Super-Human AI for Strategic Reasoning: Beating **Top** Pros in Heads-Up No-Limit Texas Hold'em

Professor Tuomas Sandholm

Computer Science Department, CMU

Founder and CEO, Strategic Machine, Inc.

Noam Brown

Computer Science Department, CMU

STRATEGIC MACHINE, INC.

Super-Human Al for Strategic Reasoning: Beating **Top** Pros in Heads-Up No-Limit Texas Hold'em

Professor Tuomas Sandholm
Computer Science Department, CMU

Founder and CEO, Strategic Machine, Inc.

Noam Brown

Computer Science Department, CMU

STRATEGIC MACHINE, INC.

Poker

Poker

Security (Physical and Cyber)

AlphaGo

AlphaGo

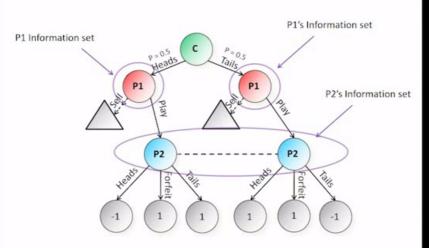
AlphaGo techniques extend to all perfect-information games

Search in perfect-information games

Search in perfect-information games

- · An optimal response to the Queen's Gambit does not depend on the Sicilian Defense
- · This is not true in imperfect-information games

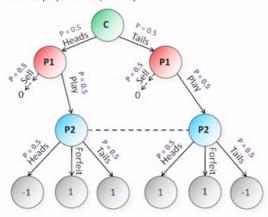
Imperfect-information games: Coin Toss



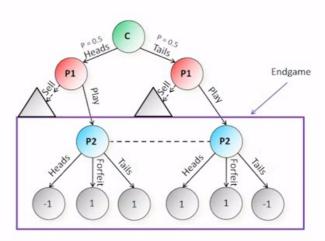
Nash equilibrium

Nash Equilibrium: a profile of strategies in which no player can improve by deviating (beliefs derived from strategies using Bayes rule)

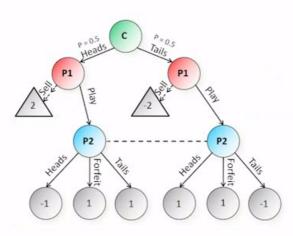
 ϵ -Nash Equilibrium: No player can improve by more than ϵ



Imperfect-information games: Coin Toss



Imperfect-information games: Coin Toss



Tackling imperfect-info games

- Domain-independent techniques
- · Techniques for complete-info games don't apply
- Challenges
 - Uncertainty about what others and chance will do
 - Unknown state => interpreting signals

Most real-world "games" are like this

- Negotiation
- · Business strategy
- Strategic pricing
- Areas of finance
- Next-generation (cyber)security (zero-day vulnerabilities, jamming [DeBruhl et al.], OS)
- Political campaigns (e.g., media spending)
- Military (e.g., allocating troops, spending on space vs ocean, tactical)
- Auctions
- Steering evolution and biological adaptation, medical treatment planning [Sandholm 2012, AAAI-15 SMT Blue Skies]

. ..

Poker

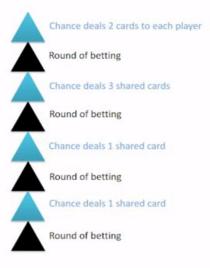
- · Recognized challenge problem in game theory and AI
 - [Nash 1950]
 - [Kuhn 1950]
 - [Waterman 1970]
 - [Caro 1984]
 - [Pfeffer & Koller 1995]
 - [Billings et al. 1998]
 - [Schaeffer et al. 1999]
 - [Shi & Littman 2001]
 - [Billings et al. 2003]
- Tremendous progress in the last 12 years
 - Rhode Island Hold'em solved (~10⁹ decisions) [Gilpin & Sandholm 2005]
 - Annual Computer Poker Competition started in 2016
 - Limit Texas Hold'em essentially solved (~10¹³ decisions) [Bowling et al. 2015]

Heads-up no-limit Texas hold'em

- Has become the main benchmark and challenge problem in AI for imperfect-information games
- 10¹⁶¹ situations
- Mostly played on the Internet
 - Also in World Series of Poker, NBC Heads-Up Championship, etc.
 - Featured in Casino Royale and Rounders

No prior AI has been able to beat top humans

Texas hold'em



Brains vs Al Rematch

 Libratus (= our AI) against four of the best headsup no-limit Texas Hold'em specialist pros

- 120,000 hands over 20 days in January 2017
- \$200,000 divided among the pros based on performance

Conservative experiment design to favor humans

- Large number of hands
- Humans got to choose:
 - #days, break days, times of day, breaks between sessions—even dynamically
 - Two tabling
 - 4-color deck
 - Hot keys, adjustable dynamically
 - Specific hi-res monitors, their own mice
 - Twitch chat on vs off
 - Play in public vs private within each pair
 - 200 big blinds deep
- No use of timing tells
- Action history displayed
- Hand histories given to both sides every evening, including hands opponent folded
- Humans allowed to:
 - Use computers and any programs to analyze
 - Collaborate and coordinate actions (except within each hand)
 - Get outside help (e.g., Doug Polk)
- · Humans allowed to think as long as they want
- Mis-click hands canceled
- Ginseng ①

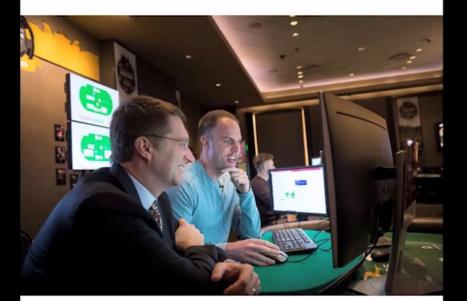
Brains vs Al Rematch

 Libratus (= our AI) against four of the best headsup no-limit Texas Hold'em specialist pros

- 120,000 hands over 20 days in January 2017
- \$200,000 divided among the pros based on performance

Conservative experiment design to favor humans

- Large number of hands
- Humans got to choose:
 - #days, break days, times of day, breaks between sessions-even dynamically
 - Two tabling
 - 4-color deck
 - Hot keys, adjustable dynamically
 - Specific hi-res monitors, their own mice
 - Twitch chat on vs off
 - Play in public vs private within each pair
- 200 big blinds deep
- No use of timing tells
- Action history displayed
- Hand histories given to both sides every evening, including hands opponent folded
- Humans allowed to:
 - Use computers and any programs to analyze
 - Collaborate and coordinate actions (except within each hand)
 - Get outside help (e.g., Doug Polk)
- · Humans allowed to think as long as they want
- Mis-click hands canceled
- Ginseng ①

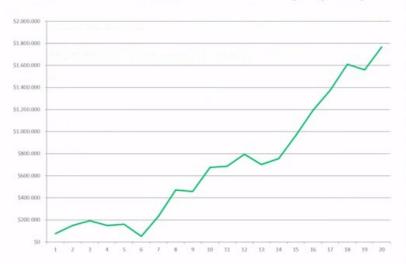


User interface

Final result

- · Libratus beat the top humans in this game by a lot
 - 147 mbb/hand
 - Statistical significance 99.98%, i.e., 0.0002
 - Each human lost to Libratus

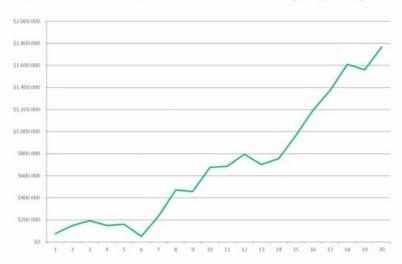
Libratus's cumulative lead day by day



Final result

- · Libratus beat the top humans in this game by a lot
 - 147 mbb/hand
 - Statistical significance 99.98%, i.e., 0.0002
 - Each human lost to Libratus

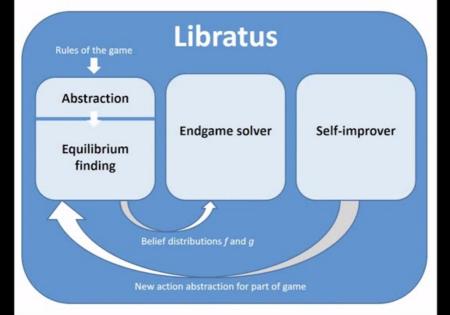
Libratus's cumulative lead day by day

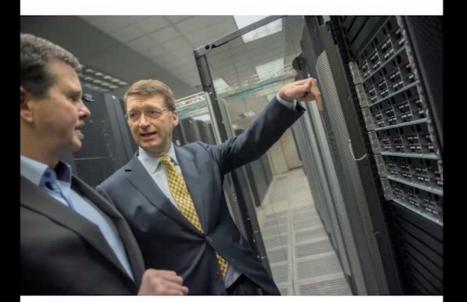


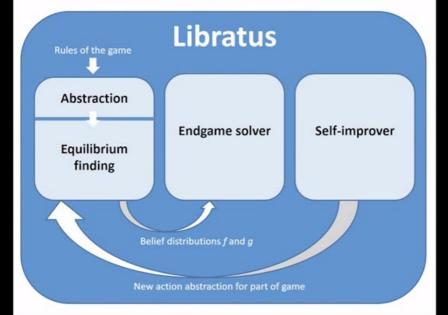
Lengpudashi vs humans event

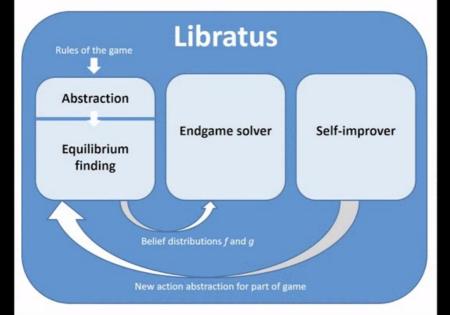
- 36,000 hands against 6 Chinese poker players
- Well-prepared opponents
 - WSOP bracelet winner
 - Expertize in computer science & ML
 - Studied Libratus's hand histories in advance
- 4.5 days: April 6-10, 2017
- · Lengudashi won by 220 mbb/hand
 - Won each of the 9 sessions
 - Also beat each human individually

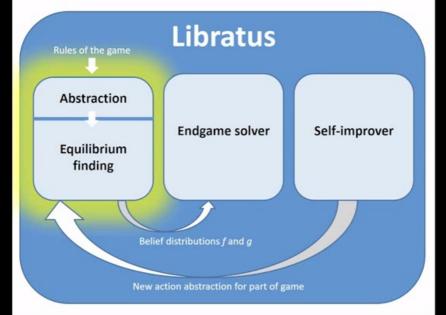
How do Libratus and Lengpudashi work?



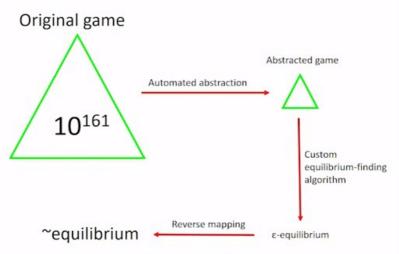








Abstraction [Gilpin & Sandholm EC-06, J. of the ACM 2007...]



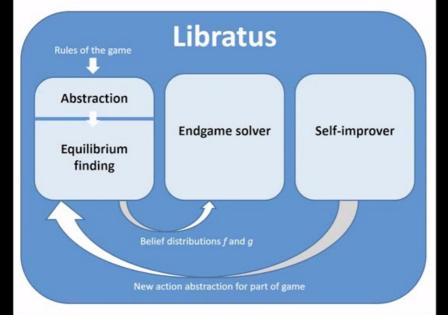
Foreshadowed by Shi & Littman 01, Billings et al. IJCAI-03

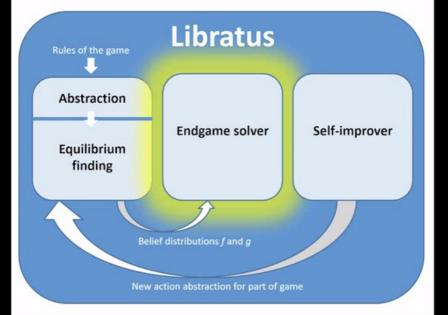
New equilibrium-finding algorithm

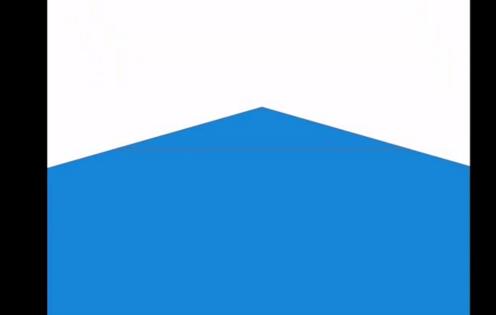
- Improvement on Monte-Carlo Counterfactual Regret Minimization [Lanctot et al. NIPS-09]
- Starts visiting less often paths where our own actions don't look promising (similar to Brown & Sandholm NIPS-15 paper and AAAI-17 workshop paper)
 Speedup => can solve larger abstractions
- Also, the imperfect-recall abstraction, in effect, becomes finer grained
 Better solution quality
- Distributed across 1 + 195 compute nodes

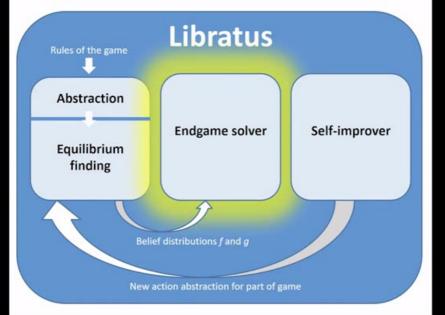
Card abstraction

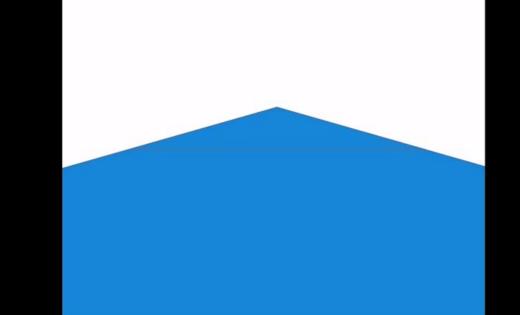
- Same card abstraction algorithm that we used in Tartanian8
- · But much finer abstraction
 - 1st and 2nd betting round: no abstraction
 - 3rd betting round: 55M card histories -> 2.5M buckets
 - − 4th betting round: 2.4B card histories -> 1.25M buckets

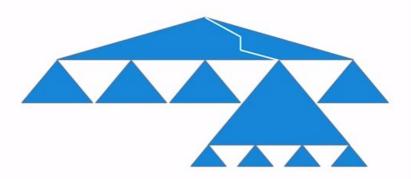


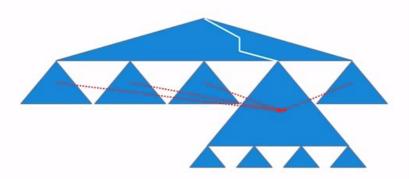


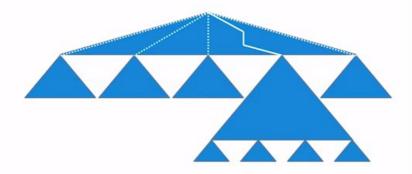


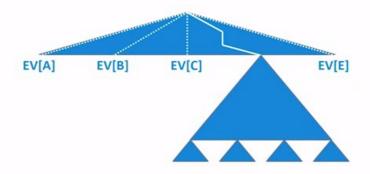


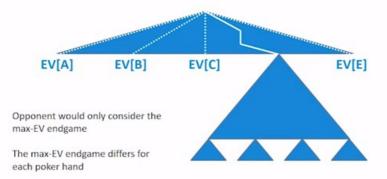


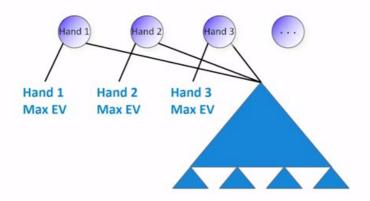


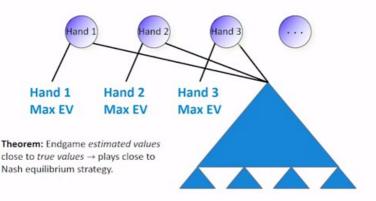






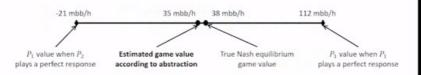




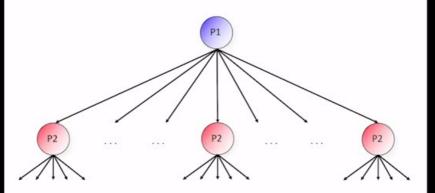


How good are abstraction strategies?

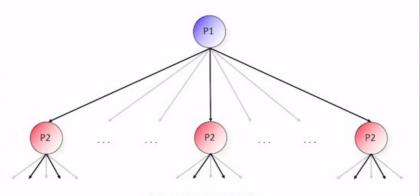
 Test game of Flop Texas Hold'em using an abstraction that is 0.02% of the full game size:



Action abstraction

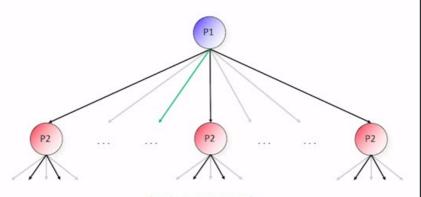


Action abstraction

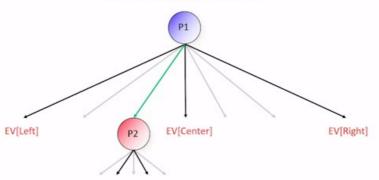


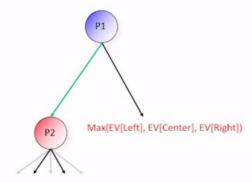
[Gilpin et al. AAMAS-08] [Hawkin et al. AAAI-11 AAAI-12] [Brown & Sandholm AAAI-14]

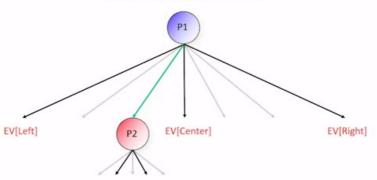
Action translation

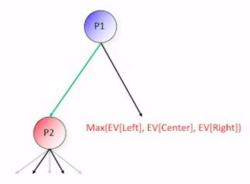


[Gilpin et al. AAMAS-08] [Schnizlein et al. IJCAI-09] [Ganzfried & Sandholm IJCAI-13]







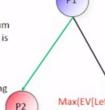


[Brown & Sandholm AAAI-17]

 Can be repeated for every subsequent off-tree action

 Theoretically safe if maximum action EV in the abstraction is close to the true maximum action EV

 Can mitigate this by including optimal actions in the abstraction [Brown & Sandholm AAAI-14]



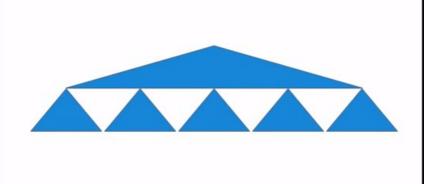
Max(EV[Left], EV[Center], EV[Right])

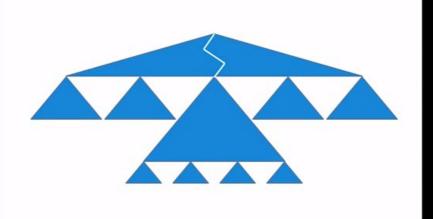
Medium-scale experiment on endgame solving within action abstraction

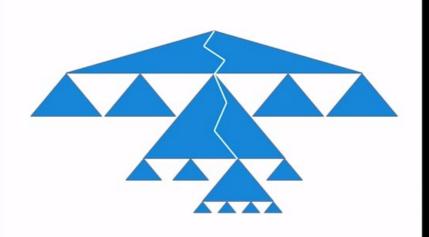
	Small Game Exploitability	Large Game Exploitability
Abstraction Strategy	91.3 mbb / hand	41.4 mbb / hand
Unsafe Endgame Solving	5.51 mbb / hand	397 mbb / hand
Safe Endgame Solving	8.26 mbb / hand	5.50 mbb / hand

Medium-scale experiments on nested endgame solving

	Exploitability
Randomized Pseudo-Harmonic Translation	1,465 mbb / hand
Nested Unsafe Endgame Solving	148.3 mbb / hand
Nested Safe Endgame Solving	119.1 mbb / hand







New ideas in endgame solver

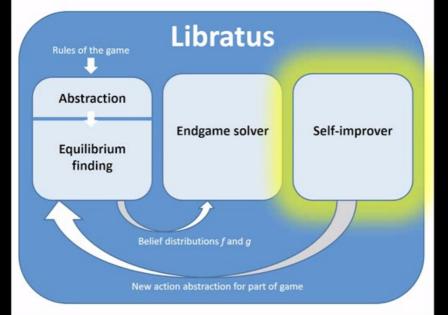
- Safe endgame solving taking into account opponent's mistakes in the hand so far
- · Nested endgame solving
- Endgame starts already on 3rd betting round
- · No card abstraction in the endgame
- Noise added to action abstraction before solving

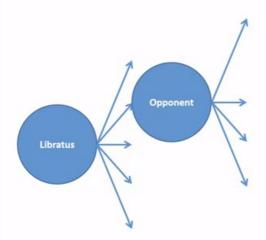
Daniel McAulay on Libratus's

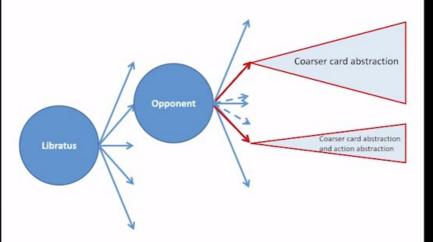
"balance" and use of "blockers"

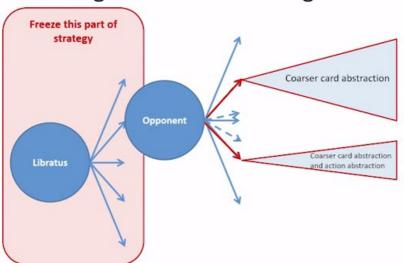
Daniel McAulay on Libratus's

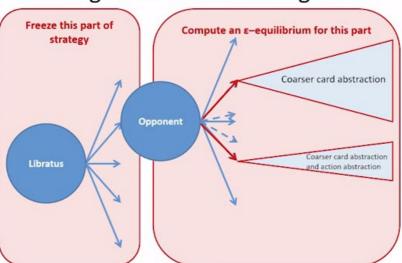
"balance" and use of "blockers"

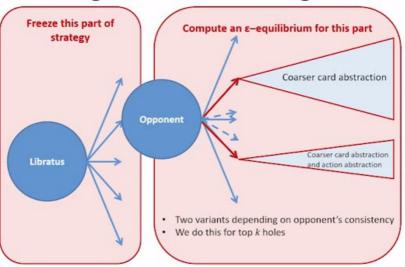












Jason Les and Jimmy Chou on Libratus's holes

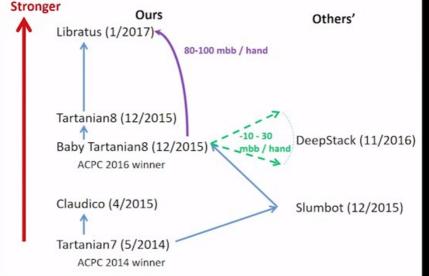
Jason Les and Jimmy Chou

on Libratus's holes

Jason Les and Jimmy Chou

on Libratus's holes

Head-to-head strength of recent Als



Observations about Libratus's play

- · Strengths:
 - Small bets & huge bets & huge all-ins
 - "Perfect balance"
 - Mixed strategy, not "range-based"
 - "Donk betting"
 - No card abstraction in parts that are played
 - Provably near-perfect endgame play
 - Different bet sizings used in endgames
- Weaknesses:
 - "No" opponent exploitation
- Safe (equilibrium) play = timid? Let's ask Dong & Dan

Observations about Libratus's play

- · Strengths:
 - Small bets & huge bets & huge all-ins
 - "Perfect balance"
 - Mixed strategy, not "range-based"
 - "Donk betting"
 - No card abstraction in parts that are played
 - Provably near-perfect endgame play
 - Different bet sizings used in endgames
- Weaknesses:
 - "No" opponent exploitation
- Safe (equilibrium) play = timid? Let's ask Dong & Dan

Some current & future research on this topic in my lab

- Practical lossy abstraction algorithms with bounds (also for modeling)
- New gradient-based equilibrium-finding algorithms [Kroer et al. EC-15, -17]
- Algorithms for equilibrium refinements [Kroer et al. IJCAI-17, Farina et al. 2017]
- Understanding exploration vs exploitation vs exploitability
- Additional applications
- ...

Thank you!

Partners

Carnegie Mellon University School of Computer Science

Sponsors

TNG TECHNOLOGY CONSULTING