From Hilbert's Entscheidungsproblem

to Valiant's counting prﬂblem

Mitin Saxena (Indian Institute of Technology Kanpur)




Contents

¢ FHilibert

« Church & Turing

+ Cook & Levin

« Valiant's permanent
« Zero or nonzero

+ Fundamental goals

Hiberrao®

"1hams



Hilbert

+ (ottfried Leibniz dreamt of building a machine
that could check the truth of math statements.



Hilbert

« Gottfried Leibniz dreamt of building a machine
that could check the truth of math statements.

1A




Hilbert

+ (ottfried Leibniz dreamt of building a machine
that could check the truth of math statements.

+ He was the first to design a machine that could
do all the four arthmetic operations.




Hilbert

+ Gotffried Leibniz dreamt of building a machine
that could check the truth of math statements.

+ He was the first to design a machine that could
do all the four arithmetic operations.




Hilbert

Gottfried Leibniz dreamt of building a machine
that could check the truth of math statements.

He was the first to design a machine that could
do all the four arithmetic operations.

This led to his optimism that
machines might also prove
theorems.




Hilbert

Gottfried Leibniz dreamt of building a machine
that could check the truth of math statements.

He was the first to design a machine that could
do all the four arithmetic operations.

This led to his optimism that
machines might also prove
theorems.

Example 1. Angles of a tnangle
sum to 180°

Leibmizrechenmaschine =1654




Hilbert

+ Gottfried Leibniz dreamt of building a machine
that could check the truth of math statements.

« He was the first to design a machine that could
do all the four arithmetic operations.

« This led to his optimism that
machines might also prove
theorems.

Example 1. Angles of a tnangle
sum to 180°

Example 2. Pnime numbers are
infinitely many

Leibmizrechenmaschine =1654
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+ Leibniz's dream was generalized by Hilbert (1928),
who asked for

‘an algorithm to decide whether a given
statement is provable from the axioms using e o5t
the rules of logic’.

- Known as the Entscheidungsproblem.

+ Like Leibniz, he “believed” that there exists no undecidable
problem!

« The answer first requires defining 'algonthm’.
= hence, 'computation’ requires a new mathematical framework.
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+ The first response to the Entscheidungsproblem was
by Alonzo Church (1935-6).
= Using effective computability based on his A-calculus.

- (Gave a negative answer! Churcn (1903-1595)

« Alan Turing (1936) postulated a simple, most general,
mathematical model for computing —

Turing machine (TM).
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The first response to the Entscheidungsproblem was
by Alonzo Church (1935-6).

=~ UUsing effective computability based on his A-calculus.
- (Gave a negative answer! Church (1903-1995)

Alan Turing (1936) postulated a simple, most general,
mathematical model for computing —
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*« Turing machines first appeared in the paper:
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*« Turing machines first appeared in the paper:

=0 A, M. Tonimsa [Now, 12,
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4 Turing's proof idea for Entscheidungsproblem:
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Church & Turing

+ Both the proofs were motivated by Kurt Gédel.

« Turing showed the undecidability of the Halting
problem.

-~ Deciding whether a given TM halts or not. ‘

odel (1208-1973)

|

4 Turing's proof idea for Entscheidungsproblem:
= Enumerate the TMsas { M, M-, M, ... }.
- Let M; be the one solving the Halting problem.
= Consider the TM M:

On input x. if M; rejects x(x) then ACCEPT glse NOT(x(x)).

- What is M(M) ??7 4
= Thus, Halting problem is undecidable.
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« Cook & Levin (1971) studied a more tractable version
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+ Cook & Levin (1971) studied a more tractable version
of the Entscheidungsproblem.

= Truth of a boolean formula? ﬂ?ﬂ
+ A boolean formula © has gates
(AND, OR, NOT}, and variables .V |
O ) 1
Y = 2
% PR
+ We can tryoutall 2" : : Leond Levin (1948
evaluations for truth. " v N V
P L
A ., “
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« Cook & Levin (1971) studied a more tractable version
of the Entscheidungsproblem.

= Truth of a boclean formula? @l x)
)
+ A boolean formula © has gates
(AND, OR, NOT}, and variables Y |
- PPN, & 1
X, ] N N\
i PR
- W‘E can tr!',l" ﬂth a“ Eﬁ s g : Leond Levin (15948
evaluations for truth. "l 3 v A V
« |s there a faster way? T Gl R ¥ "’.I
A |
« Move from decidability P K
to efficiency...... X B = £ =
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+ Intuitively, one cannot do any better than the %
exponential, i.e. 2", time.
= This is the P vs ‘NP question.
= Worth at least a muflion $3!

Clay M athemabcs Instiute (1599.)

* This is an extremely important problem because 100s
of practical problems are known to be equivalent to it.

= Karp (1972) himself showed 21 such problems!

<— . |

Integer programming, set packing, vertex cover, feedback Hicham Rarp (1930-
node zet, hamiltonian evele, chromatic number, cligue,
stelner tree, J-dimensional matchmg, knapsack job
sequencing, partition, Max cut, independent set problem,

Travelling salesmen problem —

"-_.____
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« Valiant (1977) asked a related question.
= Count the number of good evaluations of a
given boolean formula.
- Valiant's counting problem.

Leshe Valiant (1949-)

+ Solving this would solve all our previous NP-hard problems.

s More interestingly, the counting problem reduces to a simple

matrix question — Permanent.
Ia11 E"Ll.'-.' IEII1!
Peria,, a,, a@,;|= 3119598::+8,,8,,3,,+8,,8,,8,,+38,,3,,3,,+3,,8,,8,,+3,,8,,3,;.
Ay @35 dag

31 ¥

Given a matrix A compute Per(A) 7
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+ Notice that permanent looks very much like a determinant.

I311 Ia1.'-.' Ila'J.'.EI

."':'I':'I!I. 'a'.'i.'-.' 'a!-:-ll-l
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* Notice that permanent looks very much like a determinant.

931 913 953
Detla,, a,, @,,|=81185,8:3-3,,8,,8,;- 8,;8,;85;- 81;,3;,8,,+8,,8,:8;;,7333;,3;;.
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A

Det

dq;

Motice that permanent looks very much like a determinant.

I31" 313

i B [

93y 833 @y, T 9559359139 ,,933- 91395595~ 9,;,95393;791,9;393;791395,9:;

d3; 933 di -

It is an old question of Pdlya (1913): Can permanent
be computed using the determinant?

Valiant's study suggests that permanent is a much
harder sibling of determinant!

Seorge Pdalya (1887-1985
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+ Notice that permanent looks very much like a determinant.

dy; 917 933
Detla,, a,, @,,|=818,,;8;33- 8,385,834~ 8,385;83;- 37,8;383;+81;8;:95,+3,33;,85;.
dyy d33 dj; -

« ltis an old question of Pdlya (1913): Can permanent
be computed using the determinant?

« Valiant's study suggests that permanent is a much
harder sibling of determinant!

George Pdlya (1887-1985

+ Algebraic Pvs NP question:
Is permanent efficiently computable 7
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+ The current research focuses on proving permanent's
hardness — by algebraic means.

@
+ |.e.show that the permanent function has no *[:-:}

small arithmetic circuit.

+

«  An arithmetic circuit @ has gates {+, *}, i
variables {x.,....,x } and constants from ' * 2
some field F. r's f

x5 | -

+ An arithmetic circuit is an [ % .
algebraically neat model to capture 2 u;x\_.
real computation. s I".

X X X
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+ Congecture: Permanent has no small aritfimetic circuits.

: : D(x)
« (Classical algebra is not developed enough *
to answer this gquestion. S
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+ Congecture: Permanent has no small aritfimetic circuits.

. - D(x)
+ (Classical algebra is not developed enough *
to answer this question.
= Permanent, circuits are both recent r"‘ 4
constructs. % R
~ A specialized theory Is missing.
. N
+ As a warmup: Find an algorithm to test -1/  + *
whether a given circuit is zero. ‘,f & , 3
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¢« Congecture: Permanent has no small arithmetic circuits.

O (x)
« (Classical algebra is not developed enough *x

to answer this gquestion.
= Permanent, circuits are both recent

constructs.
~ A specialized theory I1s missing.

. As a warmup: Find an algorithm to test -1/ + .
whether a given circuit is zero. L
- |dentity testing. o :J'I.

Meta- Theorem: A solution of i \ N/

mm would answer x5 X5 X, X,

the permanent question.
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