

KubeOne

Kubernetes Cluster Lifecycle Management Tool

Who am I?

Tobias SchneckSoftware Engineer @ Loodse

@toschneck

Who are the Developer?

Marko Mudrinić Software Developer @ Loodse

@xmudrii

Artiom DiominSoftware Developer @ Loodse

@kron4eg

Operational Excellence for Your Cloud Native Applications

Our Expertise

Loodse is a leading expert for container and cloud native technologies.

Our Team

We are a team of 40+ employees across Europe and the US.

Locations

Founded in 2016, our headquarters are located in Hamburg, Germany.

Agenda

- Introduction to KubeOne
- Core concepts and architecture
- Demo: Manage Kubernetes HA cluster on AWS
- Demo: Configure the cluster and explore KubeOne features

Introduction

What is KubeOne?

- A tool for managing Kubernetes cluster lifecycle
 - Installs and provisions Kubernetes, upgrades, un-provisions the cluster
- Open source and vendor neutral
- Works on the most popular cloud providers, on on-prem and on bare metal
- Supports 1.13+ Highly-Available clusters

Why we built KubeOne?

- Kubernetes brought us a new way for managing our workload...
- but managing Kubernetes clusters is still a hard task.
- We want to apply lessons learned managing workload to clusters.

In a search for a **feature-complete** solution, we decided to build **KubeOne**

Why KubeOne?

- Uses the latest technologies to bring many features in an easy to consume manner
- Brings declarative cluster representation
- Provides ready to use cluster
- Optionally configures various features on the provisioning time:
 - PodSecurityPolicy, DynamicAuditLog, metrics-server and more
- Ability to integrate KubeOne with infrastructure provisioning tools

Supported providers

- KubeOne is supposed to work on any provider, including on-prem and bare metal
- Officially supported providers enjoy additional features such as:
 - Support for managing worker nodes using Kubermatic machine-controller
 - Automatically deploy cloud provider specific features like external CCM
 - Use Terraform integration to pick up information about infrastructure from the Terraform state
- Officially supported providers include AWS, GCE, DigitalOcean, Hetzner,
 Packet, OpenStack and VMware vSphere
- Microsoft Azure will be supported as of the upcoming v0.9 release

Create cluster on AWS

Create cluster on AWS

- Step 1: Create instances and infrastructure to be used by Kubernetes
 - KubeOne comes with example Terraform scripts that can be used to get started
- Step 2: Build KubeOne configuration manifest
 - Defines what Kubernetes version will be installed, what machines will be used, how the cluster will be provisioned...
- Step 3: Run `kubeone install` command
- Step 4: Enjoy!


```
apiVersion: kubeone.io/v1alpha1
```

kind: KubeOneCluster

versions:

kubernetes: 1.14.2

cloudProvider:


```
apiVersion: kubeone.io/v1alpha1
```

kind: KubeOneCluster

versions:

kubernetes: 1.14.2

cloudProvider:


```
apiVersion: kubeone.io/v1alpha1
```

kind: KubeOneCluster

versions:

kubernetes: 1.14.2

cloudProvider:


```
apiVersion: kubeone.io/v1alpha1
```

kind: KubeOneCluster

versions:

kubernetes: 1.14.2

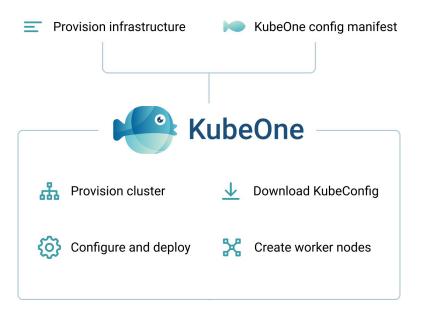
cloudProvider:

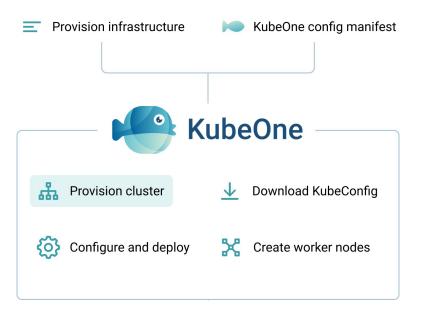
Demo time!

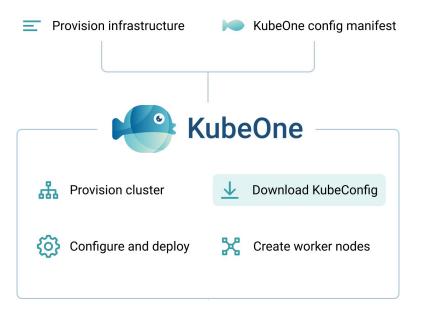
Architecture

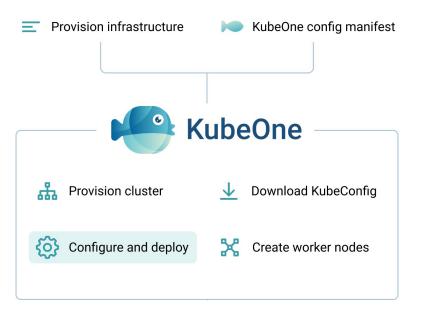
Architecture

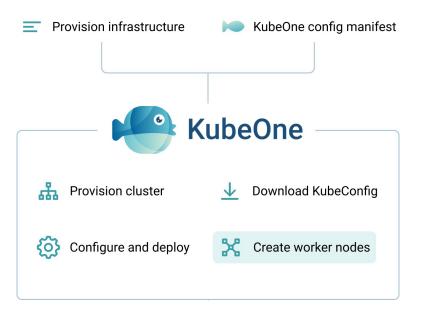
- KubeOne uses many tools/solutions as building blocks
 - kubeadm is used to provision and join control plane nodes and handle cluster upgrades
 - Kubermatic machine-controller based on Cluster-API is used to manage worker nodes
- The environment is prepared over SSH
 - Including installing and upgrading binaries, configuring components and running kubeadm
- client-go is used for deploying various cluster features such as CNI

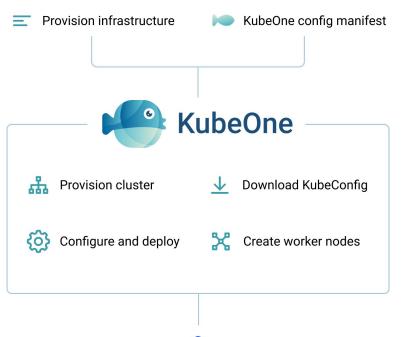






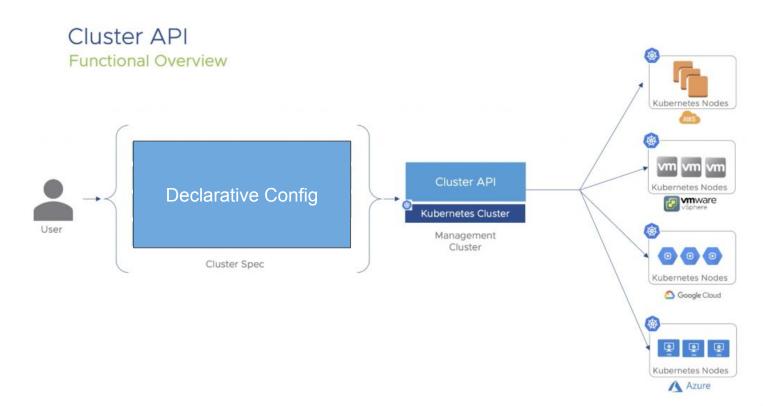






Managing worker nodes

Managing worker nodes



- Worker nodes are managed using Kubermatic machine-controller
- machine-controller is an open source Cluster-API implementation
- Cluster-API is a declarative, Kubernetes-style API for cluster and machine creation, configuration and management

- You define what you want, controller creates it for you
 - In KubeOne case, machine-controller provisions and configures machines

What is Cluster API?

Managing worker nodes

- In KubeOne config manifest, user provides number of **replicas** and c**loud provider specification**
- Based on provided information, KubeOne creates MachineDeployment object
- machine-controller creates MachineSet and Machine objects, which trigger creation and provisioning of cloud instances
- machine-controller watchs machines all the time
 - If machine/node becomes unavailable/unhealthy machine will be recreated
 - If machine is changed (e.g. upgraded), all machines in the MachineDeployment will be rolled-out

Managing worker nodes

MachineDeployment

Deployment

MachineSet

ReplicaSet

Machine

Pod

Demo time!

- The control plane nodes are upgraded in-place
- Upgrading control plane nodes include upgrading:
 - Kubernetes binaries
 - core Kubernetes components
 - all components deployed by KubeOne
- Worker nodes are upgraded by rolling out MachineDeployment

Questions? Remarks?

Thank you for your time!

- Find KubeOne on GitHub: https://github.com/kubermatic/kubeone
- Follow us on Twitter: @Loodse, @xmudrii, @kron4eg, @toschneck
- Check out Loodse blog: https://loodse.com/blog
- Join `#kubeone` on Kubermatic Slack: http://slack.kubermatic.io