

Sampling Chess

Thomas Voigtmann

Theory of Soft Matter Group, German Aerospace Center Cologne / University of Düsseldorf

BigTechDay 2017

- complexity of chess = legendary
 - too big to fully explore by computer
 - still, humans can somehow navigate through chess games
- complexity of Go = even larger
 - is this really the main difference?
- is size all that matters?
- can we explore the structure of the state space of chess?
 can we make a map of chess games?
- sample huge state space = well-known topic in statistical physics

- complexity of chess = legendary
 - too big to fully explore by computer
 - still, humans can somehow navigate through chess games
- complexity of Go = even larger
 - is this really the main difference?
- is size all that matters?
- can we explore the structure of the state space of chess? can we make a map of chess games?
- sample huge state space = well-known topic in statistical physics

- complexity of chess = legendary
 - too big to fully explore by computer
 - still, humans can somehow navigate thro
- complexity of Go = even larger
 - is this really the main difference?
- is size all that matters?
- can we explore the structure of the state space of chess? can we make a map of chess games?
- sample huge state space = well-known topic in statistical physics

- complexity of chess = legendary
 - too big to fully explore by computer
 - still, humans can somehow navigate thro
- complexity of Go = even larger
 is this really the main difference?
- is size all that matters?

- Syrve France (New Marsh)
- can we explore the structure of the state space of chess? can we make a map of chess games?
- sample huge state space = well-known topic in statistical physics
 use statistical physics tools to explore chess

Disclaimer: What We Actually Do (Most of the Time)

- new perspective in trying to understand the game
- non-trivial test case for computer-physics tools
- teach principles of physics of complex systems
 - computer methods (Monte Carlo, biased sampling)
 - stochastic processes, abstract dynamical rules
- the real reason: motivate a good, but bored student (ELO 2200)
 - this, too, worked.

- new perspective in trying to understand the game
- non-trivial test case for computer-physics tools
- teach principles of physics of complex systems
 - computer methods (Monte Carlo, biased sampling)
 - stochastic processes, abstract dynamical rules
- the real reason: motivate a good, but bored student (ELO 2200)
 - this, too, worked.

- new perspective in trying to understand the game
- non-trivial test case for computer-physics tools
- teach principles of physics of complex systems
 - computer methods (Monte Carlo, biased sampling)
 - stochastic processes, abstract dynamical rules
- the real reason: motivate a good, but bored student (ELO 2200)
 - this, too, worked.

- new perspective in trying to understand the game
- non-trivial test case for computer-physics tools
- teach principles of physics of complex systems
 - computer methods (Monte Carlo, biased sampling)
 - stochastic processes, abstract dynamical rules
- the real reason: motivate a good, but bored student (ELO 2200)
 - this, too, worked.

- \bullet 8 × 8 board, two players (black/white)
- players move in turns, I pc per turn
- each piece: specific move rule
 - pieces cannot pass through each other (exception: knights)
 - pieces can capture others (king must escape)
 - some special moves: pawns promote, castling, pawns can initially move 2 squares (subject to en-passant capture)
 - pawns only move forward
- goal: mate opponent attack king ("place in check") such that it cannot escape

- \bullet 8 × 8 board, two players (black/white)
- 16 pieces each: 置置勿勿魚魚豐曾名名名名名名名名名
- players move in turns, I pc per turn
- each piece: specific move rule
 - pieces cannot pass through each other (exception: knights)
 - pieces can capture others (king must escape)
 - some special moves: pawns promote, castling, pawns can initially move 2 squares (subject to en-passant capture)
 - pawns only move forward
- goal: mate opponent attack king ("place in check") such that it cannot escape

- \bullet 8 × 8 board, two players (black/white)
- players move in turns, I pc per turn
- each piece: specific move rule
 - pieces cannot pass through each other (exception: knights)
 - pieces can capture others (king must escape)
 - some special moves: pawns promote, castling, pawns can initially move 2 squares (subject to en-passant capture)
 - pawns only move forward
- goal: mate opponent attack king ("place in check") such that it cannot escape

- \bullet 8 × 8 board, two players (black/white)
- I6 pieces each: 置置句句魚魚豐曾各各各各各各各各
- players move in turns, I pc per turn
- each piece: specific move rule
 - pieces cannot pass through each other (exception: knights)
 - pieces can capture others (king must escape)
 - some special moves: pawns promote, castling, pawns can initially move 2 squares (subject to en-passant capture)
 - pawns only move forward
- goal: mate opponent attack king ("place in check") such that it cannot escape

- \bullet 8 × 8 board, two players (black/white)
- 16 pieces each: 置置公包魚魚豐曾各各各各各各各各各
- players move in turns, I pc per turn
- each piece: specific move rule
 - pieces cannot pass through each other (exception: knights)
 - pieces can capture others (king must escape)
 - some special moves: pawns promote, castling, pawns can initially move 2 squares (subject to en-passant capture)
 - pawns only move forward
- goal: mate opponent attack king ("place in check") such that it cannot escape

Some History of Computers in Chess

1950 - C. E. Shannon: Programming a Computer for Playing Chess

1951 - D. Prinz: program Matt in Zwei Zügen (Mark 1)

1958 - A. Bernstein: first full chess program (IBM 704)

1970 - first computer-chess tournament @ ACM

1989 - Deep Thought challenges Kasparov

1997 - Deep Blue defeats Kasparov

2008 - initial Stockfish release

brute force + heuristics

Game Theory: "Solved"

- chess: finite two-player game of perfect information, alternating moves, no element of chance
- Zermelo's theorem: each position is either a win, loss, or draw Ernst Zermelo, Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, in: Proc. Fifth Internatl. Congress of Mathematicians II (Cambridge, 1913), pp. 501–504 often misquoted as "there exists a (unique) best strategy"
 - Tic tac toe, Checkers, Connect Four
 - Chess, Go, ...

• for chess: done for *up* to 7 chessmen
Lomonosov tablebases: 5×10^{14} positions up to symmetries, calculated on 75000-core supercomputer (#12 in 2009 TOP500)

Game Theory: "Solved"

- chess: finite two-player game of perfect information, alternating moves, no element of chance
- Zermelo's theorem: each position is either a win, loss, or draw Ernst Zermelo, Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, in: Proc. Fifth Internatl. Congress of Mathematicians II (Cambridge, 1913), pp. 501–504 often misquoted as "there exists a (unique) best strategy"
 - Tic tac toe, Checkers, Connect Four
 - Chess, Go, ...

• for chess: done for up to 7 chessmen Lomonosov tablebases: 5×10^{14} positions up to symmetries, calculated on 75000-core supercomputer (#12 in 2009 TOP500)

Complexity

- configuration = placement of pieces + bits storing player's turn etc.
- game tree = graph with
 - nodes = individual configurations
 - edges = legal move between configurations
- complexity measures:
 - ullet number of configurations $|\Omega|$
 - ullet size of graph: game-tree complexity |G|

Complexity

- *configuration* = placement of pieces + bits storing player's turn etc.
- game tree = graph with
 - nodes = individual configurations
 - edges = legal move between configurations
- complexity measures:
 - ullet number of configurations $|\Omega|$
 - size of graph: game-tree complexity |G|

Complexity

- configuration = placement of pieces + bits storing player's turn etc.
- game tree = graph with
 - nodes = individual configurations
 - edges = legal move between configurations
- complexity measures:
 - ullet number of configurations $|\Omega|$
 - ullet size of graph: game-tree complexity |G|

game	22	G	
Tic tac toe	10^{3}	10^{5}	
Checkers	10^{20}	10^{42}	
Chess	?	?	# atoms in Earth: 10^{49}
Go	10^{170}	10^{360}	# atoms in universe: 10^{80}

[Tromp and Farnebäck, Combinatorics of Go (2016):

 $a_{19} = 208168199381979984699478633344862770286522453884530548425639456820927419612738015378525648451698519643907259916015628128546089888314427129715319317557736620397247064840935\\7$

Chess Configurations

- realizable (some placement of pieces)
- legal (obeying the rules, e.g. kings not both in check)
- reachable from initial configuration
- real-game (not obviously bad for the player)

 $\{\text{realizable}\} \supset \{\text{legal, reachable}\} \supset \{\text{actually played}\}$

legal, not reachable

reachable, not legal

reachable, not played

configuration space:

- Shannon (1948): $|\Omega| \sim 10^{42}$ incl. illegal, no promotions / captures
- Steinerberger (2015): $|\Omega| \le 2 \times 10^{40}$ legal, no promotions (strict)
- \bullet Chinchalkar (1996): $|\Omega| \sim 10^{50}$ including promotions

configuration space:

- Shannon (1948): $|\Omega| \sim 10^{42}$ incl. illegal, no promotions / captures
- Steinerberger (2015): $|\Omega| \le 2 \times 10^{40}$ legal, no promotions (strict)
- ullet Chinchalkar (1996): $|\Omega| \sim 10^{50}$ including promotions

game-tree size:

• Shannon: ~ 35 moves per position, $|G| \sim 35^{80} \approx 10^{120}$

configuration space:

- Shannon (1948): $|\Omega| \sim 10^{42}$ incl. illegal, no promotions / captures
- \bullet Steinerberger (2015): $|\Omega| \leq 2 \times 10^{40}$ legal, no promotions (strict)
- ullet Chinchalkar (1996): $|\Omega| \sim 10^{50}$ including promotions

game-tree size:

• Shannon: ~ 35 moves per position, $|G| \sim 35^{80} \approx 10^{120}$

configuration space:

- Shannon (1948): $|\Omega| \sim 10^{42}$ incl. illegal, no promotions / captures
- Steinerberger (2015): $|\Omega| \le 2 \times 10^{40}$ legal, no promotions (strict)
- ullet Chinchalkar (1996): $|\Omega| \sim 10^{50}$ including promotions

game-tree size:

• Shannon: ~ 35 moves per position, $|G| \sim 35^{80} \approx 10^{120}$

Emmanuel Lasker: "only one move per position, but a good one"

Graphs and Sizes

Graphs and Sizes

Graphs and Sizes

How to Measure Size?

12/29

[all images: wikimedia, CC-BY-SA]

How to Measure Size? - Random Graphs

- Erdős-Rényi random graph model
 - ullet graph with N nodes, edges with probability p
 - average branching number z
 - ullet if Np big enough: giant connected component, almost surely

path length on connected component $\ell \sim \ln N / \ln z$

How to Measure Size? - Random Graphs

- related: small-world networks (Strogatz/Watts 1998)
 - \bullet $\ell \sim \ln N$ even when nodes cluster
- Milgram's "six degrees of separation" experiment (1967)
 - $N_{\text{world pop.}} \sim 7.5 \times 10^9, z \approx 30$

How to Measure Size? - Examples

 $N\sim 100$ (Taktknoten), $z\sim 3$ $\sim \ell \sim 4$ nodes ~ 2 h travel time ~ 200 km \sim area ~ 40000 km 2 in reality: area of Switzerland ~ 41285 km 2

S-Bahn Zürich:

 $N\sim 10,\, z\sim 5$ $\sim \ell\sim 1.4\, {
m nodes} \sim 42\, {
m min} \; {
m travel} \sim 35\, {
m km}$ $\sim {
m area} \sim 1225\, {
m km}^2$

in reality: area covered by ZVV $\sim 1840\,\mathrm{km}^2$

Chess as a Random Graph

illustration: set of 1417 chess configurations, random-pair sampling

Chess as a Random Graph

illustration: set of 1417 chess configurations, random-pair sampling

Chess as a Random Graph

illustration: set of 1417 chess configurations, random-pair sampling

Chess as a Random Graph

illustration: set of 1417 chess configurations, random-pair sampling

Chess as a Random Graph

illustration: set of 1417 chess configurations, random-pair sampling

Chess as a Random Graph

illustration: set of 1417 chess configurations, random-pair sampling

Measuring Distances by Monte Carlo

idea:

- lacktriangle pick configuration pairs (A,B) at random (some depth into game)
- ② find path of legal moves $A \to B$, tabulate length ℓ
- $\ensuremath{ \bullet}$ infer size of connected component to which (A,B) belong

variations:

- pre-condition (A, B)
 - all reachable (MC generated), actually played (TWIC database)
 - related to specific opening moves (same vs. distinct)

Random Chess: Monte Carlo Simulations

pick a random move per ply

sampling issue:

- " $A \rightarrow B$ " is a rare event
- \bullet each step branches 30-fold: after 10 steps, $\sim 10^{15}$ possibilities...
- ⇒ Monte Carlo with importance sampling
 - sample moves not equi-probably,
 - ullet higher probability on those that help in A o B

Random Chess: Monte Carlo Simulations

pick a random move per ply

sampling issue:

- " $A \rightarrow B$ " is a rare event
- ullet each step branches 30-fold: after 10 steps, $\sim 10^{15}$ possibilities...
- ⇒ Monte Carlo with importance sampling
 - sample moves not equi-probably,
 - ullet higher probability on those that help in A o B

Rare Events

protein folding

folding of Trp-cage mini-protein [Juraszek and Bolhuis, PNAS (2006); Biophys. J. (2008)]

nucleation and growth of hard-sphere crystals [Dorosz and Schilling, J. Chem. Phys. (2013)]

crystal nucleation

any kind of (non-equlibrium) rare fluctuation

Transition Path Sampling

- high-dimensional state space $\{\vec{r}^N\}$, some (stochastic) dynamics
- define states A and B by some condition
- define reaction coordinate $\lambda(\{\vec{r}^N\})$ with $\lambda(A)=0,$ $\lambda(B)=1$
- lacktriangle task: sample paths A o B randomly, with proper weight

examples for λ : size of nucleus (crystallization), bond angles/distances (protein folding)

Stochastic-Process Rare Event Sampling (SPRES)

- "shoot" short trajectories (length τ) same number per bin
- ullet samples transitions $\lambda_i\mapsto \lambda_{i+1}$ and their weight
- works for any dynamics (chess!)
- advantage: does not rely on optimal reaction coordinate

FRESHS – A Modular Rare-Event Sampler

- server implements shooting strategy
- provides trivial parallelization (many independent trajectories)
- works with any "black-box" simulation software

A Reaction Coordinate for Chess

5	4	3	2	2	2	2	2
5	4	3	2	1	1	1	2
5	4	3	2	I	4	1	2
5	4	3	2	1	1	1	2
5	4	3	2	2	2	2	2
5	4	3	3	3	3	3	3
5	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5

Chebyshev distance

7	6	5	4	3	2	3	4
6	5	4	3	2	I	2	3
5	4	3	2	I	Ï	I	2
6	5	4	3	2	I	2	3
7	6	5	4	3	2	3	4
8	7	6	5	4	3	4	5
9	8	7	6	5	4	5	6
10	9	8	7	6	5	6	7

taxicab distance

(knight moves)

- r.c. = purely geometrical construction
- need not be ideal for SPRES

Results: Path Length Histograms

- path length distribution $p(\ell)$: two peaks
- real-game pairs are closer

Overlap Correlations

time t

• for real games vs. MC-generated games

- real games: pawn persistance
- GM Nimzowitsch: opening, middle game, endgame

⇒ pawns make the difference – their moves are irreversible

Results: Path Length Histograms

- traditional chess-opening theory maps to graph structure
- "same opening" = "more closely connected positions"

Real-Game Paths

sample transition

shortest path: ≤13 moves

optimal play: 549 moves

Interpretation

 $N_{\rm accessible} \sim 10^{42} \gg N_{\rm relevant} \sim 10^{22} \gg N_{\rm played} \sim 10^6$ opening = pawn structure = fixes pocket

Summary / Outlook

- structure of chess probed by statistical physics
- chess' configuration space decomposes into pockets
 - pockets are "pinheads compared to Mt Everest"
 - real-games are "single polymers compared to pinhead"
 - $\bullet\,$ playing $10^6\,$ games/second since beginning of time: explores one pocket
- combine chess and computer physics:
 - SPRES + Stockfish for targeted look-ahead?
- teach statistical physics using chess
 - also works with other games
 - but that's another story...

Summary / Outlook

- structure of chess probed by statistical physics
- chess' configuration space decomposes into pockets
 - pockets are "pinheads compared to Mt Everest"
 - real-games are "single polymers compared to pinhead"
 - $\, \bullet \,$ playing 10^6 games/second since beginning of time: explores one pocket
- combine chess and computer physics:
 - SPRES + Stockfish for targeted look-ahead?
- teach statistical physics using chess
 - also works with other games
 - but that's another story...

Thanks

- Tanja Schilling, U Luxembourg
- Arshia Atashpendar, U Luxembourg

Europhysics Letters 116, 10009 (2016)

- Mark Crowther (TWIC database of chess games)
- Andreas Hirstein, NZZ; Patrick Illinger, SZ

Worauf es ankommt
Simulationsrechnungen zeigen, warum Bauern im Schachspiel so wichtig sind. Von Tanja Schilling und Thomas Volgtmann

THANK YOU FOR AN INTERESTING GAME.