QUANTUM SIMULATION AND COMPUTING

A NEW WAY OF COMPUTING BEYOND SUPERCOMPUTERS

JENS EISERT, FU BERLIN HARDWARE HACKING, BIG
, Gordon Moore (Intel, 1965): Number of transistors in integrated circuits doubles approximately every two years

Zuse Z3 (1941)
, Gordon Moore (Intel, 1965): Number of transistors in integrated circuits doubles approximately every two years

ENIAC, EDVAC, ORDVAC, BRLESC-I (1945-62)

Zuse Z3 (1941)
, Gordon Moore (Intel, 1965): Number of transistors in integrated circuits doubles approximately every two years

ENIAC, EDVAC, ORDVAC, BRLESC-I (1945-62)

Zuse Z3 (1941)

, Gordon Moore (Intel, 1965): Number of transistors in integrated circuits doubles approximately every two years
, Minimum feature size down to that of single atoms

, Gordon Moore (Intel, 1965): Number of transistors in integrated circuits doubles approximately every two years
, Minimum feature size down to that of single atoms
Different physical laws matter

QUANTUM MECHANICS

, Quantum mechanics is a physical theory

- Quantum mechanics is a physical theory
, Theory of atoms, molecules, and light quanta

Developed 1925-1928

- Developed 1925-1928
, Basis of semi-conductors, materials science, lasers

- Developed 1925-1928
, Basis of semi-conductors, materials science, lasers

D Fine structure constant: 7,297.352.566.4(17) \times 10 $^{-3}$

- Developed 1925-1928
, Basis of semi-conductors, materials science, lasers

- Fine structure constant: 7,297.352.566.4(17) $\times 10^{-3}$
, Radically different from classical mechanics

RANDOMNESS

Measurement outcomes are random

- Measurement outcomes are random

, Measurement outcomes are random

- The randomness of quantum mechanics is absolute

- The randomness of quantum mechanics is absolute

- Bell inequality violated under assumption of local hidden variables

$$
P(a, b \mid A, B)=\int d \lambda p(\lambda) \chi_{A}(a, \lambda) \chi_{B}(b, \lambda)
$$

UNCERTANTY

UNCERTAINTY PRINCIPLE

, No measurement without disturbance

SUPERPOSITION

SUPERPOSITION PRINCIPLE

, Systems can be in "many states at once"

SUPERPOSITION PRINCIPLE

$|1\rangle$

- State space $\{\rho: \rho \geq 0, \operatorname{tr}(\rho)=1\}$ over complex vector space \mathcal{H} For n spins $\mathcal{H}=\mathbb{C}_{2}^{\otimes n}$

QUANTUM

TECHNOLOGIES

- Make use of quantum effects on the single quantum system level to think of new technologies in communication, sensing, computation, simulation
- Classical key distribution

010101
010101

- Classical key distribution

Classical key distribution

, Quantum key distribution for secure communication

010101
010101

- Quantum key distribution for secure communication

No information gain without disturbance

, Quantum key distribution for secure communication

Alice's bit
Alice's basis State
Bob's basis
Bob's result
Public part Key

- Basis +

$$
\uparrow=|1\rangle, \rightarrow=|0\rangle
$$

-Basis \times

$$
\rangle=|0\rangle+|1\rangle, \quad \nearrow=|0\rangle-|1\rangle
$$

Quantum key distribution for secure communication

Security can be proven

Bug-proof communication: Quantum communication

Quantum communication uses quantum-cryptographically protected
 communication channels for the bug-proof transfer of information. Quantummechanically connected pairs of photons transport confidential information securely and reliably. Today, this method only allows information to be transported via glass fibres over a maximum of approximately 100 kilometres due to the absorption of the light used to convey the data. In order to achieve greater distances, the BMBF is funding research into quantum repeaters which use entanglement swapping to stationary quantum states over a distance of more than 100 kilometres.

QUANTUM COMPUTERS

, Computational devices with single quantum systems

, Computational devices with single quantum systems

E.g., 01010011 (bits) replaced by (qubits) $\alpha|0,1,0,1,0,0,1,1\rangle+\beta|1,1,0,0,1,1,1,0\rangle+\gamma|0,0,1,0,0,1,1,1\rangle+\ldots$

- Could solve some problems supercomputers cannot

- E.g., factoring of large products of prime numbers
- A factor of a large number N can be found if the period p of

$$
f(x)=a^{x} \bmod N
$$

can be identified

- Periods can be found using the quantum Fourier transform

$$
\sum_{i=0}^{n-1} x_{i}|i\rangle \mapsto \sum_{i=0}^{n-1} y_{i}|i\rangle \text { with } y_{k}=\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_{j} e^{2 \pi i j k / n}
$$

- E.g., factoring of large products of prime numbers
- A factor of a large number N can be found if the period p of

$$
f(x)=a^{x} \bmod N
$$

can be identified

- Periods can be found using the quantum Fourier transform

$$
\sum_{i=0}^{n-1} x_{i}|i\rangle \mapsto \sum_{i=0}^{n-1} y_{i}|i\rangle \text { with } y_{k}=\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_{j} e^{2 \pi i j k / n}
$$

- Solves NP problem in poly time: Runtime $O\left((\log N)^{3}\right)$
- Best known classical algorithm $\exp \left(O\left((\log N)^{1 / 3}(\log \log N)^{2 / 3}\right)\right)$
- Generalised to hidden subgroup problem
E.g., factoring of large products of prime numbers Shor, SIAM J Comp 26, 148 (1997)
Solving linear systems
Harrow, Hassidim, Lloyd, Phys Rev Lett 15, 150502 (2009)
E.g., factoring of large products of prime numbers Shor, SIAM J Comp 26, 148 (1997)
Solving linear systems
Harrow, Hassidim, Lloyd, Phys Rev Lett 15, 150502 (2009)
- Spectral analysis

Steffens, Rebenstrost, Marvian, Eisert, Lloyd, New J Phys 19, 033005 (2017)
, Semi-definite programming
Brandão, Kalev, Li, Lin, Svore, Wu, arXiv:1710.02581

- Can tolerate small errors in all steps (at high cost)

E.g., Litinski, Kesselring, Eisert, von Oppen, arXiv:1704.01589
- The race for building quantum computers
- Not there, but with 50 superconducting qubits taking shape

(Google)
(Rigetti)
(D-wave)

QUANTUM SIMULATORS

Quantum simulators: Not all strongly correlated quantum systems/materials can be classically simulated

Quantum simulators: Not all strongly correlated quantum systems/materials can be classically simulated
, Idea: Simulate quantum systems with quantum systems

Richard Feynman

Quantum simulators: Not all strongly correlated quantum systems/materials can be classically simulated

- Idea: Simulate quantum systems with quantum systems

Cold atoms in optical lattices

, Simulate interesting physical situations

Equilibration

Trotzky, Chen, Flesch, McCulloch, Schollwöck, Eisert, Bloch, Nature Physics 8, 325 (2012)

Pre-thermalization

Gring, Kuhnert, Langen, Kitagawa,
Rauer, Schreitl, Mazets, Smith, Demler Schmiedmayer, Science 337, 1318 (2012)
, Tai, Lukin, Rispoli Schittko, Preiss, Greiner, Science 353, 794 (2016)

Many-body localization

Choi, Hild, Zeiher, Schauß,Rubio-Abadal, Yefsah,
Khemani, Huse, Gross, Science 352, 1547 (2016)

- Some properties can be obtained beyond supercomputers
- Some properties can be obtained beyond supercomputers
- Imbalance as function of time for $|\psi(0)\rangle=|0,1, \ldots, 0,1\rangle$ under Bose-Hubbard Hamiltonian

- Some properties can be obtained beyond supercomputers
- Imbalance as function of time for $|\psi(0)\rangle=|0,1, \ldots, 0,1\rangle$ under Bose-Hubbard Hamiltonian

Best available classical matrix-product state simulation, bond dimension 5000

- Some properties can be obtained beyond supercomputers
- Imbalance as function of time for $|\psi(0)\rangle=|0,1, \ldots, 0,1\rangle$ under Bose-Hubbard Hamiltonian

- The approximation of dynamics with matrix-product states requires exponential resources in time

0

Best available classical matrix-product state simulation, bond dimension 5000

- Some properties can be obtained beyond supercomputers
- Simple Ising nearest-neighbor architectures

Random

- Some properties can be obtained beyond supercomputers

- Simple Ising nearest-neighbor architectures

Random

Relate to logical circuits

U Additive error ϵ

, Some properties can be obtained beyond supercomputers

- Simple Ising nearest-neighbor architectures

Random

- Present technology (basic) quantum simulators already outperform supercomputers on some tasks (and can be verified)

Relate to logical circuits

GETTING GOING. . .

- 1G€ Euros-Flagship for quantum technologies

Gartner Hype Cycle for Emerging Technologies, 2016

"Quantum computing is exciting even if you restrict
yourself to saying things that are true."
> "Quantum computing is exciting even if you restrict yourself to saying things that are true."

THANKS FOR YOUR ATIENTION

