

Privacy-Preserving Data Analysis & Security by Design

Daniel Kraschewski

Big Techday 11

2018-05-18

personal data is omnipresent

- internet browsing history
- cell phone movements
- smart metering, smart homes, IoT
- social media, cloud
-

Photo: "Base." by Instant Vantage (CC BY-SA 2.0), clipped to fit page layout

customer analytics

city planning

medical surveys

social surveys

Photos by @nordwood, @hellocolor, @rawpixel, @jaseess on Unsplash

GDPR (from 2018-05-25)

- strong notion of consent
 - informed
 - freely given
 - specific
 - unambiguous
 - clear affirmative act
 - high fines (up to 4% of annual turnover) for data privacy violations

S

Privacy-Preserving Data Analysis

- derive large-scale statistical insights
- still preserve individual's privacy
- security by design
- provable security/privacy

privacy-preserving results

- aggregated statistics must not reveal personal information
- proper formal notion of anonymity
- Differential Privacy, Laplace Mechanism

privacy-preserving computation

personal data must be unaccessible even for system owner

Value of the state of the state

ATTOM CAPTURE

- Cryptography
- Secret Sharing, Secure Multi-Party Computation

privacy-preserving environment

- no unauthorized third party may access any data
- IT-Security

Photo by @kristing on Unsp

Access Control, encrypted & authenticated channels

general setting

- mutually mistrusting parties P_1, P_2, \dots
- secret inputs x₁, x₂, . . .
- want to compute some agreed on function value $f(x_1, x_2,...)$
- nothing but $f(x_1, x_2,...)$ should be revealed about $x_1, x_2,...$

a universal solution

- 1. write f as arithmetic circuit
- transform each x_i into unintelligible Secret Sharing
- evaluate f gate-by-gate, preserving Secret Sharing
- 4. recombine result

Photo by Sahmeditor on Wikimedia Con (CC BY-SA 2.0), clipped to fit page layout

A Concrete Protocol for General MPC

Shared Addition

s.t. $z_A + z_B = x + y$ Z_{B}

easy: $z_A = x_A + y_A$ and $z_B = x_B + y_B$

Shared Multiplication

problematic: $z = x_A y_A + x_A y_B + x_B y_A + x_B y_B$

missing building block

 V_{A}

 V_{B}

 W_A

s.t. $W_A + W_B = V_A V_B$

s.t. $z_A + z_B = x \times y$

Application to Privacy-Preserving Data Analysis

10 / 15

k-Anonymity

published data must coincide with at lest k individuals

De-anonymization attack on correlated data¹

lacktriangle published data: number of people in mobile cell at time t_i

- trajectory recovery

 optimization problem
 - higher "costs" for sudden/far movements
 - higher "costs" for irregular movements and/or movements at night
- 50% 91% accuracy, depending on space-time resolution

¹Fengli Xu, Zhen Tu, Yong Li, Pengyu Zhang, Xiaoming Fu, Depeng Jin: Trajectory Recovery From Ash: User Privacy Is NOT Preserved in Aggregated Mobility Data, 26th International Conference on World Wide Web (WWW 2017)

ε -Differential Privacy

• statistical similarity: κ (real data) $\approx \kappa$ (real data \ me) up to factor e^{ε}

Laplace Mechanism

- calculate histogram
- 2. add Laplace noise
- 3. output noisy group sizes

Example histogram ($\frac{1}{10}$ -Differential Privacy)

Age	Sex	Diagnosis	count	noise	result	
< 35	f	infection	48	9	57	
< 35	f	NCD	61	-1	60	
< 35	m	infection	75	-5	70	_
< 35	m	NCD	44	-7	37	=
≥ 35	f	infection	165	6	171	
\geq 35	f	NCD	127	-4	123	
\geq 35	m	infection	228	2	230	
≥ 35	m	NCD	168	-2	166	

Strictness

- fail-safe defaults
- need-to-know principle
 - principle of least privilege

Robustness

- separation of duties
- multi-factor/layered security
- forward secrecy

Consistency

- complete security-model
- defense in depth
- homogeneity/uniformity

icServers.com on Wikimedia Commons (CC BY-SA 3.0), clipped to fit page la

Summary

- large-scale statistics can be calculated in a privacy-preserving way
- security/privacy by design, not just by contract
- security/privacy mathematically defined and provable
- though, inefficient universal solutions

Improvements

- less generic, optimized MPC constructions
- less MPC, more IT-Security (e.g., "self-sealing" hardware)
- tailored Differential Privacy mechanisms
- ...

Thank you for your attention!

Dr. Daniel Kraschewski Senior Consultant

TNG Technology Consulting GmbH Betastraße 13a 85774 Unterföhring

tel: +49 89 2158 9960 fax: +49 89 2158 9969

daniel.kraschewski@tngtech.com

Cliparts by AhNinniah, Anonymous, gswanson, j4p4n, qubodup, TikiGiki on openclipart, and succo on pixabay