QUANTUM SIMULATION
AND COMPUTING

A NEW WAY OF COMPUTING BEYOND SUPERCOMPUTERS .

JENS EISERT, FU BERLIN
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MOORE'S LAW

» Gordon Moore (Intel, 1965): Number of transistors in
integrated circuits doubles approximately every two years
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Gordon Moore (Intel, 1965): Number of transistors in

integrated circuits doubles approximately every two years
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Gordon Moore (Intel, 1965): Number of transistors in
integrated circuits doubles approximately every two years

Minimum feature size down to that of single atoms
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Gordon Moore (Intel, 1965): Number of transistors in
integrated circuits doubles approximately every two years

Minimum feature size down to that of single atoms
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QUANTUM MECHANICS

» Quantum mechanics is a physgal theory




QUANTUM MECHANICS

» Quantum mechanics is a physﬁal theory

» Theory of atoms, molecules, and light quanta
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QUANTUM MECHANICS

» Developed 1925-1928

» Basis of semi-conductors, materials science, lasers

» Fine structure constant: 7,297.352.566.4(17) x 10-3

» Radically different from classical mechanics
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RANDOMNESS IN QUANTUM MECHANICS

» Measurement outcomes are random
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RANDOMNESS IN QUANTUM MECHANICS

» Measurement outcomes are random

» We are used to randomness...

» ... but this has an explanation




RANDOMNESS IN QUANTUM MECHANICS

» Measurement outcomes are random




RANDOMNESS IN QUANTUM MECHANICS

» The randomness of quantum mechanics is absolute




The randomness of quantum mechanics is absolute

» Bell inequality violated under assumption of
local hidden variables

P(a,b|A, B) = / IAp(\)xa (@ N)x (b N
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UNCERTAINTY PRINCIPLE




UNCERTAINTY PRINCIPLE

» No measurement without disturbance




SUPERPOSITION



SUPERPOSITION PRINCIPLE




SUPERPOSITION PRINCIPLE

USE BOTH EXITS
WHEN LEAVING
THE
PARKING STRUCTURE



Systems can be in “many states at once”



State space{p : p > 0, tr(p) = 1}over complex vector spaceH

FornspinsH = C5"




QUANTUM
TECHNOLOGIES




Make use of quantum effects on the single quantum
system level to think of new technologies in
communication, sensing, computation, simulation
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SECURE COMMUNICATION

» Quantum key distribution for secure communication
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SECURE COMMUNICATION

» Quantum key distribution for secure communication

(T (T
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No information gain without disturbance



Quantum key distribution for secure communication

Alice’s bit
Alice’s basis
State

Bob’s basis

Bob's result

Public part

Key




Quantum key distribution for secure communication

Quantum communication uses quantum-cryptographically protected
communication channels for the bug-proof transfer of information. Quantum-
mechanically connected pairs of photons transport confidential information
securely and reliably. Today, this method only allows information to be
transported via glass fibres over a maximum of approximately 100 kilometres
due to the absorption of the light used to convey the data. In order to achieve
greater distances, the BMBF is funding research into quantum repeaters which

use entanglement swapping to stationary quantum states over a distance of

more than 100 kilometres.
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QUANTUM COMPUTING

» Computational devices with single quantum systems




QUANTUM COMPUTING

» Computational devices with single quantum systems

E.g., 01010011 (bits) replaced by (qubits)

«|0,1,0,1,0,0,1,1) + 3|1,1,0,0,1,1,1,0) +~/0,0,1,0,0,1,1,1) + ...




QUANTUM COMPUTING

» Could solve some problems supercomputers cannot

Poly time quantum
algorithms

Classical probabilistic algorithms




E.g., factoring of large products of prime numbers

» A factor of a large number N can be found if the period p of

f(z) = a®modN

can be identified

» Periods can be found using the quantum Fourier transform
n—1

i) = ) wili) with g =
=0

Shor, SIAM J Comp 26, 148 (1997)




E.g., factoring of large products of prime numbers

» A factor of a large number N can be found if the period p of
f(z) = a®modN
can be identified

Periods can be found using the quantum Fourier transform

n—1 n—1 n—1

D wili) Yy wili) with g = 7=

i=0 i=0
Solves NP problem in poly time: Runtime O((log N)3)

Best known classical algorithm exp(O((log 1\')1/3(10g log [\")2/3))

Generalised to hidden subgroup problem

Shor, SIAM J Comp 26, 148 (1997)



QUANTUM ALGORITHMS

» E.g., factoring of large products of prime numbers

Shor, SIAM J Comp 26, 148 (1997)

» Solving linear systems

Harrow, Hassidim, Lloyd, Phys Rev Lett 15, 150502 (2009)



QUANTUM ALGORITHMS

» E.g., factoring of large products of prime numbers

Shor, SIAM J Comp 26, 148 (1997)

» Solving linear systems

Harrow, Hassidim, Lloyd, Phys Rev Lett 15, 150502 (2009)

» Spectral analysis

Steffens, Rebenstrost, Marvian, Eisert, Lloyd, New J Phys 19, 033005 (2017)

» Semi-definite programming

Brandao, Kalev, Li, Lin, Svore, Wu, arXiv:1710.02581



FAULT TOLERANT QUANTUM COMPUTING

» Can tolerate small errors in all steps (at high cost)

E.g., Litinski, Kesselring, Eisert, von Oppen, arXiv:1704.01589



FAULT TOLERANT QUANTUM COMPUTING

» The race for building quantum computers
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» Not there, but with 50 superconducting qubits taking shape
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QUANTUM SIMULATORS



Quantum simulators: Not all strongly correlated
quantum systems/materials can be classically simulated



QUANTUM SIMULATION

» Quantum simulators: Not all strongly correlated
quantum systems/materials can be classically simulated
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» ldea: Simulate quantum systems
with quantum systems

Richard Feynman



Quantum simulators: Not all strongly correlated
quantum systems/materials can be classically simulated

Idea: Simulate quantum systems
with quantum systems
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Cold atoms in
optical lattices



Simulate interesting physical situations

Equilibration

UlJ = 2.44(2)
KIJ =510

UIJ = 5.16(7)
KiJ =9-103

2 3 4 50
4Jt/ h

1

UlJ = 5.60(4)
KIJ=7-103

A

UlJ =9.9(1)
KlJ = 15-10°3

2 3 4 5

Trotzky, Chen, Flesch, McCulloch, Schollwock, Eisert,

Bloch, Nature Physics 8, 325 (2012)

Pre-thermalization

Gring, Kuhnert, Langen, Kitagawa,

Rauer, Schreitl, Mazets, Smith, Demler,
Schmiedmayer, Science 337, 1318 (2012)

Many-body localization

4 .
=0y

Thermalization

Quantum quench

Pure state

e YT vrse
Otservable A

Local

Unitary gynamics Thermakzabon

Pure state

v

Kaufman, Tai, Lukin, Rispoli,
Schittko, Preiss, Greiner, Science
353,794 (2016)

Choi, Hild, Zeiher, Schaul3,Rubio-Abadal, Yefsah,
Khemani, Huse, Gross, Science 352, 1547 (2016)



QUANTUM SIMULATION

» Some properties can be obtained beyond supercomputers



Some properties can be obtained beyond supercomputers

» Imbalance as function of time for |¢(0)) =10,1,...,0,1)
under Bose-Hubbard Hamiltonian

2 3 4 5

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)



Some properties can be obtained beyond supercomputers

» Imbalance as function of time for |¢(0)) =10,1,...,0,1)
under Bose-Hubbard Hamiltonian
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Best available classical matrix-product state

simulation, bond dimension 5000
Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)




Some properties can be obtained beyond supercomputers

» Imbalance as function of time for |¢(0)) =10,1,...,0,1)
under Bose-Hubbard Hamiltonian

0.6

S W
- N4

» The approximation of dynamics with matrix-product states

requires exponential resources in time
0 1 4 3 4 O

Best available classical matrix-product state

simulation, bond dimension 5000
Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)




Some properties can be obtained beyond supercomputers

» Simple Ising nearest-neighbor architectures

Periodic Translationally invariant

Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys Rev X 8, 021010 (2018)



Some properties can be obtained beyond supercomputers

» Simple Ising nearest-neighbor architectures

Periodic Translationally invariant
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Some properties can be obtained beyond supercomputers

» Simple Ising nearest-neighbor architectures

» Present technology (basic) quantum simulators already
outperform supercomputers on some tasks (and can be verified)
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Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys Rev X 8, 021010 (2018)
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GETTING GOING. ..



FLAGSHIP PROGRAM FOR QUANTUM TECHNOLOGIES

» 1G€ Euros-Flagship for quantum technologies

Gartner Hype Cycle for Emerging Technologies, 2016

Plateau will be reached in:
@ less than 2 years

@ 2t 5 years

() 5o 10 years

© more than 10 years




» "Quantum computing is exciting even if you restrict
yourself to saying things that are true.”



OUTLOOK

» "Quantum computing is exciting even if you restrict
yourself to saying things that are true.”

THANKS FOR YOUR ATTENTION



