

Loculus

A highly configurable, open-source platform for sharing genomic data

Our experience of the pandemic was driven by different genetic variants of the SARS-CoV-2 virus

MOTIVATION

We can track the geographic dynamics of a virus

MOTIVATION

We can track the geographic distribution of a variant

MOTIVATION

We need a central hub that distributes virus data

MISSION

Genomic data helps understand the dynamics of a virus

MOTIVATION

- Understanding transmission dynamics:
 - How does it spread?
 - Almost impossible to trace with traditional means (e.g. contact tracing)

• Prediction of dynamics

- To develop new vaccines
- To predict case numbers (e.g. in case of a new variant)
- To understand which countermeasures are effective

Loculus is infrastructure for real-time sharing of virus data

THE VISION

We are building Loculus, a general purpose software for virus genome databases that

- enables accessible exchange of virus data
- facilitates fast querying of virus data

Target users:

- Public health scientists
- Sequencing labs
- Research groups

Loculus will be published as open source software

LOCULUS DEVELOPMENT

- Development is ongoing for one year
- Will be published as open source software
- Release planned during the course of the year

GitHub Commits over time

Loculus bridges between raw data and analysis tools

GENOMIC DATA

The sequencer yields unaligned nucleotide sequences

GENOMIC DATA

Sequence 1: TTTTCCGAACA...

Sequence 2: ATGTCTGAACA...

Sequence 3: TTGACCGAGCA...

Sequence 4: ATAACNATACT...

Sequence 5: TTTGNNCA...

Alignment matches the sequences to a reference genome

GENOMIC DATA

	1	2	3	4	5	6	7	8	9	10	11	•••	
Reference	Т	Т	G	Т	С	С	G	Α	A	С	Α	•••	
Sequence 1	Т	Т	т	Т	С	С	G	А	A	С	Α	•••	
Sequence 2	Α	Т	G	Т	С	т	G	А	A	С	Α	•••	
Sequence 3	Т	Т	G	A	С	С	G	А	G	С	Α	•••	
Sequence 4	Α	Т	A	A	С	N	A	т	A	С	т	•••	
Sequence 5	Т	Т	-	-	-	С	G	Ν	Ν	С	А	•••	

Nucleotide sequences can be translated to amino acids

GENOMIC DATA

• SARS-CoV-2:

- 1 nucleotide sequence (aligned and unaligned)
- 12 amino acid sequences (one for each protein)

Metadata contain additional information on the sequence

GENOMIC DATA

There is no general purpose tool to share genomic data

CURRENT STATE

Lack of general purpose, specialized tools

There is no **reusable, open source software** to share and manage genomic data

Limited, insufficient **API access** for automated analysis tools

A platform to upload and download sequence data

KEY REQUIREMENTS

Upload data

Manage data

Preprocessing

Download data

The architecture with a visualization of the data flow

ARCHITECTURE OVERVIEW

SILO is a query engine optimized for genomic data

THE QUERY ENGINE

- SILO: Optimized for fast queries on the data:
 - "Get all sequences from the UK that have character 'A' at position 500 in the genome."
- LAPIS: Convenience API around SILO

An example of a complicated query

THE QUERY ENGINE

This query filters

- 500 GB of data
- 16 Mio. rows
- 100.000 columns

Mutations over time ORF1a:Q556K ORF1a:L3829F ORF1b:Y264H ORE1b-T1050N ORE1b:M1156L OPE1b-N1101S S:R346T S:K444T S:N460K 18 ORF6:D61L ORF7b:L11F N:S33F

SILO stores data in column-wise bitmaps for efficient queries

THE QUERY ENGINE

- C++
- Column-wise, in-memory data store
 - Time efficient computation of filters on the data
- Uses Roaring bitmaps
 - Very good compression (90 95% compression ratio)
- HTTP interface

Nucleotide in genome	1 2 3 4 5
Sequence 1	ТТТТС
Sequence 2	АТСТС
Sequence 3	ТТСАС
Sequence 4	АТААС
$\hat{\nabla}$	
Is nucleotide a T?	1 2 3 4 5
Is nucleotide a T? Sequence 1	1 2 3 4 5 1 1 1 1 0
Is nucleotide a T? Sequence 1 Sequence 2	1 2 3 4 5 1 1 1 1 0 0 1 0 1 0
Is nucleotide a T? Sequence 1 Sequence 2 Sequence 3	1 2 3 4 5 1 1 1 1 0 0 1 0 1 0 1 1 0 0 0
Is nucleotide a T? Sequence 1 Sequence 2 Sequence 3 Sequence 4	1 2 3 4 5 1 1 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0
Is nucleotide a T? Sequence 1 Sequence 2 Sequence 3 Sequence 4	1 2 3 4 5 1 1 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0

The submission process is a key component of Loculus code

THE SUBMISSION PROCESS

The uploaded data is prepared for the query engine

THE SUBMISSION PROCESS

Store in Postgres

Preprocessing

Backend validation

The preprocessing enriches the data with useful information

THE SUBMISSION PROCESS

Align sequences, compute mutations and insertions

	1	2	3	4
Reference	Т	Т	G	Т
Sequence 1	Α	Т	Α	Α
Sequence 2	Т	Т	-	-

$$\dots \underbrace{A \ T \ G}_{M} \underbrace{T \ T \ T}_{F} \underbrace{G \ T \ T}_{V} \dots$$

WHO clade

Omicron

Compute derived metadata

Translate to amino acids

Validate data

Report errors and warnings

Pango lineage

The Loculus deployment should be a easy as possible

INSTALL LOCULUS

Demonstration of our test deployment

LIVE DEMONSTRATION

Live Demo

We would like to add more features to Loculus

FUTURE WORK

- Sharing of raw data
 - Sequencer actually yields a lot of sequence fragments
 - Open question: How do we analyse raw data?
- Crowd Curation
 - Users should be able to mark errors and suggest corrections on the data.
- Federation
 - Make Loculus instances communicate with each other.
 - Example: The lab instance could communicate with the uni instance or the "Swiss" instance.

We learned a lot in a fun project

CONCLUSION AND LEARNINGS

- Software development in scientific area
 - Small and very agile environment
- Using Astro
 - Thinking in static content again
 - Reactive "Islands"
- Developing open source software has its own challenges
- Many languages and frameworks
 - Possible due to clear separation
- Configurable and flexible code is hard
- Helm templating downsides
- ArgoCD: Previews for all pull requests

Acknowledgements

- ETH Zürich
- University of Basel
- Francis Crick Institute
- Swiss TPH
- University of Toronto
- TNG

Thank you for the attention!

Any questions?