neither the statistical penalty nor the penalty for extending 

the model would significantly affect the estimates obtained after the first l ! 1 iterations.  

Therefore at each iteration step the location penalty Kd is relaxed by increasing l at cost 

of introducing a data-driven statistical penalty. Polzehl and Spokoiny (2000) increased 

at each iteration l the radius hl in the neighbourhood U(i) of region i and they 

recalculated the estimates over a larger neighbourhood.  

Finally we can define the new weights wij

l  as the product of the Kernel functions on 

! 

dij
l

=
d ij

l  and on T
l
ij: 



 

! 
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l
) "KT (Tij

l
) = e
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( )                               (14) 

 

Another useful parameter to control the algorithm behavior is %, that stabilizes the 

AGWR procedure with respect to the iterations, comparing the new weight wij

l

 
in (14) 

on the value obtained at the previous step: 

 

 
!wij

l
= (1!") !wij
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We can now summarize the iterative procedure as follows: 

 

1. Initialization: for each region i calculate initial estimates b̂0 (i)  with standard 

GWR, where wij

0
= Kd (dij ) = e

!" dij  and compute 

! 

ˆ " #
2; 

2. Computation of the weights 
 
!wij

l : at each iteration l compute the statistics 

! 

Tij
l = ˆ b 
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(i) " ˆ b 

l"1
( j)( )#"1 ˆ b 
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, Kd(d
l
ij), KT(Tl

ij) and determine 
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wij

l = Kd (dij
l
) "KT (Tij

l
) = e

#$d ij / l( ) " e#%Tij
l

( ) . Apply the convex combination to 

determine the new weights 

! 

˙ w ij
l  that represent the diagonal elements of Wl(i). 

3. Stopping: If 
 
max !wij

l!1 ! !wij

l
<" , #i, j  with % a fixed small value, the 

procedure is stopped. Then use the current weights to estimate the final model 

with GWR. Otherwise continue. 

4. Estimation of the new model: Use the new matrix Wl(i) to estimate the model 

with GWR and return to step 2. 



 

The main differences of our procedure with respect to that proposed by Polzehl and al. 

(2000) rely in the determination of Kd(d
l
ij) and K(Tl

ij), in addition to the regression 

model considered in 

! 

f (Xi;b(i)). 

The choice of the parameters &, ' and % that enter in the computation of the weights are 

crucial for the execution of the AGWR procedure. The memory parameter % is taken by 

default 0.5. The choice of the other two parameters is data dependent and will be 

presented in the next section.  

If the AGWR procedure is applied on the MRW model extended in its spatial SAR or 

SEM formulation, we refer in the local homogeneous model to equations (6) and (7). 

The estimation of the vector b(i) will change consequently, using maximum likelihood 

or GMM, as proposed by Cressie (1993). 

  

 

 

4. THE EMPIRICAL RESULTS 

 

The data used in our empirical analysis to identify convergence clubs in European 

Union consist in 187 NUTS 2 regions, spanning the period 1981-2004, of 12 countries 

(Austria, Belgium, Finland, France, Germany, Greece, Italy, Portugal, Spain, Sweden, 

the Netherlands, and the United Kingdom). Annual data were obtained from two 

different sources: Eurostat REGIO for the human capital and Cambridge Econometrics 

data set for all the other variables.  

The dependent variable is the natural logarithm of per-worker GDP growth rate and the 



conditioning variables are: the saving rate ("), the population growth (n), the level of 

technology growth rate (x), the depreciation rate of capital (sc) and the human capital 

(sh), referring to MRW framework.  The saving rate " is measured as the average of the 

investments in percentage of GDP over the period 1981 to 2004. The human capital (sh) 

is the adult literacy rates defined as the fraction of population on age 25-64 that has the 

highest education level (ISCED level 3-4). The spatial weight matrix D is defined in 

terms of normalized distance from the five nearest neighbour’s regions.
1
    

Estimates for the MRW model over the whole sample in its standard and spatial (SAR 

and SEM) versions are presented in Table I.  The estimates of the parameter relating !-

convergence are in all three models negative and highly statistically significant, 

confirming the presence of conditional convergence. The behaviour of the models is 

quite similar, showing a slow speed of convergence (&), a not significant human capital 

variable and an unsatisfactory value of R2. The time necessary for the economies to fill 

half of the variation with respect to the steady state is over 98 years for the OLS and the 

SEM models. 

 

Table I.  Estimates of models for global convergence 

 ' ! (1 (2 (3 & R2 Spatial 

Parameter 

OLS 0.040 
(0.000) 

-0.007 
(0.000) 

-0.013 
(0.028) 

-0.002 
(0.003) 

-0.003 
(0.568) 

0.647% 0.183 - 

SAR 0.031 
(0.000) 

-0.006 
(0.000) 

-0.010 
(0.075) 

-0.001 
(0.018) 

-0.001 
(0.845) 

0.561% 0.265 0.329 
(0.000) 

SEM 0.041 
(0.000) 

-0.007 
(0.000) 

-0.013 
(0.038) 

-0.001 
(0.025) 

-0.004 
(0.403) 

0.647% 0.273 0.365 
(0.000) 

p-values are reported in parenthesis 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#
!Euclidean and Contiguity distance matrices were also considered, but methodological considerations 

and empirical results suggest to choose the normalized Contiguity one. !



The presence of spatial effects is highlighted by significant spatial parameters $ and " in 

the SAR and SEM models. In order to identify the form of the spatial dependence, the 

LM tests and their robust version are performed on the OLS model and the results 

appear in Table II. Following the decision rule suggested by Anselin and Florax (1995), 

the most appropriate specification is the spatial error model. 

Economic convergence in the whole sample could not hold or be weak because 

countries belonging to different regimes. Therefore we attempt to identify the presence 

of multiple regimes in the data through the use of the AGWR algorithm presented in the 

previous section and to check whether convergence holds within these clubs. In this 

way we also expect to improve our estimated models.  

 

Table II. Diagnostics for Spatial Dependence 

Spatial Test Statistics 

Moran’s I 0.231 
(0.000) 

LM (Lag) 

LM (Error) 

21.087 
(0.000) 

25.006 
(0.000) 

Robust LM(Lag) 0.009 
(0.926) 

Robust LM(Error) 3.928 
(0.047) 

p-values are reported in parenthesis 

 

Before starting with the AGWR we need to choose the parameters & and ' that enter in 

the computation of the weights 

! 

˙ w ij
l  in (15). Large values of & and ' discourage the 

aggregation of the regions in clubs and get low sensitivity to local heterogeneity, while 

low levels lead to over penalization and to unstable performance. According to Herault 



(2000) and by computing different data-driven simulation we adopt 0.1 ! & ! 0.3 and  

0.1 ! ' ! 0.5. 

The presence of spatial autocorrelation in the error terms can invalidate the inferential 

basis of the test methodology of OLS model, however OLS estimates remain unbiased.  

Given the unbiasedness and the low computational complexity of the OLS model, we 

apply the AGWR procedure also on it. Therefore we perform the AGWR with both, the 

OLS and the SEM model. We also applied the AGWR procedure on the SAR model, 

but we do not report the results to save space; moreover in this case the club 

identification and the estimated models were not satisfactory. 

Table III contains some summary statistics applied on the clubs obtained by the AGWR 

procedure, for & " [0.1; 0.3] and ' " [0.1; 0.5], with a grid search of 0.1. 

The statistics reported in Table III are the R2, the number of clubs, the number of points 

left out from the estimation, the minimum and the maximum number of regions present 

in the clubs determined by the procedure, for different combinations of & and ' and for 

both estimated models. It is important to highlight that if a club does not reach a 

minimum number of observations, the model cannot be estimated; therefore these 

regions will be excluded from the analysis. The statistic number out reports how many 

of such regions were eliminated from the sample during the application of the AGWR 

procedure.  

In terms of overall fit, we find an improvement over the single-regime specification.  

Whereas the global MRW model could explain only the 18,3% (27,3% for the SEM) of 

overall growth variation, we find that for the identified clubs we arrive almost to explain 

the 80%. 



The statistics in Table III suggest to choose for the OLS model the ninth (& = 0.2; ' 

=0.4) or the thirteenth (& = 0.3; '=0.3) combination and for the SEM model the third (& = 

0.1; ' =0.3) or the eighth (& = 0.2; ' =0.3) one. 

 

Table III. Summary statistics for OLS and SEM models 

OLS model      

! " R2 n. club n. out Max fr. Min fr. 

0.1 0.1 0.183 1 0 187 187 

0.1 0.2 0.302 2 0 171 16 

0.1 0.3 0.514 4 1 91 23 

0.1 0.4 0.741 5 14 88 9 

0.1 0.5 0.768 7 10 59 8 

0.2 0.1 0.301 2 0 174 13 

0.2 0.2 0.543 4 0 107 20 

0.2 0.3 0.698 5 4 54 17 

0.2 0.4 0.752 6 3 48 20 

0.2 0.5 0.790 7 13 40 10 

0.3 0.1 0.424 3 0 133 15 

0.3 0.2 0.679 4 0 109 18 

0.3 0.3 0.734 5 2 59 9 

0.3 0.4 0.757 6 15 54 5 

0.3 0.5 0.793 5 30 53 16 

       

SEM model     

& " R2 n. club n. out Max fr. Min fr. 

0.1 0.1 0.273 1 0 187 187 

0.1 0.2 0.727 5 0 67 10 

0.1 0.3 0.754 5 3 73 18 

0.1 0.4 0.787 6 11 57 10 

0.1 0.5 0.795 6 12 54 13 

0.2 0.1 0.575 3 0 111 20 

0.2 0.2 0.668 3 0 107 21 

0.2 0.3 0.719 4 2 57 21 

0.2 0.4 0.762 5 21 48 14 

0.2 0.5 0.757 5 30 46 13 

0.3 0.1 0.544 3 0 125 20 

0.3 0.2 0.729 3 13 101 21 

0.3 0.3 0.768 6 11 52 1 

0.3 0.4 0.726 5 15 48 18 

0.3 0.5 0.742 7 29 43 1 

 

 



Figure I shows the clubs identified by AGWR for these four options: a) and b) are the 

clubs for the OLS models, while c) and d) are those obtained with the spatial SEM 

models.  

 

Figure I. The Clubs with OLS and SEM model 

 
 

 



 

The first two and the last configurations are very similar: Club 1 in b) is partitioned into 

two different clubs in a); Club 2 in b) is enlarged in a) to disadvantage of Club 3 or 

distributed to other clubs in d).  

The most striking feature of these configurations is the identification of a club of 

“poorest economies” composed by Southern Italy, Greece and some Eastern 

Netherlands regions and a club of “high literacy” regions of Scandinavian Peninsula and 

Central-Southern UK.  

The regions identified in Figure I as outliers correspond to those excluded because 

unable to aggregate to other regions or to compose a club of sufficient number of 

observations. Table VI presents the estimates of the OLS and the SEM model for the 

identified clubs in b) and d) configurations. As this table indicates, there is substantial 

evidence that the laws of motion for growth within each subgroup are different. 

 

Table IV. The estimated OLS and SEM models over the clubs 

OLS n R
2
 ' ! (1 (2 (3 # 

Club1 59 0.434 0.059 -0.012 -0.040 -0.001 -0.006 1.054% 

Club2 9 0.798 0.057 -0.010 -0.072 -0.003 -0.043 0.896% 

Club3 58 0.196 0.024 -0.003 -0.001 -0.001 -0.004 0.290% 

Club4 37 0.490 0.028 0.001 0.007 0.004 -0.240 0.099% 

Club5 22 0.883 0.078 -0.024 -0.008 -0.004 0.024 1.900% 

         

SEM n R
2
 ' ! (1 (2 (3 # 

Club1 57 0.398 0.053 -0.010 -0.031 -0.000 -0.000 0.896% 

Club2 52 0.210 0.025 -0.004 -0.000 -0.001 0.003 0.382% 

Club3 55 0.538 0.032 0.004 0.043 0.003 -0.048 0.382% 

Club4 21 0.868 0.081 -0.024 -0.020 -0.003 0.026 1.896% 

Note: Significant values are reported in bold. 



Before interpreting our empirical results, it is important to analyze the presence of 

spatial dependence in the estimated models over the clubs. In fact the spatial parameter 

" in the SEM club-models is never significant and the spatial tests applied on the OLS 

club-models reject overall the presence of spatial dependence. The identification of 

homogeneous groups seems to overcome the problem of spatial dependence. This result 

has led in fact to similar configurations and estimations independently of the starting 

model used in the AGWR procedure. Following these considerations we focus our 

comments on the results obtained for the OLS club models.  

The slow convergence determined previously in the whole sample (# = 0.654%) hid in 

fact different regimes speed. The estimated speed range now from almost 2% for the 

“poorest” club to a steady-state situation for the “high literacy” regions. Also the two 

larger clubs evidence vastly different estimates in the ! parameter and furthermore in 

their speeds. Central Europe shows a speed of 1.05% with a half-life of 58 years, while 

North-West Europe has a speed of only 0.29% with a half-life of 231 years. The 

estimated coefficient ! in the second club is -0.010, but insignificant. The failure to find 

evidence of convergence among this club can be explained by the low number of 

observations included in it. If we consider the corresponding enlarged Club 3 in 

configuration a) (Figure I), the ! parameter has the same value, but become significant.  

Similar heterogeneity across clubs holds for the other variables. For example, the 

estimated coefficient of physical capital is significant only in Club 1, while 

technological and demographic growth is present in Club 4 and Club 5. The coefficient 

of human capital is negative and significant only in Club 4, where the coefficient on 

population growth is positive. These two coefficient estimates for countries in Club 4 

are consistent with the argument that countries whose growth had benefited from past 



increases in education, slow down as they reach their steady states and their education 

accumulation slows (Jones 2002). However the impact of human capital on economic 

growth remains controversial, depending on the definition and the measure of the 

variable, the methodology used and the time period over which the model is estimated. 

Our empirical evidence suggests the presence of substantial heterogeneity of growth 

patterns over the identified clubs, supporting the hypothesis of convergence clubs. 

Moreover the estimation of heterogeneous convergence models increased significantly 

the goodness-of fit.   

 

 

 

5. CONCLUSIONS 

"

In this paper we have empirically examined the convergence hypothesis in a cross-

section analysis across 187 NUTS-2 regions in 12 European countries, applying a new  

approach for the identification and contemporaneously estimation of the MRW model, 

to see whether the cross-regional growth process in Europe shows convergence clubs.  

We use the adaptive geographically weighted regression methods to identify groups of 

countries, which obey a common model. The proposed AGWR procedure explicitly 

allow for cross-country parameter heterogeneity. The empirical results confirmed that 

such heterogeneity exists; therefore empirical analysis that fails to incorporate 

parameter heterogeneity can produce misleading results. In our empirical analysis we 

identify five clubs, with different convergence speed and different values of conditional 

variables.  



This paper also contributes to the convergence debate by suggesting that spatial 

dependence can vanish or become irrelevant when parameter heterogeneity is taken into 

account in the model estimation. The MRW model estimated over the whole sample 

evidenced the presence of spatial dependence and suggested the application of a Spatial 

Error Model. However, when we tested the presence of spatial correlation on the 

heterogeneous models estimated on the clubs identified by the AGWR procedure we 

overall rejected such hypothesis. Therefore the usual procedure to apply spatial filter on 

the raw data can be a trivial technique.  
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