
Taming the Home Connect 
Microservice Jungle

The Backstage Software Catalog

Thomas Richer 
Tilman Masur 

TNG Big Techday 
2023-07-07



Who Is BSH & What Is Home Connect?



3



4



5



6



How We Got Here: Microservices

7



The Monolith

● Historically default architecture
○ Whole software build and deployed as one thing

● Advantages
○ Simpler solution architecture
○ Efficient because fewer remote calls

● Downsides
○ Multiple teams working on same code base
○ Slow to deploy
○ May be badly factored
○ Can only be scaled as a unit

8



Microservices 

● Smaller well-factored services communicating 
over network

● Advantages
○ Single responsible team per microservice
○ Quick to deploy
○ Forces good factoring
○ Horizontal scaling built in
○ Choose best tech per service
○ More resilient

9

⇨ Microservices empower teams!



But More Autonomy Can Lead to

● Ecosystem fracturing faster with respect 
technologies, conventions, tooling

● Less reusability, knowledge sharing
● More complex architecture & org-structure
● Less overview for architects, business, & 

developers

10



Microservices Evolution 
at Home Connect 

11



Home Connect in a Nutshell



13



14



15



16



17



18



19



Home Connect in a Nutshell



Is there another team with a 
Kotlin service?

Who uses this Kafka topic?

Is there an API where I can 
ask for XYZ?

Well, .. uh .. 

21

Which team owns 
this service?

How many services 
use log4j?

Is that service 
available in …?



Service Catalog v0:

People

Service Catalog v1:

Wiki

Service Catalog v2:

Self-Built App

22

● Scales terribly
● Memory persistence issues
● Bad version control
● Offline during holidays

● Not well integrated into 
workflows

● Distant from code
● In the end never up to date

● High implementation and 
maintenance effort

● Unclear requirements
● Low buy-in from 

stakeholders & other teams



Backstage

23



Beyond the Microservice Honeymoon

● Backstage addresses by 
○ collecting service metadata & tools in one place 
○ DRYing common microservice tasks

backstage.io

24



“Backstage -
an open platform 
for building 
developer portals”
backstage.io

25



Goals

Reveal high-level architecture & dependencies

Give details about every service like ownership, docs, links, …

Drive technology standardization

Speed up on-boarding

Reduce context switches for developers

26



Main Features

● Software Catalog
● API view including Swagger UI
● Search
● TechDocs
● Templates
● Highly extensible via front- & backend 

plugins

27



Tech Stack

● Typescript
● Node backend
● React frontend
● Yarn package manager
● lerna monorepo manager
● SQL database

⇨ What can Backstage tell us about 
Backstage?

28



Introducing Backstage Step by Step

● Setup & deploy
● Create internal how-to, get data into 

Backstage
○ define data model, standards, & conventions
○ ongoing process to maintain data, push adoption

● Backstage declared official Home Connect 
service catalog

● Templates to quickly setup new services
● Custom plugin PoC: Dependency Search 

Tool
● Recently: modeling deployed instances & 

environments 29



Our Backstage Data Model

30



Data Import

● Teams identify their entities (services, APIs, 
resources…)

● Add catalog-info.yaml files to the respective 
repos with

○ links to docs, other tools
○ ownership
○ relations to other services

● Auto-discovered by Backstage

31



32



Templates

● Highly configurable backend actions with frontend 
form input

○ Default actions available for checking out repos etc
● Our templates

○ take in new service/repo name
○ copy repos, create default branches, permission settings
○ open PR in CI config repo
○ …

● Demo

33



Custom Plugin: Dependency Search Tool

● PoC for plugin mechanism
● Data ingested via custom processors
● Filterable table view (react component) installed into main app
● In future teams shall develop their own plugins!

34



Needs to Be Customized for Your Organization

● By extending data model
● Scraping your info sources via processors
● Custom templates
● Custom front- and backend plugins
● …

But: investment needed to build out customizations

35



Limitations

● Entity testing & error feedback difficult
● Many of the OSS plugins still in infancy
● Some features still in alpha

36



Take Aways

37



Why Did Backstage Work at Home Connect?

● Developers document right in their code bases

● Enough initial capability to get buy-in from stakeholders

● Extensible to cover needs of different user groups

38



Is It For You?

Pro Con

39

● > 10 of services/APIs
● > 3 teams
● Demo-repos → templates
● Cheap to try out
● Platform-team to take ownership

● It’s not free productivity
● Some features still in alpha



Thank you.


