

CANUTEC Services and the ERG2024

Presented to the 2025 Indigenous Public Safety Conference

Fady Al Zarka
Manager, Research and Publishing Services
October 23, 2025

Outline

CANUTEC

- Who we are
- What we do
- Emergency information

Emergency Response Guidebook (ERG)

- Overview of the ERG
- Scenarios

Other Information

- CANUTEC and TDG Contacts

Canadian Transport Emergency Centre

- CANUTEC is the Canadian Transport Emergency Centre operated by the Intermodal Surface Security and Emergency Preparedness (ISSEP) Directorate within Transport Canada.
- It's a national emergency centre in the event of a spill or exposure to dangerous goods during transport.
- Since 1979, CANUTEC has been a free nation-wide service operating 24/7.

CANUTEC – Who We Are

Emergency Response Advisors

- Scientists with chemistry, biochemistry, biology and chemical engineering backgrounds.
- Bilingual (English and French)
- Trained as Hazmat specialists
 - Hazmat Technician
 - Tank Car Specialist
 - Highway Emergency Response Specialist

Emergency Response Guidebook (ERG)

Research and special projects

TDG regulations

Plume dispersion models

Maintain technical databases

Awareness presentations

Company Registration

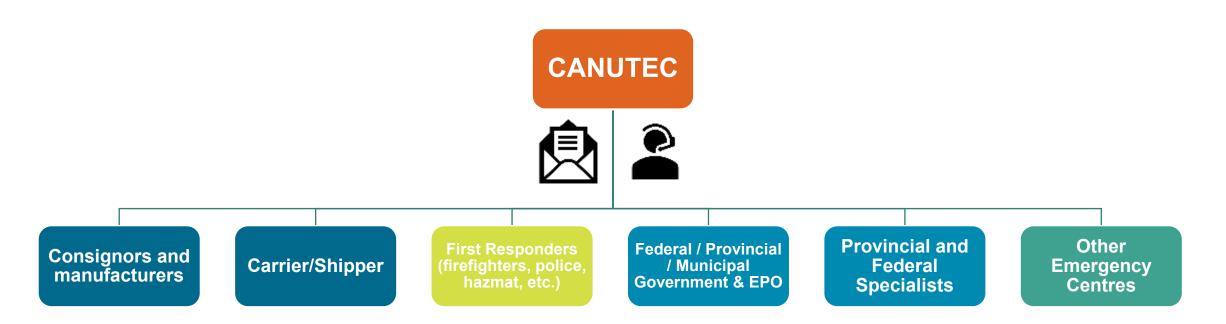
CANUTEC

Safety Data Sheet (SDS) Database

Technical advice

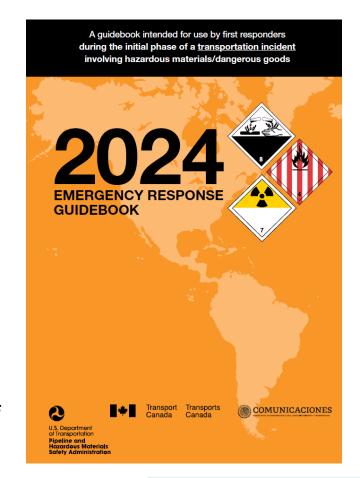
Simulations

Communication information sharing


Assist general public

1. Provide technical advice (24/7/365)

- Chemical, physical and toxicological properties
- Product incompatibility
- Immediate public safety actions
- Isolation and evacuation distances
- Potential health effects
- Personal Protective Equipment (PPE) requirements
- Decontamination
- Mitigation techniques
- Protection measures for life, property and environment



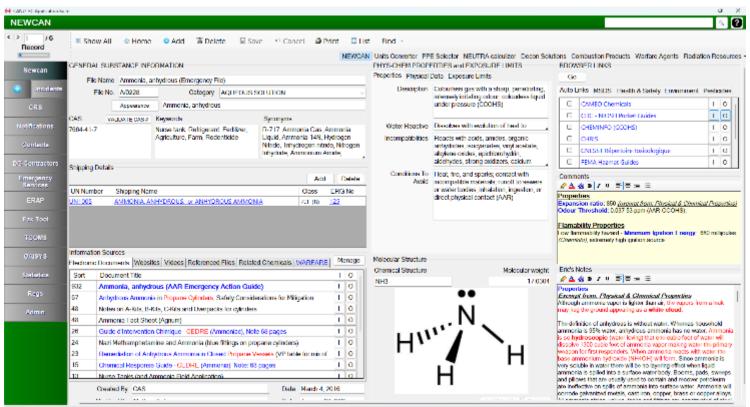
2. Coordinate communications and share information

3. Collaborate with the production of the Emergency Response Guidebook (ERG)

- Tool for use during transportation incidents involving dangerous goods that helps first responders to:
 - protect themselves and the general public during the initial response phase of the incident (the first 30 minutes).
- Published every 4 years
- In partnership with the:
 - U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration (PHMSA)
 - Secretariat of Infrastructures, Communications and Transport of Mexico (SICT)
 - Chemical Information Center for Emergencies (CIQUIME) of Argentina.

4. Participate in simulations

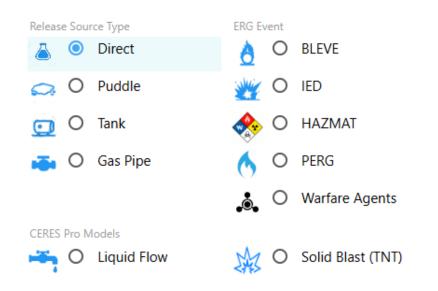
- CANUTEC provides the opportunity for fire departments, public authorities and industry to practice their emergency response scenarios during their training exercises.
- During these types of calls, the Emergency Response Advisor will assist the person calling and provide advice for each steps of the scenario.
- CANUTEC can help build and plan the scenarios.
- CANUTEC participates in about 350 simulations per year.


5. Register companies and maintain Safety Data Sheet (SDS) database

- CANUTEC manages close to 4 million SDS in electronic format (~10 000 SDS are received every month)
- Over 5 000 companies are registered with CANUTEC
- Information described and transmitted to emergency response scene
- SDS information is specifically critical for non-transport related incidents

6. Maintain technical databases (CANUTEC Application Suite)

7. Research related to emergency response topics and dangerous goods


- CANUTEC Articles
- Lithium battery fires
- New emerging trends in PPE and decon procedures


8. Participate in special projects

- Panorama / Roadrunner Exercise (tabletop exercises)
- Dynamic Response
- BLEVE and LNG project
- Jack Rabbit II

9. Generate plume dispersion models

 CANUTEC advisors can generate plume dispersion models using software like CERES.

10. CANUTEC can also:

- Provide advice on TDG Regulations
- Prepare and participate in TDG Awareness Sessions
- Assist the public during emergencies

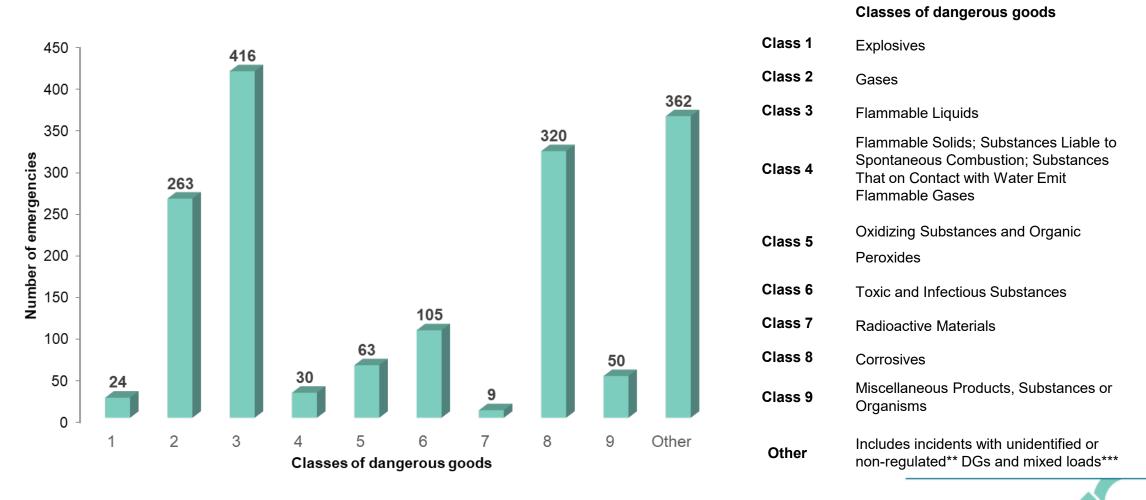
Outline

CANUTEC

- Who we are
- What we do
- **Emergency information**

Emergency Response Guidebook (ERG)

- Overview of the ERG
- Scenarios


Other Information

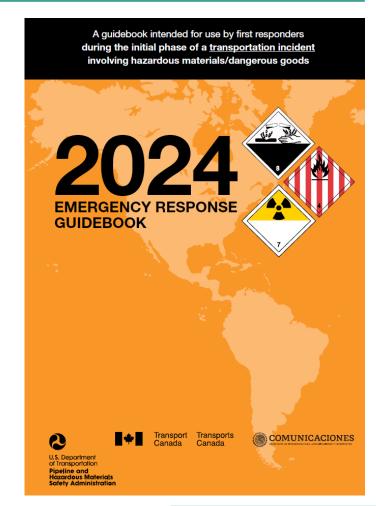
- CANUTEC and TDG Contacts

Call Handling Procedures – Article 24

- CANUTEC handles approximately 25,000 communications and 2,000 emergencies per year.
- All calls are handled immediately by the advisors, then dealt with according to their priority.
- Timely provision of technical information is critical and requires immediate treatment in emergency situations.
- Due to the privileged information criteria under the TDG Act, Article 24, the information received at CANUTEC cannot be shared or widely disseminated.

CANUTEC – Emergencies by Class for 2024

- The Emergency Response Guidebook (ERG) is a tool for use during a transportation incident involving dangerous goods that helps first responders to:
 - quickly identify the specific or generic hazards of the material(s) involved; and
 - protect themselves and the general public during the *initial response* phase of the incident (the first 30 minutes).

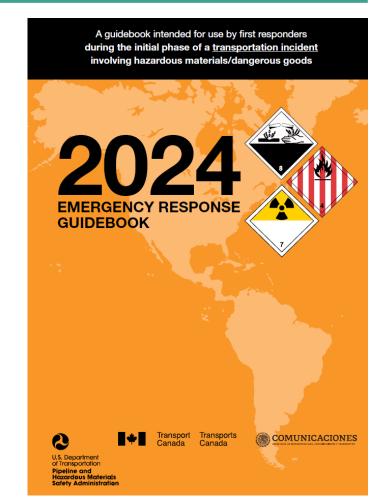

Before an emergency – become familiar with this guidebook!
Without the proper training/equipment, do not take on an offensive role during an incident.

The Emergency Response Guidebook (ERG) is prepared by:

CANUTEC / Transport Canada

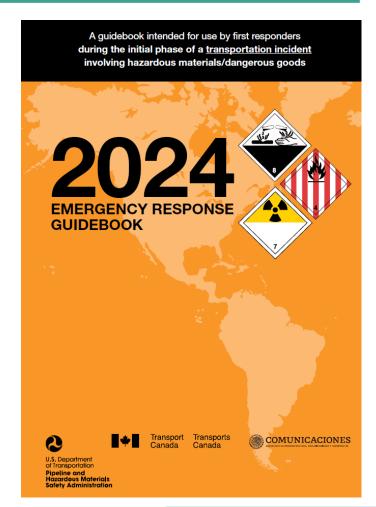
In partnership with the:

- U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration (PHMSA)
- Secretariat of Infrastructures, Communications and Transport of Mexico (SICT)
- Chemical Information Center for Emergencies (CIQUIME) of Argentina.



The ERG is published every 4 years. It is available in:

- Paper format;
- PDF format;
- Online version;
- Mobile App for smartphones (Android, Apple).


Training material is available on **CANUTEC's website**:

- Training package;
- Awareness video;
- Summary of the changes made to the 2024 edition.

How to obtain free paper copies:

- Paper copies of the ERG2024 are distributed for free to Canadian First Responders from public emergency services (police, fire department, ambulance services, etc.).
- The distribution policy can be found at the following website: <u>Emergency response guidebook: paper copy</u>
- To order free paper copies, please submit your request by filling the ERG order form.

Overview of the ERG

The main sections are:

- Flowchart (How to use the ERG)
- Table of Markings, Labels and Placards
- Rail Car Identification Chart
- Road Trailer Identification Chart
- YELLOW section (list of materials by ID [UN] number)
- BLUE section (list of materials by name)
- ORANGE section (appropriate emergency response guides)
- GREEN section (initial isolation and protective action distances for green highlighted substances)

YELLOW Section

- The substances are listed in <u>numerical order</u> of their 4-digit ID (UN) numbers.
- The ID (UN) number is followed by the 3digit Guide number (ORANGE section) and the name of the material.
- Some substances are highlighted in green, and you may need to refer to the GREEN section for initial isolation and protective action distances.

ID No.	Guide No.	e Name of Material	ID No.	Guid No.	e Name of Material
1490	140	Potassium permanganate	1544	151	Alkaloid salts, solid, n.o.s.
1491	144	Potassium peroxide	4545	404	(poisonous)
1492	140	Potassium persulfate	1545		Allyl isothiocyanate, stabilized
1492	140	Potassium persulphate		151	Ammonium arsenate
1493	140	Silver nitrate		153	Aniline
1494	140	Sodium bromate		153 157	Aniline hydrochloride
1495	140	Sodium chlorate	1549	157	Antimony compound, inorganic, solid, n.o.s.
1496	143	Sodium chlorite	1550	151	Antimony lactate
1498	140	Sodium nitrate	1551	151	Antimony potassium tartrate
1499	140	Sodium nitrate and potassium nitrate mixture	1553	154	Arsenic acid, liquid
1500	141	Sodium nitrite	1554	154	Arsenic acid, solid
1502	140	Sodium perchlorate	1555	151	Arsenic bromide
1503	140	Sodium permanganate	1556	152	Arsenic compound, liquid, n.o.s.
1504	144	Sodium peroxide	1556	152	Methyldichloroarsine
1505	140	Sodium persulfate		152	Arsenic compound, solid, n.o.s.
1505	140	Sodium persulphate	1558	152	Arsenic
1506	143	Strontium chlorate		151	Arsenic pentoxide
1507	140	Strontium nitrate		157	Arsenic chloride
1508	140	Strontium perchlorate		157	Arsenic trichloride
1509	143	Strontium peroxide		151	Arsenic trioxide
1510	143	Tetranitromethane		152	Arsenical dust
1511	140	Urea hydrogen peroxide		154	Barium compound, n.o.s.
1512	140	Zinc ammonium nitrite		157	Barium cyanide
1513	140	Zinc chlorate		154	Beryllium compound, n.o.s.
1514	140	Zinc nitrate		134	Beryllium powder
1515	140	Zinc permanganate		131	Bromoacetone
1516	143	Zinc peroxide		151	Brucine
1517	113	Zirconium picramate, wetted with not less than 20% water			Barium azide, wetted with not less than 50% water
1541	156	Acetone cyanohydrin, stabilized		151	Cacodylic acid
1544	151	Alkaloids, solid, n.o.s. (poisonous)	1573	151	Calcium arsenate

Page 38

YELLOW Section – Overview Question

You are facing spill of UN1823. What is the name of the material for UN1823 and what Guide number should you refer to?

- a) Sodium hydride, 138
- b) Sodium hydroxide, solution, 154
- c) Sodium hydrosulphite, 135
- d) Sodium hydroxide, solid, 154

YELLOW Section – Overview Answer

You are facing spill of UN1823. What is the name of the material for UN1823 and what Guide number should you refer to?

- a) Sodium hydride, 138
- b) Sodium hydroxide, solution, 154
- c) Sodium hydrosulphite, 135
- d) Sodium hydroxide, solid, 154

ID Guid No. No.	o mano or matorial	ID No.	Guid No.	e Name of Material
1789 157	Muriatic acid	1813	154	Potassium hydroxide, solid
1790 157	Hydrofluoric acid	1814	154	Caustic potash, solution
1791 154	Hypochlorite solution	1814	154	Potassium hydroxide, solution
1791 154	Sodium hypochlorite	1815	155	Propionyl chloride
1792 157	lodine monochloride, solid	1816	155	Propyltrichlorosilane
1793 153	Isopropyl acid phosphate	1817	137	Pyrosulfuryl chloride
1794 154	Lead sulfate, with more than	1817	137	Pyrosulphuryl chloride
	3% free acid	1818	157	Silicon tetrachloride
1794 154	Lead sulphate, with more than 3% free acid	1819	154	Sodium aluminate, solution
1796 157	Nitrating acid mixture with more	1823	154	Caustic soda, solid
	than 50% nitric acid	1823	154	Sodium hydroxide, solid
1796 157	Nitrating acid mixture with not more than 50% nitric acid	1824	154	Caustic soda, solution
1798 157		1824	154	Sodium hydroxide, solution
	Aqua regia	1825	157	Sodium monoxide
1798 157	Nitrohydrochloric acid	1826	157	Nitrating acid mixture, spent,
1799 156	Nonyltrichlorosilane	.520		with more than 50% nitric
1800 156	Octadecyltrichlorosilane			acid

BLUE Section

- The substances are listed in <u>alphabetical</u> order of the material name.
- The name of the material is followed by the 3-digit Guide number (ORANGE section) and the ID (UN) number.
- Some substances are highlighted in green, and you may need to refer to the GREEN section for initial isolation and protective – action distances.

	Name of Material	Guide No.	ID No.	Name of Material	Guide No.	ID No.
	Bromoform	159	2515	n-Butyl formate	129	1128
	1-Bromo-3-methylbutane	130	2341	tert-Butyl hypochlorite	135	3255
I	Bromomethylpropanes	130	2342	N,n-Butylimidazole	152	2690
ľ	2-Bromo-2-nitropropane-1,3- diol	133	3241	n-Butyl isocyanate	155P	2485
		130	2343	tert-Butyl isocyanate	155	2484
	2-Bromopentane	129	2343	Butyl mercaptan	130	2347
	Bromopropanes			n-Butyl methacrylate,	130P	2227
	3-Bromopropyne	130	2345	stabilized	107	0050
	Bromotrifluoroethylene	116		Butyl methyl ether	127	2350
	Bromotrifluoromethane	126	1009	Butyl nitrites	129	2351
	Brucine	151	1570	Butyl propionates	130	1914
	Butadienes, stabilized	116P	1010	Butyltoluenes	152	2667
	Butadienes and hydrocarbon mixture, stabilized	116P	1010	Butyltrichlorosilane	155	1747
	Butane	115	1011	5-tert-Butyl-2,4,6-trinitro-m- xylene	149	2956
	Butane	115	1075	Butyl vinyl ether, stabilized	127P	2352
	Butanedione	127	2346	1,4-Butynediol	153	2716
	Butanols	129	1120	Butyraldehyde	129P	1129
	Butyl acetates	129	1123	Butvraldoxime	129	2840
	Butyl acid phosphate	153	1718	Butyric acid	153	2820
	Butyl acrylates, stabilized	129P	2348	Butyric anhydride	156	2739
	n-Butylamine	132	1125	Butyronitrile	131	2411
	N-Butylaniline	153	2738	Butyryl chloride	155	2353
	Butylbenzenes	128	2709	Cacodylic acid	151	1572
	n-Butyl bromide	130	1126	Cadmium compound	154	2570
	n-Butyl chloride	130	1127	Caesium	138	1407
>	n-Butyl chloroformate	155	2743	Caesium hydroxide	157	2682
	tert-Butylcyclohexyl chloroformate	156	2747	Caesium hydroxide, solution	154	2681
	Butylene	115	1012	Caesium nitrate	140	1451
	Butylene	115	1075	Calcium	138	1401
	1,2-Butylene oxide, stabilized	127P	3022	Calcium, pyrophoric	135	1855
	Butyl ethers	128	1149	Calcium alloys, pyrophoric	135	1855
	Daga 00					

Page 98

BLUE Section – Overview Question

You are facing a sulfuric acid spill (concentration 50%). What is the Guide number and what is the ID (UN) number for that sulfuric acid solution?

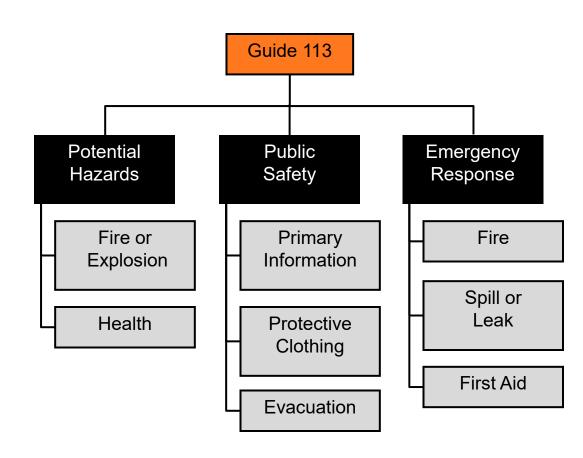
BLUE Section – Overview Answer

You are facing a sulfuric acid spill (concentration 50%). What is the Guide number and what is the ID (UN) number for that sulfuric acid solution?

GUIDE 157, UN2796

	uide lo.	ID No.	Name of Material	Guide No.	ID No
Sulphur chlorides Sulphur dioxide Sulphur hexafluoride Sulphuric acid Sulphuric acid, fuming Sulphuric acid, spent Sulphuric acid, with more than 51% acid	157	2448 1828 1079 1080 1830 1831 1832 1830 2796	Tetraethylenepentamine Tetraethyl silicate 1,1,1,2-Tetrafluoroethane Tetrafluoroethylene, stabilized Tetrafluoromethane 1,2,3,6-Tetrahydrobenzaldehyde Tetrahydrofuran Tetrahydrofurfurylamine Tetrahydrophthalic anhydrides 1,2,3,6-Tetrahydropyridine Tetrahydrothiophene	126	2320 1292 3159 1081 1982 2498 2056 2943 2698 2410 2412
Sulphurous acid	154	1833		Pag	ge 141

ORANGE Section – General First Aid


GENERAL FIRST AID

- Call 911 or emergency medical service.
- Ensure that medical personnel are aware of the material(s) involved, take precautions to protect themselves and avoid contamination.
- Move victim to fresh air if it can be done safely.
- Administer oxygen if breathing is difficult.
- If victim is not breathing:
 - DO NOT perform mouth-to-mouth resuscitation; the victim may have ingested or inhaled the substance.
 - If equipped and pulse detected, wash face and mouth, then give artificial respiration using a proper respiratory medical device (bag-valve mask, pocket mask equipped with a one-way valve or other device).
 - If no pulse detected or no respiratory medical device available, provide continuous compressions. Conduct a pulse check every two minutes or monitor for any signs of spontaneous respirations.
- Remove and isolate contaminated clothing and shoes.
- For minor skin contact, avoid spreading material on unaffected skin.
- In case of contact with substance, remove immediately by flushing skin or eyes with running water for at least 20 minutes.
- For severe burns, immediate medical attention is required.
- Effects of exposure (inhalation, ingestion, or skin contact) to substance may be delayed.
- Keep victim calm and warm.
- Keep victim under observation.
- · For further assistance, contact your local Poison Control Center.
- Note: Basic Life Support (BLS) and Advanced Life Support (ALS) should be done
 by trained professionals.

 General first aid guidance is now found in a new section situated before Guide 111 since the ERG2024.

- Each guide in the ORANGE section:
 - applies to a group of materials with similar chemical and toxicological characteristics.
 - recommends safety and emergency response procedures to protect yourself and the public.
- There are three main parts in each guide.

In Potential Hazards, depending on the primary hazard for the substances, the subsection Fire or Explosion or Health will appear first (see next slide).

GUIDE FLAMMABLE MATERIALS 113 (WET/DESENSITIZED EXPLOSIVE)

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- Flammable/combustible material.
- · May be ignited by heat, sparks or flames.
- DRIED OUT material may explode if exposed to heat, flame, friction or shock; treat as an
 explosive (GUIDE 112).
- · Keep material wet with water or treat as an explosive (GUIDE 112).
- · Runoff to sewer may create fire or explosion hazard.

HEALTH

- Some are toxic and may be fatal if inhaled, ingested or absorbed through skin. Specifically,
 Dinitrophenol, wetted (UN1320); Dinitrophenolates, wetted (UN1321), Sodium dinitro-o-cresolate, wetted
 (UN1348); and Barium azide, wetted (UN1571) are known to be toxic.
- · Contact may cause burns to skin and eyes.
- · Fire may produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may cause environmental contamination.

PUBLIC SAFETY

- CALL 911. Then call emergency response telephone number on shipping paper. If shipping paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- · Keep unauthorized personnel away.
- · Stay upwind, uphill and/or upstream.
- Ventilate closed spaces before entering, but only if properly trained and equipped.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- · Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

Isolate spill or leak area immediately for at least 100 meters (330 feet) in all directions.

Consider initial evacuation for 500 meters (1/3 mile) in all directions.

If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all
directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

FLAMMABLE MATERIALS GUIDE (WET/DESENSITIZED EXPLOSIVE) 113

EMERGENCY RESPONSE

FIRE

CARGO Fire

- DO NOT fight fire when fire reaches cargo! Cargo may EXPLODE!
- Stop all traffic and clear the area for at least 1600 meters (1 mile) in all directions and let burn.
- Do not move cargo or vehicle if cargo has been exposed to heat.

TIRE or VEHICLE Fire • Use plenty of water - FLOOD it! If water is not available, use CO₂, dry chemical or dirt.

- If possible, and WITHOUT RISK, use unmanned master stream devices or monitor nozzles from maximum distance to prevent fire from spreading to cargo area.
- Pay special attention to tire fires as re-ignition may occur. Stand by, at a safe distance, with extinguisher ready for possible re-ignition.

SPILL OR LEAK

- . ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- · All equipment used when handling the product must be grounded.
- · Do not touch or walk through spilled material.

Small Spill

Flush area with large amounts of water.

Large Spil

- Wet down with water and dike for later disposal.
- KEEP "WETTED" PRODUCT WET BY SLOWLY ADDING FLOODING QUANTITIES OF WATER.

FIRST AID

Refer to the "General First Aid" section.

Primary Hazard: Fire or Explosion

Secondary Hazard: Health

In Canada, an Emergency Response Assistance Plan (ERAP) may be required for this product. Please consult the shipping paper and/or the "ERAP" section.

age 156 ERG 2024 Page 157

The **Potential Hazard** section provides:

Information on health and fire / explosion

The **Public Safety** section provides:

- General info on protective clothing and respiratory protection;
- The **Evacuation** subsection provides:
 - Immediate isolation distance, regardless of the quantity involved;
 - A suggested evacuation perimeter for large spill or fire situations AND/OR a reference to Table 1 - Initial Isolation and Protective Action Distances (GREEN section).

The **Emergency Response** section provides:

- Emergency response actions to mitigate the incident;
- Instructions to follow in case of a fire;
- Actions to be taken in case of a spill/leak;
- Specific first aid guidance for a product or a guide.

Note: A how to use the orange guides section is situated at the start of the orange section (right before the general first aid).

GREEN Section

If the material is **highlighted in green** in the **YELLOW** and **BLUE** sections, you may need to refer to the **GREEN** section.

2407

2934

2406

155P 2483

129

127

1836 137	Thionyl chloride	Isopropyl chloroformate
837 157	Thiophosphoryl chloride	Isopropyl 2-chloropropionate
838 137	Titanium tetrachloride	Isopropyl isobutyrate
839 153	Trichloroacetic acid	Isopropyl isocyanate

The **GREEN** section of the ERG consists of three parts:

- **TABLE 1 Initial Isolation and Protective Action Distances**;
- **TABLE 2** Water-Reactive Materials which Produce Toxic Gases;
- **TABLE 3** Initial Isolation and Protective Action Distances for Large Spills for Different Quantities of Six Common Toxic by Inhalation (TIH) Gases.

TABLE 1 - Initial Isolation and Protective Action Distances suggests distances to protect people from vapours resulting from spills involving dangerous goods that are:

- Toxic by inhalation (TIH);
- Materials that produce toxic gases upon contact with water.

In this table, the substances are in <u>numerical order</u> of their ID (UN) numbers. Some materials indicate to refer to <u>Table 3</u> for more information.

		TABI	LE 1 - INITIAL ISOLATION	AND I	PROTEC	TIVE A	CTION	DISTAN	CES						
Page 290				(From a	small pack	SMALL S age or sm	SPILLS all leak fr	om a large	package)	(Fro	om a large	LARGE package or	SPILLS from many	small pack	ages)
) Open				ISO	irst LATE irections	per	PRO	nen TECT vnwind dur	ring	ISO	irst LATE irections	ре	The PRO1 ersons Dow	ГЕСТ	ng
	ID No.	Guide No.	Name of Material	Meters	(Feet)	DA Kilometers		NIC Kilometers	GHT (Miles)	Meters	(Feet)	Kilometers	(Miles)	NIC Kilometers	GHT (Miles)
	1005 1005	125 125	Ammonia, anhydrous Anhydrous ammonia	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)			Refer to	o Table 3		
	1008 1008	125 125	Boron trifluoride Boron trifluoride, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.7 km	(0.5 mi)	400 m	(1250 ft)	2.4 km	(1.5 mi)	4.7 km	(2.9 mi)
	1016	119	Carbon monoxide, compressed	30 m	(100 ft)	∩ 1 km	(0 1 mi)	0.2 km	(0 1 mi)	200 m	(600 ft)	1 2 km	(0 7 mi)	3.9 km	(2 4 mi)

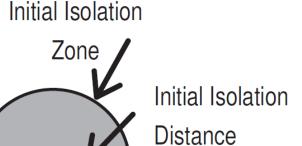
Table 1 provides, for small and large spills, suggested distances for:

- The Initial Isolation Zone; and
- The Protective Action Zone for day and night.

The distances show the areas likely to be affected during the <u>first 30 minutes</u> after the materials are spilled, and this distance could increase with time.

_		TABI	LE 1 - INITIAL ISOLATION	I AND F	PROTEC	CTIVE A	CTION	DISTAN	CES						
Page :				(From a	small pack	SMALL S age or sm	SPILLS all leak fr	om a large	package)	(Fro	om a large p	LARGE backage or f	SPILLS rom many	small packa	iges)
290				ISOI	rst _ ATE rections	per	PRO	nen TECT vnwind dur	ring	ISO	irst LATE irections	pe	The PRO1 rsons Dow	en 「 ECT nwind durin	g
	ID No.	Guide No.	Name of Material	Meters	(Feet)	DA Kilometers			GHT (Miles)	Meters	(Feet)	Nilometers D	AY (Miles)	NIG Kilometers	
	1005 1005	125 125	Ammonia, anhydrous Anhydrous ammonia	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)			Refer to	Table 3		
	1008 1008	125 125	Boron trifluoride Boron trifluoride, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.7 km	(0.5 mi)	400 m	(1250 ft)	2.4 km	(1.5 mi)	4.7 km	(2.9 mi)
	1016	119	Carbon monoxide compressed	30 m	(100 ft)	0 1 km	(0 1 mi)	0 2 km	(0 1 mi)	200 m	(600 ft)	1 2 km	(0 7 mi)	3 9 km	(2 4 mi)

Table 1 – Small and Large Spills


For the purpose of the ERG, the definitions are as follows:

- Small spill: Quantities that are 208 liters or less. This generally corresponds to a spill from a single small package (for example, a drum), a small cylinder, or a small leak from a large package.
- Large spill: Quantities that are greater than 208 liters. This usually involves a spill from a large package, or multiple spills from many small packages.

Table 1 – Initial Isolation Zone

The distances for the initial isolation zone are found in **Table 1** under "First Isolate".

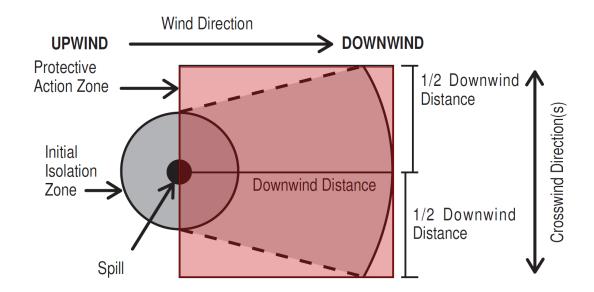

- This distance defines the radius of a zone (Initial Isolation Zone) surrounding the spill in ALL DIRECTIONS.
- The public within this zone should be evacuated.
- Protective clothing and respiratory protection are required.

Table 1 – Protective Action Zone

The distances for the protective action zone are found in Table 1 under "Then Protect".

- This distance defines an area
 DOWNWIND from the incident in which people are at risk of harmful exposure.
- The responders must choose a protective action:
 - Evacuation;
 - Shelter-in-place; or
 - A combination of both.

For practical purposes, the Protective Action Zone is a square, whose length and width are the same as the distance shown in **Table 1**.

Table 1 – Protective Action Zone

The protective action distances are divided into **daytime** and **nighttime** because the atmospheric conditions will affect the size of the hazardous area.

- **Day**: after sunrise, before sunset
- Night: between sunset and sunrise

		TABL	E 1 - INITIAL ISOLATION	I AND F	PROT	ΈC	TIVE A	CTION	DISTAN	CES						
Page 2				(From a	small p	S	SMALL Stage or small	SPILLS all leak fr	om a large	package)	(Fr	om a large _l	LARGE backage or f	SPILLS from many	small packa	ages)
290					rst _ATE rection	0	ner	PRO	nen TECT ynwind dur	ina	ISO	irst LATE	ne	The PROT		a
	ID No.	Guide No.	Name of Material	Meters	(Feet		DA Kilometers		NIC Kilometers		Meters	(Feet)	D Kilometers	(Miles)	NIC Kilometers	GHT (Miles)
	1005 1005	125 125	Ammonia, anhydrous Anhydrous ammonia	30 m	(100 f	ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)			Refer to	o Table 3		
	1008 1008	125 125	Boron trifluoride Boron trifluoride, compressed	30 m	(100 f	ft)	0.2 km	(0.1 mi)	0.7 km	(0.5 mi)	400 m	(1250 ft)	2.4 km	(1.5 mi)	4.7 km	(2.9 mi)
	1016	119	Carbon monoxide compressed	30 m	(100 f	ft)	0 1 km	(0 1 mi)	0.2 km	(0 1 mi)	200 m	(600 ft)	1 2 km	(0 7 mi)	3.9 km	(2 4 mi)

- In Table 1, some material might have (when spilled water) added to the name.
- This means those substances are water-reactive and release TIH gases when spilled in water. Table 2 provides more information.

		TABL	E 1 - INITIAL ISOLATION	AND F	PROTEC	TIVE A	CTION	DISTAN	CES						
Page 292				(From a	small pack	SMALL S	SPILLS all leak fro	om a large	package)	(Fro	om a large p	LARGE backage or f	SPILLS from many	small packa	ages)
92				ISOI	rst LATE irections	per	PRO'	nen TECT nwind duri	ing	ISO	irst LATE irections	pe	The PROT rsons Down		g
	ID No.	Guide No.	Name of Material	Meters		DA Kilometers		NIG Kilometers		Meters	(Feet)	Kilometers	AY (Miles)	NIC Kilometers	
	1242	139	Methyldichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	60 m	(200 ft)	0.5 km	(0.4 mi)	1.7 km	(1.1 mi)
	1244	131	Methylhydrazine	30 m	(100 ft)	0.3 km	(0.2 mi)	0.6 km	(0.4 mi)	150 m	(500 ft)	1.5 km	(0.9 mi)	2.2 km	(1.4 mi)
	1250	155	Methyltrichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	60 m	(200 ft)	0.6 km	(0.4 mi)	1.9 km	(1.2 mi)
	1251	131P	Methyl vinyl ketone, stabilized	100 m	(300 ft)	0.3 km	(0.2 mi)	0.7 km	(0.5 mi)	800 m	(2500 ft)	1.7 km	(1.1 mi)	2.8 km	(1.8 mi)

<u>Important</u>: Some water-reactive materials are also TIH materials themselves and release TIH gases when spilled in water (e.g., UN1741 – Boron trichloride). In these instances, two entries are found in <u>Table 1</u>:

- One for (when spilled on land);
- The other for (when spilled in water).

1725	137	Aluminum bromide, anhydrous (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)
1726	137	Aluminum chloride, anhydrous (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.4 km	(0.2 mi)	1.5 km	(1.0 mi)
1728	156	Amyltrichlorosilane (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.4 km	(0.2 mi)	1.2 km	(0.7 mi)
1732	157	Antimony pentafluoride (when spilled in water)	30 m	(100 ft)	TIH	an	d W	ater-	Rea	active	e ma	terial) km	(1.9 mi)
1741	125	Boron trichloride (when spilled on land)	≪ m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	100 m	(300 ft)	0.6 km	(0.4 mi)	1.3 km	(0.8 mi)
1741	125	Boron trichloride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.2 mi)	100 m	(300 ft)	0.9 km	(0.6 mi)	2.8 km	(1.7 mi)

■ If the water-reactive material only has one entry in Table 1 for (when spilled in water) and the product is <u>NOT</u> spilled in water, the GREEN section does not apply. Use the distances in the appropriate ORANGE guide (e.g., UN1717 – Acetyl chloride).

1716	156	Acetyl bromide (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.2 km	(0.2 mi)	0.7 km	(0.4 mi
1717	155	Acetyl chloride (when spilled in water)	\$€.m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	60 m	(200 ft)	0.7 km	(0.4 mi)	2.0 km	(1.2 m
1722 1722	155 155	Allyl chlorocarbonate Allyl chloroformate	100 m	(300 ft)	0.2 km	(0.2 mi)	0.8 km	(0.5 mi)	400 m	(1250 ft)	1.5 km	(0.9 mi)	2.4 km	(1.5 m
1724	155	Allyttrichlorosilane, stabilized (when spilled in water)	30 m	No	ot a	TIH,	only	y Wa	ter-	Read	ctive	mate	erial	(0.8 m
1724	155		30 m			(0.1 mi)			ter-	Read	0.1 km	(0.1 mi)	0.2 km	(0.8 mi

TABLE 2 - Water-Reactive Materials which Produce Toxic Gases contains:

- A list of materials that produce large amounts of Toxic Inhalation Hazard (TIH) gases when spilled in water and identifies the TIH gases produced.
- The substances are presented in numerical order of their ID (UN) numbers
- These water-reactive materials are easily identified in Table 1 as their name is immediately followed by (when spilled in water).

TABLE 2 - WATER-REACTIVE MATERIALS WHICH PRODUCE TOXIC GASE

Materials Which Produce Large Amounts of Toxic-by-Inhalation (TIH)
(PIH in the US) Gas(es) When Spilled in Water

ID No.	Guide No.	Name of Material			TIH Gas Produc	
1162	155	Dimethyldichlorosilane			HCI	Т
1183	139	Ethyldichlorosilane			HCI	
1196	155	Ethyltrichlorosilane			HCI	
1242	139	Methyldichlorosilane			HCI	
1250	155	Methyltrichlorosilane			HCI	
1295	139	Trichlorosilane			HCI	
1298	155	Trimethylchlorosilane			HCI	
1305	155P	Vinyltrichlorosilane			HCI	
1340	139	Phosphorus pentasulfide, f	ree from yellow and white pho	sphorus	H ₂ S	
1340	139	Phosphorus pentasulphide	, free from yellow and white pl	hosphorus	H ₂ S	
1360	139	Calcium phosphide			PH ₃	
1384	135	Sodium dithionite			H ₂ S SC)2
1384	135	Sodium hydrosulfite			H ₂ S SC)2
1384	135	Sodium hydrosulphite			H ₂ S SC)2
1390	139	Alkali metal amides			NH_3	
1397	139	Aluminum phosphide			PH ₃	
1419	139	Magnesium aluminum pho	osphide		PH ₃	
1432	139	Sodium phosphide			PH ₃	
1541	156	Acetone cyanohydrin, stat	pilized		HCN	
1680	157	Potassium cyanide, solid			HCN	
1689	157	Sodium cyanide, solid			HCN	
1716	156	Acetyl bromide			HBr	
1717	155	Acetyl chloride			HCI	
1724	155	Allyltrichlorosilane, stabiliz	ed		HCI	
Chemica Br ₂ Cl ₂ HBr HCI	Bromi Chlori Hydro		S) Gases: Hydrogen fluoride Hydrogen iodide Hydrogen sulfide Hydrogen sulphide	PH ₃ P SO ₂ S	itrogen di hosphine ulfur diox ulphur dio	ide

Use this list only when material is spilled in water.

Hydrogen cyanide

Important:

The TIH gases produced, indicated in Table 2, are for information purposes only. These TIH gases have already been taken into consideration in the distances of Table 1.

For example, **Table 2** indicates that UN1162 - **dimethyldichlorosilane**, when spilled in water, will generate HCl (hydrogen chloride gas). In **Table 1**, you must refer to the distances for **dimethyldichlorosilane** and not the distances for hydrogen chloride gas.

GREEN Section – Overview Question

- You are facing a large spill of methyl iodide from a railcar. What are the distance for "first Isolate in all directions" and "to protect the persons downwind" during the daytime?
- a) 50m, 800m
- b) 100m, 300m
- c) 50m, 300m
- d) 25m, 100m

GREEN Section – Overview Answer

- You are facing a large spill of methyl iodide from a railcar. What are the distance for "first Isolate in all directions" and "to protect the persons downwind" during the daytime?
- a) 50m, 800m
- b) 100m, 300m
- c) 50m, 300m
- d) 25m, 100m

			(From a	small pac	MALL S	SPILLS all leak fr	om a large	package)	(Fro	om a large	LARGE package or fr	SPILLS rom many	small packa	ages)
			ISO	First ISOLATE all Directions DAY NIGHT First ISOLATE in all Directions DAY DAY					PRO'	en TECT mwind durin	ig			
ID No.	Guide No.	Name of Material	Meters	(Feet)	DA Kilometers		NIC Kilometers	(Miles)	Meters	(Feet)	D. Kilometers	AY (Miles)	Kilometers	GHT (Miles)
2548	124	Chlorine pentafluoride	100 m	(300 ft)	0.5 km	(0.3 mi)	2.5 km	(1.6 mi)	800 m	(2500 ft)	5.1 km	(3.2 mi)	11.0+ km	(7.0+ m
2605	155	Methoxymethyl isocyanate	30 m	(100 ft)	0.2 km	(0.1 mi)	0.2 km	(0.2 mi)	60 m	(200 ft)	0.7 km	(0.4 mi)	0.9 km	(0.6 mi
2606	155	Methyl orthosilicate	30 m	(100 ft)	0.2 km	(0.1 mi)	0.3 km	(0.2 mi)	60 m	(200 ft)	0.7 km	(0.5 mi)	1.1 km	(0.7 mi
2644	151	Methyl iodide	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	100 m	(300 ft)	0.3 km	(0.2 mi)	0.7 km	(0.4 mi
2646	151	Hexachlorocyclopentadiene	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.3 km	(0.2 mi
2668	131	Chloroacetonitrile	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.3 km	(0.2 mi)	0.4 km	(0.2 mi
2676	119	Stibine	60 m	(200 ft)	0.3 km	(0.2 mi)	1.6 km	(1.0 mi)	200 m	(600 ft)	1.3 km	(0.8 mi)	4.1 km	(2.6 mi

GREEN Section – Overview Question

You are facing a 75 L spill of UN1838. The product is spilling into a large puddle of water. What is the distance for "first Isolate in all directions" and "to protect the persons downwind" during the nighttime? What will happen when the product reaches the water?

GREEN Section – Overview Answer

You are facing a 75 L spill of UN1838. The product is spilling into a large puddle of water. What is the distance for "first Isolate in all directions" and "to protect the persons downwind" during the nighttime? What will happen when the product

reaches the water?

a) 30 m, 200m (0.2 km) (Table 1)

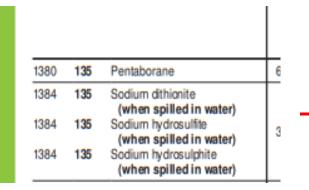
b) HCI (hydrogen chloride) will be released (Tableau 2)

ID No.	Guide No.	Name of Material	TIH Gas(es) Produced
1834	137	Sulphuryl chloride	HCI
1000	107	Thionyl chloride	HOI- 800 ₂
1838	137	Titanium tetrachloride	HCI
1898	156	Acetyl iodide	HI
1923	135	Calcium dithionite	H ₂ S SO ₂
1923	135	Calcium hydrosulfite	H ₂ S SO ₂
1923	135	Calcium hydrosulphite	H ₂ S SO ₂
1929	135	Potassium dithionite	H ₂ S SO ₂
1929	135	Potassium hydrosulfite	H ₂ S SO ₂
1929	135	Potassium hydrosulphite	H₂S SO₂

GREEN Section – Overview Question

- You are facing a large spill sodium hydrosulphite from a railcar. The solid material is going directly on dry pavement. What is the distance for "first Isolate in all directions"?
- a) 50 m
- b) 25 m
- c) 60 m
- d) 30 m

GREEN Section – Overview Answer


You are facing a large spill sodium hydrosulphite from a railcar. The solid material is going directly on dry pavement. What is the distance for "first Isolate in all directions"?

b) 25 m

c) 60 m

d) 30 m

GUIDE SUBSTANCES - SPONTANEOUSLY COMBUSTIBLE

Structural firefighters' protective clothing provides thermal protection but only limited chemical protection.

EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.

Fin

 If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

GREEN Section – Overview Question

You have set an isolation perimeter of 25 m for the large sodium hydrosulphite spill. However, it starts raining. How would you adjust your isolation perimeter?

GREEN Section – Overview Answer

- You have set an isolation perimeter of 25 m for the large sodium hydrosulphite spill. However, it starts raining. How would you adjust your isolation perimeter?
- Your perimeter would increase to 60 m initially, with a downwind protection depending on the time of day

			(From a	small pac	SMALL S kage or sm	SPILLS all leak fr	om a large	package)	(Fro	om a large	LARGE package or f	SPILLS rom many	small packa	iges)
	6.736.777		ISO	irst LATE irections	per	PRO	nen TECT vnwind dur	ing	ISO	irst LATE birections	pe	PROT	en FECT nwind during	9
ID No.	Guide No.	Name of Material	Meters	(Feet)	DA Kilometers		NI G Kilometers		Meters	(Feet)	D Kilometers	AY (Miles)	NIG Kilometers	
1380	135	Pentaborane	60 m	(200 ft)	0.6 km	(0.4 mi)	2.0 km	(1.3 mi)	300 m	(1000 ft)	3.0 km	(1.9 mi)	6.5 km	(4.1 m
1384	135	Sodium dithionite (when spilled in water)												
1384	135	Sodium hydrosulfite (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.4 km	(0.3 mi)	60 m	(200 ft)	0.5 km	(0.3 mi)	2.1 km	(1.3 m
1384	135	Sodium hydrosulphite (when spilled in water)												

GREEN Section – Table 1 reference to Table 3

		TABL	E 1 - INITIAL ISOLATION	AND F	PROTEC	CTIVE A	CTION	DISTAN	CES						
Page 290				(From a	small pack	SMALL S kage or sm	SPILLS all leak fr	om a large	package)	(Fro	om a large p	LARGE backage or f	SPILLS rom many	small packa	ges)
90	ID No.	Guide No.	Name of Material	ISOL	rst ATE rections (Feet)	DA	PRO sons Dov	nen TECT vnwind dur NIC Kilometers	HT	ISO	irst LATE irections (Feet)		The PROT rsons Down AY (Miles)		HT
	1005 1005	125 125	Ammonia, anhydrous Anhydrous ammonia	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)			Refer to	Table 3		
	1008 1008	125 125	Boron trifluoride Boron trifluoride, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.7 km	(0.5 mi)	400 m	(1250 ft)	2.4 km	(1.5 mi)	4.7 km	(2.9 mi)
	1016	119	Carbon monoxide, compressed	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	200 m	(600 ft)	1.2 km	(0.7 mi)	3.9 km	(2.4 mi)
	1017	124	Chlorine	60 m	(200 ft)	0.3 km	(0.2 mi)	1.5 km	(0.9 mi)			Refer to	Table 3		
	1026	119	Cyanogen	30 m	(100 ft)	0.1 km	(0.1 mi)	0.4 km	(0.3 mi)	60 m	(200 ft)	0.3 km	(0.2 mi)	1.1 km	(0.7 mi)
	1040 1040	119P 119P	Ethylene oxide Ethylene oxide with nitrogen	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.2 mi)			Refer to	Table 3		
	1045	124	Fluorine, compressed	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	100 m	(300 ft)	0.5 km	(0.3 mi)	2.3 km	(1.4 mi)
	1048	125	Hydrogen bromide, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.2 mi)	150 m	(500 ft)	1.0 km	(0.7 mi)	3.2 km	(2.0 mi)
	1050	125	Hydrogen chloride, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)			Refer to	Table 3		
	1051	117P	Hydrogen cyanide, stabilized	60 m	(200 ft)	0.2 km	(0.1 mi)	0.7 km	(0.4 mi)	200 m	(600 ft)	0.7 km	(0.5 mi)	1.8 km	(1.1 mi)
	1052	125	Hydrogen fluoride, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.5 km	(0.3 mi)			Refer to	Table 3		
	1053 1053	117 117	Hydrogen sulfide Hydrogen sulphide	30 m	(100 ft)	0.1 km	(0.1 mi)	0.5 km	(0.3 mi)	400 m	(1250 ft)	2.4 km	(1.5 mi)	6.3 km	(4.0 mi)
	1061	118	Methylamine, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	200 m	(600 ft)	0.6 km	(0.4 mi)	2.1 km	(1.3 mi)
	1062	123	Methyl bromide	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	150 m	(500 ft)	0.3 km	(0.2 mi)	0.7 km	(0.5 mi)
	1064	117	Methyl mercaptan	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	200 m	(600 ft)	1.3 km	(0.8 mi)	3.9 km	(2.4 mi)
	1067 1067	124 124	Dinitrogen tetroxide Nitrogen dioxide	30 m	(100 ft)	0.1 km	(0.1 mi)	0.4 km	(0.3 mi)	400 m	(1250 ft)	1.4 km	(0.9 mi)	3.3 km	(2.1 mi)

In Table 1, some materials indicate to refer to Table 3 for more information for a LARGE SPILL.

GREEN Section – Table 1 reference to Table 3

	TAB	LE 1 - INITIAL ISOLATION	AND I	PROTEC	CTIVE A	CTION	DISTAN	CES						
Page 290			(From a	small pack	SMALL S	SPILLS all leak fr	om a large	package)	(Fr	om a large p	LARGE backage or f	SPILLS from many	small packa	ges)
ID	Guide		in all D	irst LATE irections	D/	PRO sons Dov		GHT	ISO in all D	irst LATE Directions	D	AY	TECT nwind during NIG	HT
No.	No.	Name of Material	Meters	(Feet)	Kilometers	(Miles)	Kilometers	(Miles)	Meters	(Feet)	Kilometers	(Miles)	Kilometers	(Miles)
1005 1005	125 125	Ammonia, anhydrous Anhydrous ammonia	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)			Refer to	Table 3		
1008 1008	125 125	Boron trifluoride Boron trifluoride, compressed	30 m	(100 ft)	0.2 km	(0.1 mi)	0.7 km	(0.5 mi)	400 m	(1250 ft)	2.4 km	(1.5 mi)	4.7 km	(2.9 mi)
1016	119	Carbon monoxide, compressed	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	200 m	(600 ft)	1.2 km	(0.7 mi)	3.9 km	(2.4 mi)
1017	124	Chlorine	60 m	(200 ft)	0.3 km	(0.2 mi)	1.5 km	(0.9 mi)			Refer to	Table 3		
1026	119	Cyanogen	30 m	(100 ft)	0.1 km	(0.1 mi)	0.4 km	(0.3 mi)	60 m	(200 ft)	0.3 km	(0.2 mi)	1.1 km	(0.7 mi)
1040 1040		Ethylene oxide Ethylene oxide with nitrogen	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.2 mi)			Refer to	Table 3		
1045	124	Fluorine, compressed	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	100 m	(300 ft)	0.5 km	(0.3 mi)	2.3 km	(1.4 mi)
1048	125	Hydrogen bromide, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.2 mi)	150 m	(500 ft)	1.0 km	(0.7 mi)	3.2 km	(2.0 mi)
1050	125	Hydrogen chloride, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)			Refer to	Table 3		
1051	117P	Hydrogen cyanide, stabilized	60 m	(200 ft)	0.2 km	(0.1 mi)	0.7 km	(0.4 mi)	200 m	(600 ft)	0.7 km	(0.5 mi)	1.8 km	(1.1 mi)
1052	125	Hydrogen fluoride, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.5 km	(0.3 mi)			Refer to	Table 3		
1053 1053	117 117	Hydrogen sulfide Hydrogen sulphide	30 m	(100 ft)	0.1 km	(0.1 mi)	0.5 km	(0.3 mi)	400 m	(1250 ft)	2.4 km	(1.5 mi)	6.3 km	(4.0 mi)
1061	118	Methylamine, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	200 m	(600 ft)	0.6 km	(0.4 mi)	2.1 km	(1.3 mi)
1062	123	Methyl bromide	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	150 m	(500 ft)	0.3 km	(0.2 mi)	0.7 km	(0.5 mi)
1064	117	Methyl mercaptan	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	200 m	(600 ft)	1.3 km	(0.8 mi)	3.9 km	(2.4 mi)
1067 1067	124 124	Dinitrogen tetroxide Nitrogen dioxide	30 m	(100 ft)	0.1 km	(0.1 mi)	0.4 km	(0.3 mi)	400 m	(1250 ft)	1.4 km	(0.9 mi)	3.3 km	(2.1 mi)

In Table 1, some materials indicate to refer to Table 3 for more information for a LARGE SPILL.

TABLE 3 - Initial Isolation and Protective Action Distances for Large Spills for Different Quantities of Six Common TIH Gases contains:

- A sub-list of toxic inhalation hazard materials found in Table 1 that may be more commonly encountered.
- The materials are:
 - UN1005 Ammonia, anhydrous / Anhydrous ammonia
 - UN1017 Chlorine
 - UN1040 Ethylene oxide and Ethylene oxide with nitrogen
 - UN1050 Hydrogen chloride, anhydrous and UN2186 Hydrogen chloride, refrigerated liquid
 - UN1052 Hydrogen fluoride, anhydrous
 - UN1079 Sulfur dioxide / Sulphur dioxide

TABLE 3 - INITIAL ISOLATION AND PROTECTIVE ACTION DISTANCES FOR LARGE SPILLS FOR DIFFERENT QUANTITIES OF SIX COMMON TIH (PIH IN THE US) GASES

0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 0.0.														
		ISOLATE	Then The Test pole on Bomming during											
	in al	l Directions	DAY											
			Low wind (< 6 mph = < 10 km/h)		Moderate wind (6-12 mph = 10 - 20 km/h)		High wind (> 12 mph = > 20 km/h)		Low wind (< 6 mph = < 10 km/h)		Moderate wind (6-12 mph = 10 - 20 km/h)		High w (> 12 mp > 20 km	oh =
	Mete	rs (Feet)	Kilometer	s (Miles)	Kilometers	(Miles)	Kilometers	(Miles)	Kilometers	(Miles)	Kilometers	(Miles)	Kilometers	(Miles)
TRANSPORT CONTAINER	UN	UN 005 Ammonia, anhydrous / Anhydrous ammonia: Large Spills												
Rail tank car	300	(1000)	1.6	(1.0)	1.2	(8.0)	1.0	(0.6)	4.1	(2.6)	2.1	(1.3)	1.3	(8.0)
Highway tank truck or trailer	150	(500)	0.8	(0.5)	0.5	(0.3)	0.4	(0.3)	1.8	(1.1)	0.7	(0.4)	0.6	(0.4)
Agricultural nurse tank	60	(200)	0.5	(0.3)	0.3	(0.2)	0.3	(0.2)	1.4	(0.9)	0.3	(0.2)	0.3	(0.2)
Multiple small cylinders	30	(100)	0.3	(0.2)	0.2	(0.1)	0.1	(0.1)	0.7	(0.5)	0.3	(0.2)	0.2	(0.1)
TRANSPORT CONTAINER	UN1	UN1017 Chlorine: Large Spills												
Rail tank car	1000	(3000)	9.6	(6.0)	6.3	(3.9)	5.1	(3.2)	11.0+	(7.0+)	8.9	(5.6)	6.5	(4.1)
Highway tank truck or trailer	600	(2000)	5.6	(3.5)	3.3	(2.1)	2.5	(1.6)	6.4	(4.0)	4.7	(2.9)	3.8	(2.4)
Multiple ton cylinders	300	(1000)	1.9	(1.2)	1.3	(8.0)	1.0	(0.6)	3.5	(2.2)	2.3	(1.4)	1.3	(8.0)
Multiple small cylinders or single ton cylinder	150	(500)	1.3	(0.9)	0.7	(0.5)	0.5	(0.3)	2.4	(1.5)	1.2	(0.8)	0.6	(0.4)

Table 3 provides initial isolation and protective action distances for LARGE SPILLS. The table is split by:

- different container types then,
- daytime and nighttime situations and,
- different wind speeds.

Additional Sections

White Section (Part 1)

Yellow Section

Blue Section

Orange Section

Green Section

White Section (Part 2)

TABLE OF CONTENTS

Shipping Papers (Documents)	
How to Use this Guidebook	
Local Emergency Telephone Numbers	
Safety Precautions	
Notification and Request for Technical Information	
Hazard Classification System	
Introduction to the Table of Markings, Labels and Placards	
Table of Markings, Labels and Placards and Initial Response Guide to Use	
Rail Car Identification Chart	
Road Trailer Identification Chart	
Globally Harmonized System of Classification and Labeling of Chemicals	(GHS) 16
Hazard Identification Numbers Displayed on Some Intermodal Containers	
Pipeline Transportation	
TD Number Index (yellow section)	
Name of Material Index (blue section)	
How to Use the Orange Guides	148
General First Aid	
Guides (orange section)	152
Introduction to Green Tables	
Protective Actions	
Protective Action Decision Factors to Consider	
Background on Table 1 - Initial Isolation and Protective Action Distances.	286
Table 1 – Initial Isolation and Protective Action Distances	
Table 2 - Water-Reactive Materials which Produce Toxic Gases	
Table 3 - Initial Isolation and Protective Action Distances for Large Spills	
for Different Quantities of Six Common TIH (PIH in the US) Gases	
ERG2024 User's Guide	
Protective Clothing	
Decontamination	
Fire and Spill Control.	
Considerations for Lithium Battery and Electric Vehicle (EV) Fires	
BLEVE and Heat Induced Tear	
BLEVE – Safety Precautions.	
Criminal or Terrorist Use of Chemical, Biological and Radiological Agents	
Improvised Explosive Device (IED) Safe Stand-Off Distance	
Glossary	
Publication Data	
Canada and United States National Response Centers	
ERAP – Emergency Response Assistance Plans	
24-Hour Emergency Response Telephone Numbers	388
	Page 2

Page 3

Outline

CANUTEC

- Who we are
- What we do
- Emergency information

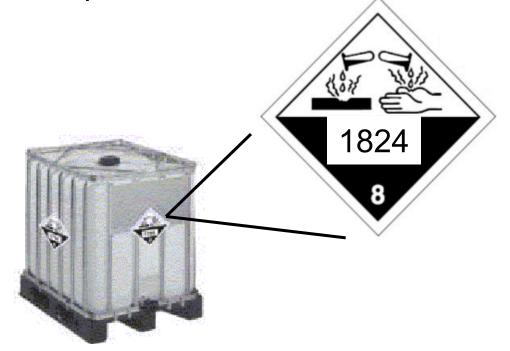
Emergency Response Guidebook (ERG)

- Overview of the ERG
- Scenarios

Other Information

- CANUTEC and TDG Contacts

Scenario Guidelines


For each of the following scenarios:

- 1. Identify the product in the **YELLOW** or **BLUE** Sections;
- 2. Find the appropriate Guide in the **ORANGE** Section;
- 3. Identify the suggested distances in the **ORANGE** and/or **GREEN** Sections;
- 4. Describe the main characteristics and hazards of the substance.

Scenario 1

A 1000-litre tote container filled with UN1824 was puncture by a forklift and is leaking. The forklift driver was exposed to the liquid.

- 1. What product is leaking?
- 2. Where do you find the first aid recommendations?
- 3. What extinguishing agent can be used if there is a small fire?

- The ID (UN) number is 1824 and it is a corrosive product (Class 8 placard);
- In the YELLOW section, this product corresponds to Caustic soda, solution or Sodium hydroxide, solution and refers to Guide 154;

```
1824 154 Caustic soda, solution1824 154 Sodium hydroxide, solution
```

- There is no danger of polymerization (no "P");
- The substance is <u>not highlighted</u> in green; therefore, the GREEN section does not apply.

Substances - Toxic and/or Corrosive (Non-Combustible)

EMERGENCY RESPONSE

GUIDE

154

FIRE

Small Fire

Dry chemical, CO₂ or water spray.

Large Fire

- Dry chemical, CO₂, alcohol-resistant foam or water spray.
- · If it can be done safely, move undamaged containers away from the area around the fire.
- Dike runoff from fire control for later disposal.

Fire Involving Tanks, Rail Tank Cars or Highway Tanks

- · Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- · Do not get water inside containers.
- · Cool containers with flooding quantities of water until well after fire is out.
- · Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from tanks in direct contact with flames.

SPILL OR LEAK

- · ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- · Stop leak if you can do it without risk.
- · Prevent entry into waterways, sewers, basements or confined areas.
- · Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers.
- DO NOT GET WATER INSIDE CONTAINERS.

FIRST AID

Refer to the "General First Aid" section.

Specific First Aid:

For corrosives, in case of contact, immediately flush skin or eyes with running water for at least 30 minutes. Additional flushing may be required.

FIRST AID can be found in Guide 154 under EMERGENCY RESPONSE

 Also refer to the "General First Aid" section

In case of a fire, use the suggested extinguishing agents found in Guide 154 under FIRE.

FIRE

Small Fire

Dry chemical, CO₂ or water spray.

Large Fire

- Dry chemical, CO₂, alcohol-resistant foam or water spray.
- If it can be done safely, move undamaged containers away from the area around the fire.
- Dike runoff from fire control for later disposal.

Fire Involving Tanks, Rail Tank Cars or Highway Tanks

- Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles.
- Do not get water inside containers.
- Cool containers with flooding quantities of water until well after fire is out.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- ALWAYS stay away from tanks in direct contact with flames.

Scenario 2

A rail tank car is leaking during the day, at a well-known facility in your area, where chlorine rail cars are the only dangerous goods being handled. A residential area is nearby.

- 1. What is the UN number for chlorine?
- 2. What are your isolation distances?

- The product involved is *Chlorine*;
- In the BLUE section, this product indicates that the ID (UN) number is 1017 and refers to Guide 124;

Chlorine **124** 1017

- There is no danger of polymerization (no "P");
- The substance is highlighted in green; therefore, since there is a spill (and no fire), the initial isolation and protective action distances must be taken from Table 1.

Table 1 - Initial Isolation and Protective Action Distances for UN1017 - Chlorine shows that for large spills, **Table 3** must be consulted for isolation and protective action distances.

	TABLE 1 -	INITIAL ISOLATION	AND P	ROTEC	CTIVE AC	CTION	DISTAN	CES						
			SMALL SPILLS (From a small package or small leak from a large package)						LARGE SPILLS (From a large package or from many small packages)					
			Fii ISOL in all Dii		pers	PRO	nen TECT vnwind dur	ing	First ISOLATE in all Directions		Then PROTECT persons Downwind during			
ID No.	Guide No. Name	of Material	Meters	(Feet)	DA Kilometers		NIG Kilometers		Meters	(Feet)	DAY Kilometers (Miles)		NIG Kilometers	
		-	i											
1017	124 Chlorin	ne	60 m	(200 ft)	0.3 km	(0.2 mi)	1.5 km	(0.9 mi)			Refer to	Table 3		

For a rail car, the initial isolation distance (*First Isolate*) suggested in **Table 3** is 1000 metres. The protective action distances (*Then Protect*) must be taken during the day, depending on the wind speed (9.6 km, 6.3 km or 5.1 km).

TABLE 3 - INITIAL IS	OLATIO	N AND		— .	ACTION D MON TIH					LS FO	OR DIFFE	RENT	QUANTI	TIES	
		OLATE	- Polosia Bollinia daling												
	in all Directions			DAY		NIGHT									
			Low wind (< 6 mph = < 10 km/h)		Moderate wind (6-12 mph = 10 - 20 km/h)		High wind (> 12 mph = > 20 km/h)		Low wind (< 6 mph = < 10 km/h)		Moderate wind (6-12 mph = 10 - 20 km/h)		High wind (> 12 mph = > 20 km/h)		
	Meters	(Feet)	Kilometers	Kilometers (Miles)		(Miles)	Kilometers	(Miles)	Kilometers	(Miles)	Kilometers	(Miles)	Kilometers	(Miles	
TRANSPORT CONTAINER	UN10	17 Chlo	rine: La	rge S	pills										
Rail tank car	1000	(3000)	9.6	(6.0)	6.3	(3.9)	5.1	(3.2)	11.0+	(7.0+)	8.9	(5.6)	6.5	(4.1)	
Highway tank truck or trailer	600	(2000)	5.6	(3.5)	3.3	(2.1)	2.5	(1.6)	6.4	(4.0)	4.7	(2.9)	3.8	(2.4)	
Multiple ton cylinders	300	(1000)	1.9	(1.2)	1.3	(8.0)	1.0	(0.6)	3.5	(2.2)	2.3	(1.4)	1.3	(0.8	
Multiple small cylinders or single ton cylinder	150	(500)	1.3	(0.9)	0.7	(0.5)	0.5	(0.3)	2.4	(1.5)	1.2	(8.0)	0.6	(0.4	

Main characteristics and hazards of the substance are also found in **Guide**124 under **POTENTIAL HAZARDS**.

Given that the primary danger associated with Chlorine is health, the **HEALTH** section precedes the **FIRE OR EXPLOSION** section.

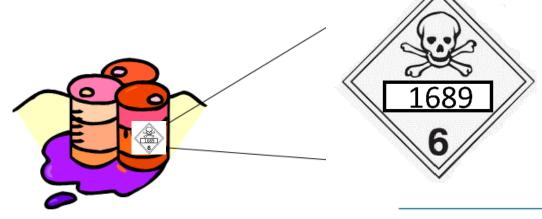
GUIDE GASES - TOXIC AND/OR CORROSIVE - OXIDIZING

POTENTIAL HAZARDS

HEALTH

- TOXIC and/or CORROSIVE; may be fatal if inhaled or absorbed through skin.
- Fire will produce irritating, corrosive and/or toxic gases.
- Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite.
- · Runoff from fire control or dilution water may cause environmental contamination.

FIRE OR EXPLOSION


- · Substance does not burn but will support combustion.
- · Vapors from liquefied gas are initially heavier than air and spread along ground.
- These are strong oxidizers and will react vigorously or explosively with many materials including fuels.
- May ignite combustibles (wood, paper, oil, clothing, etc.).
- · Some will react violently with air, moist air and/or water.
- Cylinders exposed to fire may vent and release toxic and/or corrosive gas through pressure relief devices.
- Containers may explode when heated.
- · Ruptured cylinders may rocket.

Scenario 3

A drum containing this substance is punctured and is leaking on the ground.

1. What is the main danger with this product and where would find this information?

2. What are the isolation distances?

- The ID (UN) number is 1689 and it is a toxic substance (Class 6.1 label);
- In the YELLOW section, this product is Sodium cyanide, solid and refers to Guide 157;

1689 157 Sodium cyanide, solid

- There is no danger of polymerization (no "P");
- The substance is highlighted in green; may need to refer to GREEN section.

Since the product is spilled on the ground, the distance in **Table 1** DO NOT APPLY. In this case, **Table 1** should only be consulted if the product is spilled in water.

			SMALL SPILLS (From a small package or small leak from a large package							LARGE SPILLS (From a large package or from many small packages) First Then					
			ISOLATE in all Directions		PROTECT persons Downwind during				ISOLATE in all Directions		PROTECT persons Downwind during				
ID No.	Guide No.	Name of Material	Meters	(Feet)	D/ Kilometers			GHT (Miles)	Meters	(Feet)	D Kilometers	AY (Miles)	NIG Kilometers		
1689	157	Sodium cyanide, solid (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	60 m	(200 ft)	0.2 km	(0.2 mi)	0.9 km	(0.6 mi)	
1695	131	Chloroacetone, stabilized	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	60 m	(200 ft)	0.4 km	(0.3 mi)	0.6 km	(0.4 mi)	
1716	156	Acetyl bromide (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.2 km	(0.2 mi)	0.7 km	(0.4 mi)	
1717	155	Acetyl chloride (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	60 m	(200 ft)	0.7 km	(0.4 mi)	2.0 km	(1.2 mi)	
1722 1722	155 155	Allyl chlorocarbonate Allyl chloroformate	100 m	(300 ft)	0.3 km	(0.2 mi)	0.8 km	(0.5 mi)	400 m	(1250 ft)	1.5 km	(0.9 mi)	2.4 km	(1.5 mi)	

For UN1689, Table 1 suggests distances specifically when the product is spilled in water. This was not the case, the suggested distances found in Guide 157 under EVACUATION must be used.

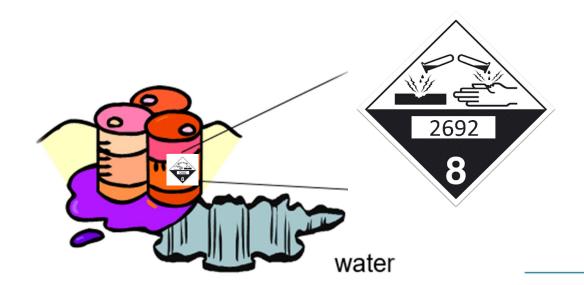
EVACUATION

Immediate precautionary measure

 Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.

Spill

- For highlighted materials: see Table 1 Initial Isolation and Protective Action Distances.
- For non-highlighted materials: increase the immediate precautionary measure distance, in the downwind direction, as necessary.


Fire

• If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

Scenario 4

Three drums are leaking in a puddle of water. Fumes are evolving from the spill in contact with the water.

- 1. What is the evolving gas?
- 2. What are your isolation distances for a large spill?

- Table 2 will indicate the TIH gases produced;
- For UN2692, the gas produced is *HBr* (*Hydrogen bromide*).

T.	ABLE 2	WATER-REACTIVE MATERIALS WHICH PRODU	JCE TOXIC GASES
	Mate	rials Which Produce Large Amounts of Toxic-by-l (PIH in the US) Gas(es) When Spilled in Wa	` ,
ID No.	Guide No.	Name of Material	TIH Gas(es) Produced
2692	157	Boron tribromide	HBr

In the YELLOW section, this product is boron tribromide and refers to Guide 157;

- There is no danger of polymerization (no "P");
- The substance is highlighted in green

- In Table 1, UN2692 has two entries; (when spilled on land) and (when spilled in water)
- Since the product is leaking in a puddle of water, Table 1 (when spilled in water) will have to be used for suggested isolation and protective action distances.

			(From a	SMALL SPILLS (From a small package or small leak from a large package)					(From a large package or from many small packages)					
		ISO	First ISOLATE in all Directions		Then PROTECT persons Downwind during				First ISOLATE in all Directions		Then PROTECT persons Downwind during			
ID No.	Guide No.	Name of Material	Meters		D.A Kilometers		NIC Kilometers	GHT (Miles)	Meters	(Feet)	D Kilometers	AY (Miles)	NIG Kilometers	
2692	157	Boron tribromide (when spilled on land)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	30 m	(100 ft)	0.2 km	(0.1 mi)	0.4 km	(0.3 mi)
2692	157	Boron tribromide (when spilled in water)	30 m	(100 ft)	0.1 km	(0.1 mi)	0.1 km	(0.1 mi)	30 m	(100 ft)	0.4 km	(0.3 mi)	1.4 km	(0.9 mi)

IMPORTANT:

The TIH gases produced, indicated in **Table 2**, are for <u>information</u> <u>purposes only</u>. These TIH gases have already been taken into consideration in the distances of **Table 1**.

For UN2692, in Table 1, you must refer to the distances for **Boron tribromide** and not the distances for *Hydrogen bromide* gas (HBr).

Main characteristics and hazards of the substance are found in Guide 157 under POTENTIAL HAZARDS.

Given that the primary danger associated with Sodium cyanide, solid is health (toxic), the HEALTH section precedes the FIRE OR EXPLOSION section.

GUIDE SUBSTANCES - TOXIC AND/OR CORROSIVE (NON-COMBUSTIBLE/WATER-SENSITIVE)

POTENTIAL HAZARDS

HEALTH

- TOXIC and/or CORROSIVE; inhalation, ingestion or contact (skin, eyes) with vapors, dusts or substance
 may cause severe injury, burns or death.
- · Reaction with water or moist air may release toxic, corrosive or flammable gases.
- · Reaction with water may generate much heat that will increase the concentration of fumes in the air.
- · Fire will produce irritating, corrosive and/or toxic gases.
- Runoff from fire control or dilution water may be corrosive and/or toxic and cause environmental contamination.

FIRE OR EXPLOSION

- Non-combustible, substance itself does not burn but may decompose upon heating to produce corrosive and/or toxic fumes.
- UN1802, UN2032, UN3084, UN3093, UN1796 (above 50%), UN1826 (above 50%), and UN2031 (above 65%) may act as oxidizers. Also consult GUIDE 140.
- · Vapors may accumulate in confined areas (basement, tanks, hopper/tank cars, etc.).
- Substance may react with water (some violently), releasing corrosive and/or toxic gases and runoff.
- · Corrosives in contact with metals may evolve flammable hydrogen gas.
- · Containers may explode when heated or if contaminated with water.

Outline

CANUTEC

- Who we are
- What we do
- Emergency information

Emergency Response Guidebook (ERG)

- Overview of the ERG
- Scenarios

Other Information

- CANUTEC and TDG Contacts

CANUTEC

- In case of an emergency, you can call CANUTEC, 24/7, at:
 - 1-888-CAN-UTEC (1-888-226-8832), or
 - **(613) 996-6666**, or
 - *666 on a cellular (Canada only).
- In a non-emergency situation (for example a simulation), please call the information line available 24/7 at (613) 992-4624.
- You can reach us by email: <u>CANUTEC@tc.gc.ca</u>
- For more information, visit: https://tc.canada.ca/en/dangerous-goods/canutec

CANUTEC Registration Services

- Manage the CANUTEC Registration System (CRS)
- How to contact the registration team:
 - By phone: 1-613-947-5048
 - Toll-free: 1-888-706-0195
 - By email: canutec.services@tc.gc.ca

TDG Contacts

TDG Regional Offices

Region	Telephone Number	Email address
Atlantic	1-866-814-1477	TDG-TMDAtlantic@tc.gc.ca
Quebec	1-514-633-3400	TMD-TDG.Quebec@tc.gc.ca
Ontario	1-416-973-1868	TDG-TMDOntario@tc.gc.ca
Prairie & Northern	1-888-463-0521	TDG-TMDPNR@tc.gc.ca
Pacific	1-604-666-2955	TDGPacific-TMDPacifique@tc.gc.ca

General TDG information: <u>TDG-TMD@tc.gc.ca</u>

Safety Awareness Team:

TC.TDGSafetyAwareness-SensibilisationalasecuriteduTMD.TC@tc.gc.ca

Response Operations Team (ERAP Program):

TC.ChiefResponseOperations-ChefOperationsDeReponse.TC@tc.gc.ca

Websites: https://tc.canada.ca/en/dangerous-goods

https://tc.canada.ca/en/dangerous-goods/emergency-response-assistance-plans-eraps

Thank you! Questions?

Feedback

