

Key Trends in the Global Space Industry

Authors: Alberto Pamias - Senior Managing Director Fred Liebler - Principal

There are differing perspectives on the future of the space market: the Minimalist, and the Maximalist

¹Includes government spend on space exploration, defence, and other programs as well as revenues from private companies including upstream and downstream Source: Industry reports, Expert Interviews, FTI Delta Analysis

We expect developments across the following trends, creating new opportunities across the value chain

1 NGSO proliferation

NGSO (LEO & MEO) broadband satellites are being deployed at massive scale

The demand of satellite bandwidth continues to increase as companies like SpaceX's Starlink grow their satellite internet subscriber base

NGSO: Non-geospatial orbit; LEO: Low-earth orbit; MEO: Medium-earth orbit; ¹SmallSats (<600 kg) considered NGSO; Sources: BryceTech, press clippings, FTI Delta analysis; Examples non-exhaustive.

... HAS PROMOTED NGSO PROLIFERATION

The share of NGSO satellites significantly climbed in the past decade, from 61% in 2013 to 96% in 2022

Direct-to-device connectivity has moved out of the the theoretical and is available in the market

RECENT MARKET INTEREST

EXAMPLES OF DIRECT-TO-DEVICE PARTNERSHIPS

Solution Provider Key Partners Starlink T Mobile, KDDI Status: Satellites launched in January 2024 AT&T, Orange, OneWeb Airtel Status: To be determined AT&T, Vodafone **AST Space Mobile** Status: Expected to launch in 1H2024 Globalstar Apple Status: Operational eSAT Global Yahsat Status: Expected to launch in 1H24

3 Streamlined satellite manufacturing methods

Manufacturing best practices from other industries enabling mass-produced constellations

Monthly satellite production rate (Satellites/month in 2023)

Some players have invested in streamlining satellite manufacturing to increase production rates

Satellite Production Changes

Design

- Big satellites, complex projects
- Small and simplified satellites, easier to assemble and troubleshoot

Assembly

- Unique assembly designed to satellite; satellite stays in place, factory adjusts to it
- Standardization of production; satellite moves across different workstations
- Additive manufacturing

Testing

- Meticulous testing to ensure everything is perfect before launch
- Automated testing, providing feedback to improve next batch

4 Public-private partnerships

Partnerships between public and private entities are a viable solution to accelerate public space agendas while boosting commercial space economies

PUBLIC-PRIVATE PARTNERSHIPS (P3s) OVERVIEW

Public entity perspective - Benefits of P3

- Shared cost with private sector
- Latest technological innovations incorporated from private companies
- Keeps domestic players financially stable
- Shared risk

Private entity perspective - Benefits of P3

- Access to government resources, including funding, facilities and regulatory support
- Shared risk

NOTABLE EXAMPLES

NASA - SpaceX

- NASA's first-ever investment in a private space
 company was in 2006 with SpaceX for \$400M
- A report by NASA indicated that over \$1B savings had been achieved from working with private companies

ISRO

- Indian space agency ISRO announced mid-2023 that its space research will be more accessible for commercial businesses
- Mutually beneficial partnerships also formed
 with private players in Jan. 2024, ISRO launched
 communication satellites facilitated by SpaceX

5 Reusable, flexible and democratized launch services

Launch services are leveraging innovative methods to reduce cost and add flexibility

Spacecraft reusability and cost impact

Falling launch costs to orbit: Cost per kilogram

- Starship is SpaceX's latest
 spacecraft, designed to supersede
 older spacecraft as the largest
 and most powerful rocket ever,
 supporting a crew of up to 100
 people on board.
- The aircraft successfully
 recorded its longest test flight
 and reached orbit during its
 March 2024 launch.

COMPANY EXAMPLE

SpaceX has pioneered landing used rockets, successfully doing so in 2015 and eventually reusing them in 2017. The company also became successful in recapturing a rocket component previously thought impossible to reuse, saving \$6M per component. SpaceX has carried out multiple rideshare missions to appeal to both constellation-builders and small actors (start-ups, universities, governments).

Sources: Press clippings, CSIS Aerospace Security Project, PayloadResearch estimates.

IoT/AI use cases are already becoming widespread around the world, with further potential on the horizon as new industries develop

KEY EXAMPLES

 Inmarsat's satellite IoT-supported solutions Fleet Connect and Fleet Data are being used by Saudi-based offshore firm Zamil to uncover important insights into vessels

7 Space debris risks and opportunities

While orbital debris poses a potential risk to the progress of the space economy, new start-ups are actively transforming it into an opportunity

KEY EXAMPLES

ClearSpace today

 Founded in 2018, ClearSpace was designed by the ESA to lead the first mission to remove debris from orbit in 2025

Starfish Space

 Starfish Space is attempting the first-ever commercial docking with another satellite in LEO in order to service satellites in-orbit after a potential collision or issue

TransAstra

- In 2023, contracted by NASA to explore cleaning up space debris with "capture bag" called FlyTrap
- In Jan. 2024, awarded contract by United States
 Department of Defense to further develop FlyTrap

8 Growth and commercialization of space exploration

Commercialization of space exploration remains distant but may begin to make inroads in the next years

TOURISM

Trips withing yearTrips in previous years

Blue Origin

With its first successful tourist mission in 2021, Blue Origin is at the forefront of space tourism

OUTER-SPACE EXPLORATION

USA (Artemis program)

- Set up robotic and moon exploration programs led by NASA to run from 2022 to 2029
- By 2030, a lunar base will be established to support missions of up to 2 months

United Arab Emirates

- Establishment of the first habitable human settlement on Mars by 2117
- 100-year plan focused on developing capabilities in space science and tech, research, AI, robotics

China

- Building of scientific experiment on the lunar surface to occur in 3 phases from 2021 through 2036
- By 2036, a lunar base will be established to support scientific research and space exploration

SPACE MINING

Global space mining market size¹ (\$ Billions, 2024-2037)

Astro Forge

Following the launch of its first mission in 2024, AstroForge will be deploying a spacecraft in 2024 to observe a target asteroid, making significant strides in space mining

Sources: Afar, Blue Origin, AstroForge, Wired, news clippings, market research, company websites, FTI Delta analysis; Examples non-exhaustive.

¹ Driven by space mining missions and increased governmental support for space mining.