

FUNCTIONALLY OBLIVIOUS

(AND SUCCINCT)

Edward Kmett McGraw Hill Financial

BUILDING BETTER TOOLS

- Cache-Oblivious Algorithms
- Succinct Data Structures

DATA.MAP

- · Production:
 - empty :: Ord k ⇒ Map k a
 - insert :: Ord $k \Rightarrow k \rightarrow a \rightarrow Map \ k \ a \rightarrow Map \ k \ a$
- · Consumption:
 - null :: Ord k ⇒ Map k a → Bool
 - lookup :: Ord $k \Rightarrow k \rightarrow Map \ k \ a \rightarrow Maybe \ a$

DATA.MAP

- Built by Daan Leijen.
- · Maintained by Johan Tibell and Milan Straka.
- Battle Tested. Highly Optimized. In use since 1998.
- Built on Trees of Bounded Balance
- The defacto benchmark of performance.
- Designed for the Pointer/RAM Model

WHAT I WANT

- · I need a Map that has support for very efficient range queries
- · It also needs to support very efficient writes
- · It needs to support unboxed data
- · ...and I don't want to give up all the conveniences of Haskell
- · But I can let point query performance suffer a bit.

THE DUMBEST THING THAT CAN WORK

- Take an array of (key, value) pairs sorted by key and arrange it contiguously in memory
- · Binary search it.
- · Eventually your search falls entirely within a cache line.

BINARY SEARCH

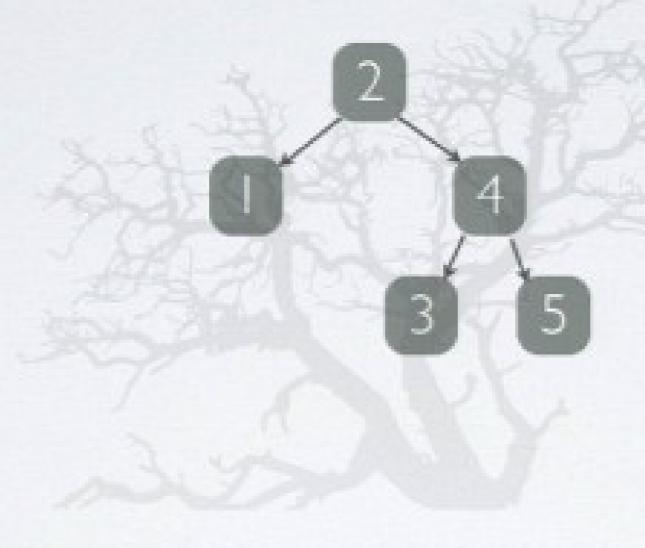
OFFSET BINARY SEARCH

Pro Tip!

RAM MODEL

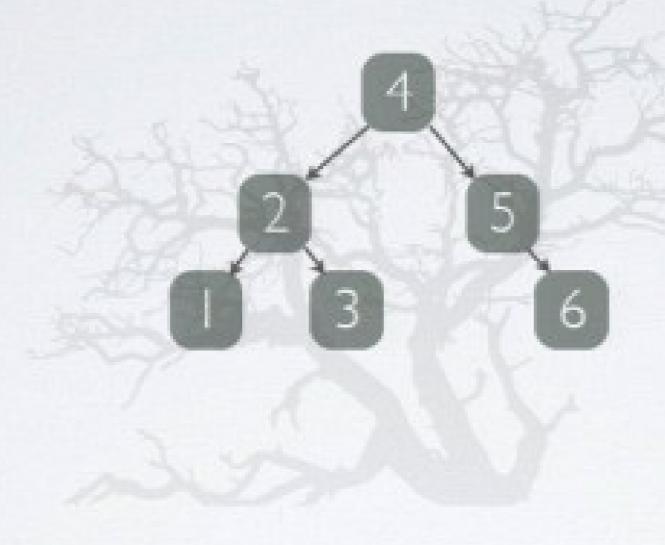
- Almost everything you do in Haskell assumes this model
- · Good for ADTs, but not a realistic model of today's hardware

DATA.MAP



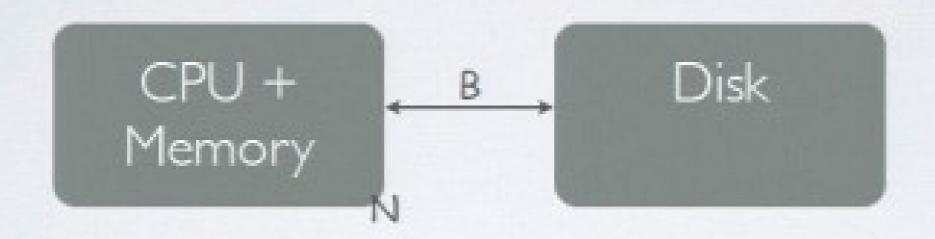
"Binary search trees of bounded balance"

DATA.MAP



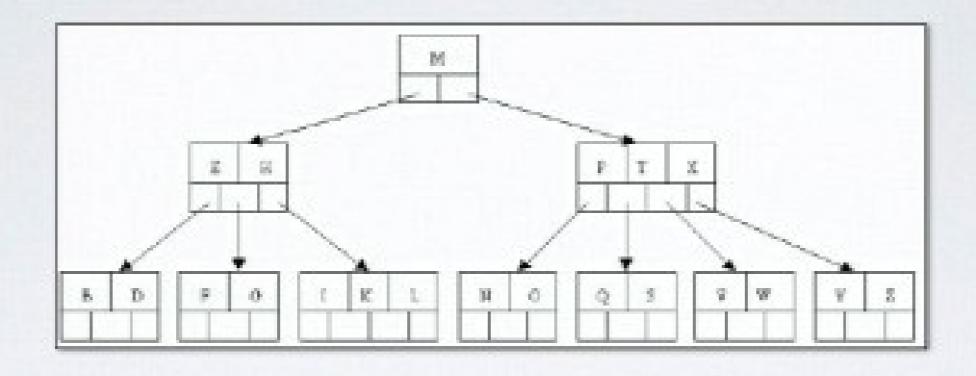
"Binary search trees of bounded balance"

10 MODEL



- Can Read/Write Contiguous Blocks of Size B
- Can Hold M/B blocks in working memory
- · All other operations are "Free"

B-TREES



- Occupies O(N/B) blocks worth of space
- Update in time O(log(N/B))
- Search O(log(N/B) + a/B) where a is the result set size

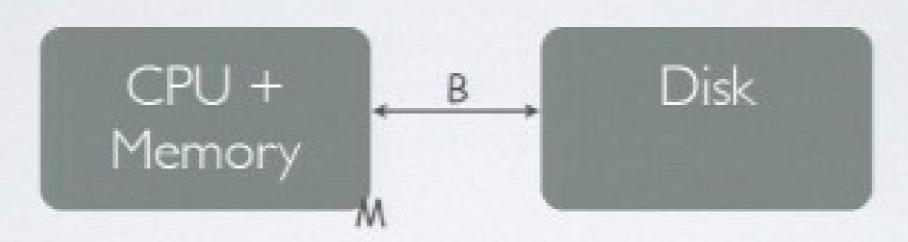
10 MODEL

$$\begin{array}{c} CPU + \\ Registers \end{array} \longrightarrow \begin{array}{c} LI \longrightarrow L2 \longrightarrow L3 \longrightarrow \begin{array}{c} Main \\ Memory \end{array} \longrightarrow \begin{array}{c} Disk \end{array}$$

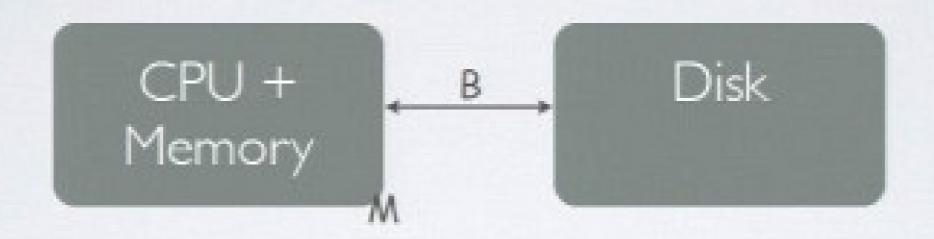
10 MODEL

CPU + Registers
$$A_1$$
 A_2 A_3 A_4 A_4 A_5 A_5 Disk

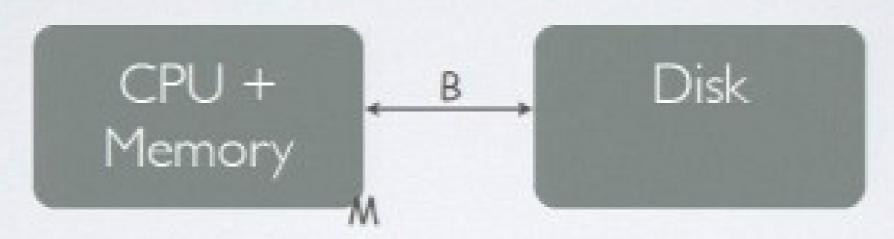
- Huge numbers of constants to tune
- Optimizing for one necessarily sub-optimizes others
- Caches grows exponentially in size and slowness



- Can Read/Write Contiguous Blocks of Size B
- Can Hold M/B Blocks in working memory
- · All other operations are "Free"
- · But now you don't get to know M or B!
- · Various refinements exist e.g. the tall cache assumption



- If your algorithm is asymptotically optimal for an unknown cache with an optimal replacement policy it is asymptotically optimal for all caches at the same time.
- You can relax the assumption of optimal replacement and model LRU, k-way set associative caches, and the like via caches by modest reductions in M.

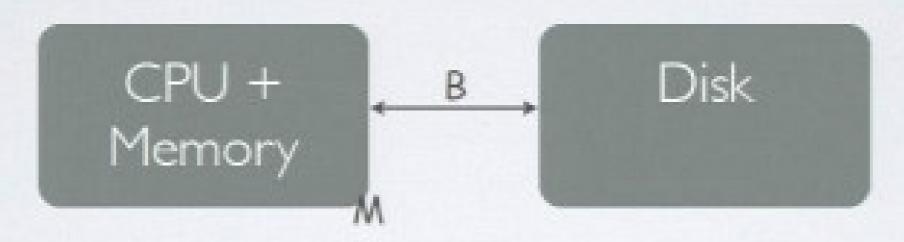


- As caches grow taller and more complex it becomes harder to tune for them at the same time. Tuning for one provably renders you suboptimal for others.
- The overhead of this model is largely compensated for by ease of portability and vastly reduced tuning.
- · This model is becoming more and more true over time!

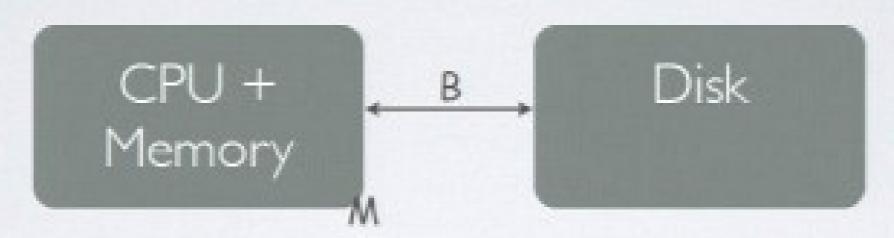
10 MODEL

CPU +
$$B_1$$
 LI B_2 L2 B_3 L3 B_4 Main B_5 Disk Registers M_1 M_2 M_3 M_4 M_4 M_5

- Huge numbers of constants to tune
- Optimizing for one necessarily sub-optimizes others
- Caches grows exponentially in size and slowness



- Can Read/Write Contiguous Blocks of Size B
- Can Hold M/B Blocks in working memory
- · All other operations are "Free"
- · But now you don't get to know M or B!
- · Various refinements exist e.g. the tall cache assumption



- As caches grow taller and more complex it becomes harder to tune for them at the same time. Tuning for one provably renders you suboptimal for others.
- The overhead of this model is largely compensated for by ease of portability and vastly reduced tuning.
- · This model is becoming more and more true over time!

DYNAMIZATION

- We have a static structure that does what we want
- How can we make it updatable?
- Bentley and Saxe gave us one way in 1980.

- · Linked list of our static structure.
- Each a power of 2 in size.
- The list is sorted strictly monotonically by size.
- · Bigger / older structures are later in the list.
- We need a way to merge query results.
- · Here we just take the first.

2 20 30 40

Now let's insert 7

5 7 2 20 30 40

Now let's insert 8

8572203040

Next insert causes a cascade of carries!

Worst-case insert time is O(N/B)Amortized insert time is O((log N)/B)We computed that oblivous to B

SLOPPY AND DYSFUNCTIONAL

- Chris Okasaki would not approve!
- Our analysis used assumed linear/ephemeral access.
- A sufficiently long carry might rebuild the whole thing, but if you
 went back to the old version and did it again, it'd have to do it all
 over.
- You can't earn credits and spend them twice!

8572203040

Next insert causes a cascade of carries!

Worst-case insert time is O(N/B)Amortized insert time is O((log N)/B)We computed that oblivous to B

SLOPPY AND DYSFUNCTIONAL

- Chris Okasaki would not approve!
- Our analysis used assumed linear/ephemeral access.
- A sufficiently long carry might rebuild the whole thing, but if you
 went back to the old version and did it again, it'd have to do it all
 over.
- You can't earn credits and spend them twice!

AMORTIZATION

Given a sequence of n operations:

a1, a2, a3 .. an

What is the running time of the whole sequence?

There are algorithms for which the amortized bound is provably better than the achievable worst-case bound e.g. Union-Find

BANKER'S METHOD

- · Assign a price to each operation.
- · Store savings/borrowings in state around the data structure
- · If no account has any debt, then

PHYSICIST'S METHOD

- · Start from savings and derive costs per operation
- ullet Assign a "potential" $ar{\Phi}$ to each state in the data structure
- The amortized cost is actual cost plus the change in potential.

amortized = actual +
$$\Phi_i - \Phi_{i-1}$$

actual; = amortized; +
$$\Phi_{i-1}$$
 - Φ_i

• Amortization holds if $\Phi_0 = 0$ and $\Phi_n \ge 0$

NUMBER SYSTEMS

- Unary Linked List
- Binary Bentley-Saxe
- Skew-Binary Okasaki's Random Access Lists
- Zeroless Binary ?

0				0
1				T
2			1	0
3			1	1
4		1	0	0
5		F	0	1
6		1	1	0
7		1	1	1
8	1	0	0	0
9	1	0	0	1
10	I	0	1	0

ZEROLESS BINARY

- · Digits are all 1, 2.
- Unique representation

Second Second	012
1000	1
1	2
	2
	1
2	2
2	1
3	2
3	
2	2
	1 2 3 3 2

MODIFIED ZEROLESS BINARY

- Digits are all 1, 2 or 3.
- Only the leading digit can be I
- Unique representation
- Just the right amount of lag

0			0
2			2
3		1	3
5 6	The state of	2	3
7 8		2	3
9 10		3	3

Binary

Modified Zeroless Binary Zeroless Binary

0				0
T				F
2			I	0
3			1	1
4		1	0	0
5		1	0	Î
6		1	1	0
7		1	1	1
8	1	0	0	0
9	1	0	0	l.
10	1	0	1	0

0			
T			1
2			2
3			1
4		1	2
5		I	1
6		2	2
7		2	1
8		1	2
9		1	1
10	-	2	2

		1
		2
	-	3
	T	2
	1	3
	2	2
	2	3
	3	2
	3	3
L	2	2
		3

PERSISTENTLY AMORTIZED

```
data Map k a
 = M0
   M1 ! (Chunk k a)
   M2 ! (Chunk k a) ! (Chunk k a) (Chunk k a) ! (Map k a)
   M3 !(Chunk k a) !(Chunk k a) !(Chunk k a) (Chunk k a) !(Map k a)
data Chunk k a = Chunk ! (Array k) ! (Array a)
- | O(log(N)/B) persistently amortized. Insert an element.
insert :: (Ord k, Arrayed k, Arrayed v) => k -> v -> Map k v -> Map k v
insert k0 v0 = go $ Chunk (singleton k0) (singleton v0) where
 go as M0
  go as (M1 bs) = M2 as bs (merge as bs) M0
 go as (M2 bs cs bcs xs) = M3 as bs cs bcs xs
 go as (M3 bs _ _ cds xs) = cds 'seq' M2 as bs (merge as bs) (go cds xs)
{-# INLINE insert #-}
```

Binary

Modified Zeroless Binary Zeroless Binary

0				0
1				1
2			I	0
3			1	Î,
4		1	0	0
5		1	0	1
6		1	1	0
7		1	1	1
8	1	0	0	0
9	I.	0	0	-
10	1	0	1	0

0			
T			I
2			2
3			1
4		I	2
5		1	1
6		2	2
7		2	I
8	1	1	2
9	1	1	1
10	1	2	2

-	Ħ		
0			
1			1
2			2
3			3
4		1	2
5		1	3
6		2	2
7		2	3
8		3	2
9		3	3
10	L	2	2

PERSISTENTLY AMORTIZED

```
data Map k a
 = M0
   M1 (Chunk k a)
   M2 ! (Chunk k a) ! (Chunk k a) (Chunk k a) ! (Map k a)
   M3 !(Chunk k a) !(Chunk k a) !(Chunk k a) (Chunk k a) !(Map k a)
data Chunk k a = Chunk ! (Array k) ! (Array a)
- | O(log(N)/B) persistently amortized. Insert an element.
insert :: (Ord k, Arrayed k, Arrayed v) => k -> v -> Map k v -> Map k v
insert k0 v0 = go $ Chunk (singleton k0) (singleton v0) where
 go as M0
  go as (M1 bs) = M2 as bs (merge as bs) M0
 go as (M2 bs cs bcs xs) = M3 as bs cs bcs xs
 go as (M3 bs _ _ cds xs) = cds 'seq' M2 as bs (merge as bs) (go cds xs)
{-# INLINE insert #-}
```

WHY DO WE CARE?

- Inserts are ~7-10x faster than Data.Map and get faster with scale!
- The structure is easily mmap'd in from disk for offline storage
- This lets us build an "unboxed Map" from unboxed vectors.
- Matches insert performance of a B-Tree without knowing B.
- Nothing to tune.

PROBLEMS

· Searching the structure we've defined so far takes

$$O(log^2(N/B) + a/B)$$

- We only matched insert performance, but not query performance.
- We have to query O(log n) structures to answer queries.

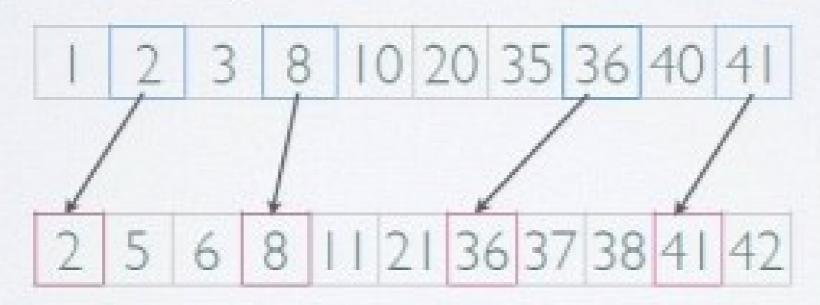
FRACTIONAL CASCADING

- · Search m sorted arrays each of sizes up to n at the same time.
- · Precalculations are allowed, but not a huge explosion in space
- Very useful for many computational geometry problems.
- Naïve Solution: Binary search each separately in O(m log n)
- · With Fractional Cascading: O (log mn) = O(log m + log n)

FRACTIONAL CASCADING

· Consider 2 sorted lists e.g.

· Copy every kth entry from the second into the first



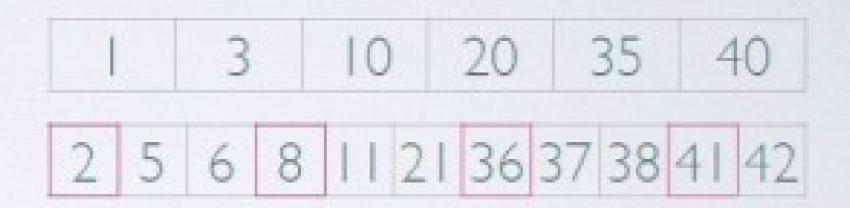
After a failed search in the first, you now have to search a
constant k-sized fragment of the second.

IMPLICIT FRACTIONAL CASCADING

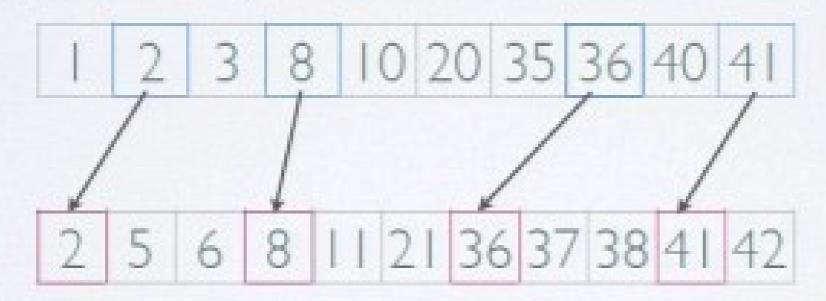
- · New trick:
- · We copy every kth entry up from the next largest array.
- If we had a way to count the number of forwarding pointers up to a given position we could just multiply that # by k and not have to store the pointers themselves

FRACTIONAL CASCADING

· Consider 2 sorted lists e.g.



· Copy every kth entry from the second into the first



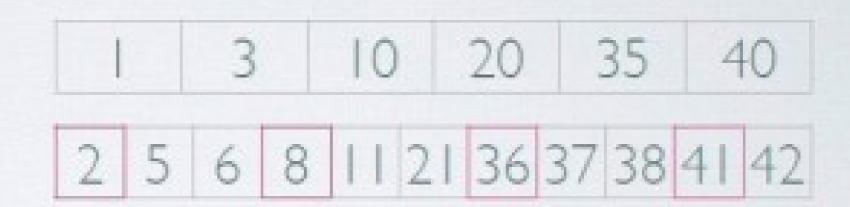
 After a failed search in the first, you now have to search a constant k-sized fragment of the second.

IMPLICIT FRACTIONAL CASCADING

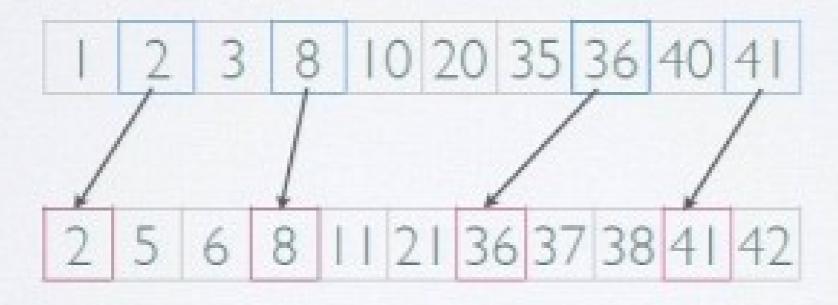
- · New trick:
- · We copy every kth entry up from the next largest array.
- If we had a way to count the number of forwarding pointers up to a given position we could just multiply that # by k and not have to store the pointers themselves

FRACTIONAL CASCADING

· Consider 2 sorted lists e.g.



· Copy every kth entry from the second into the first



 After a failed search in the first, you now have to search a constant k-sized fragment of the second.

SUCCINCT DICTIONARIES

· Given a bit vector of length n containing k ones e.g.

• There exist $\binom{n}{k}$ such vectors.

· Knowing nothing else we could store that choice in Ho bits

rank_a(i) = # of occurrences of a in S[0..i)select_a(i) = position of the ith a in S

SUCCINCT DICTIONARIES

· Given a bit vector of length n containing k ones e.g.

• There exist $\binom{n}{k}$ such vectors.

$$H_0 = log \binom{n}{k} + 1$$

· Knowing nothing else we could store that choice in Ho bits

rank_a(i) = # of occurrences of a in S[0..i)select_a(i) = position of the ith a in S

IMPLICIT FORWARDING

- Store a bitvector for each key in the vector that indicates if the key is a forwarding pointer, or has a value associated.
- To index into the values use rank up to a given position instead.
- This can also be used to represent deletion flags succinctly.
- In practice we can use non-succinct algorithms. (rank9, poppy)

SUCCINCT DICTIONARIES

· Given a bit vector of length n containing k ones e.g.

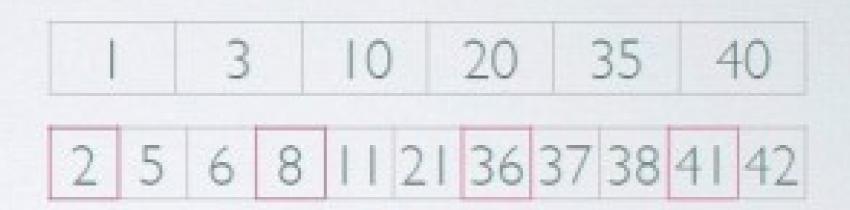
• There exist $\binom{n}{k}$ such vectors.

· Knowing nothing else we could store that choice in Ho bits

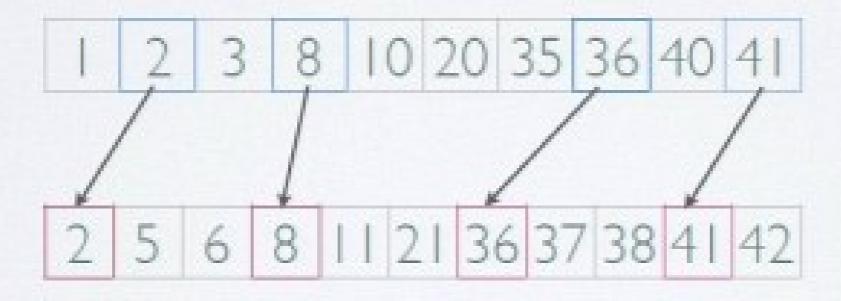
rank_a(i) = # of occurrences of a in S[0..i)select_a(i) = position of the ith a in S

FRACTIONAL CASCADING

· Consider 2 sorted lists e.g.



· Copy every kth entry from the second into the first



 After a failed search in the first, you now have to search a constant k-sized fragment of the second.

SUCCINCT DICTIONARIES

· Given a bit vector of length n containing k ones e.g.

• There exist $\binom{n}{k}$ such vectors.

· Knowing nothing else we could store that choice in Ho bits

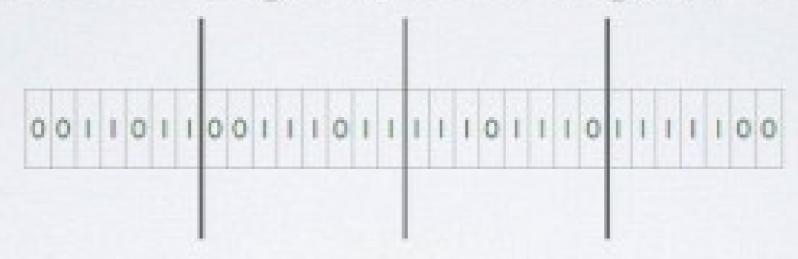
rank_a(i) = # of occurrences of a in S[0..i)select_a(i) = position of the ith a in S

IMPLICIT FORWARDING

- Store a bitvector for each key in the vector that indicates if the key is a forwarding pointer, or has a value associated.
- To index into the values use rank up to a given position instead.
- This can also be used to represent deletion flags succinctly.
- In practice we can use non-succinct algorithms. (rank9, poppy)

NON-SUCCINCT DICTIONARIES

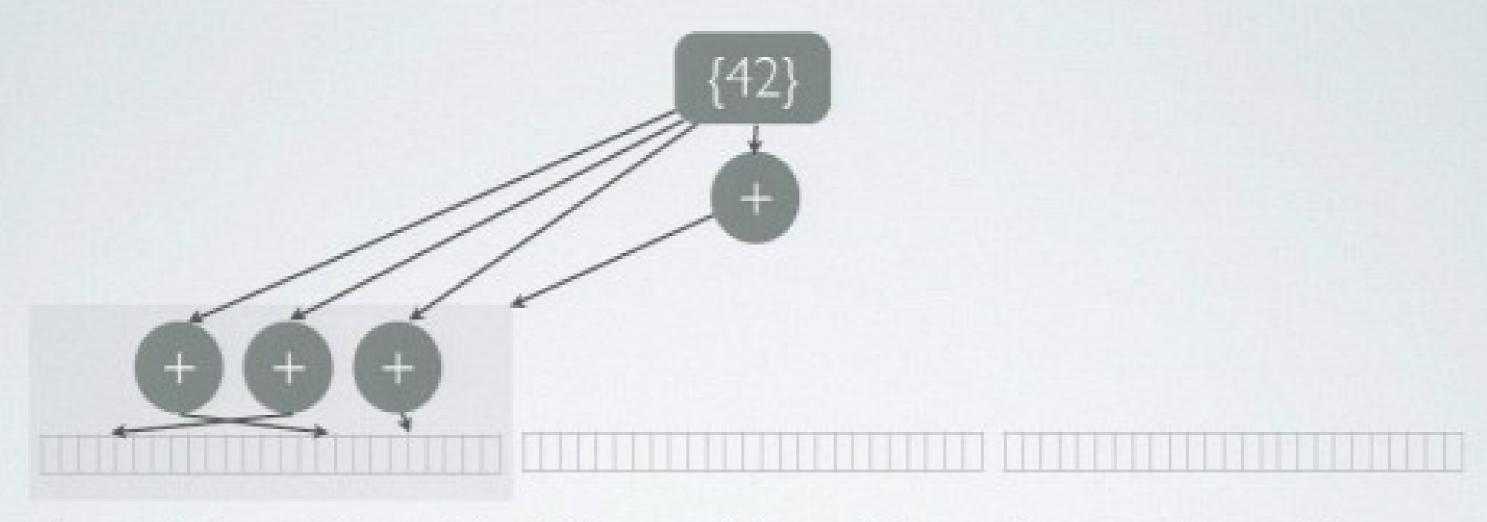
· Given a bit vector of length n containing k ones e.g.



- Break it into chunks of size log(n) (or 64)
- · Store a prefix sum up to each chunk
- With just 2n total space we get an O(1) version of:

ranka(S,i) = # of occurrences of a in S[0..i)

BLOOM-FILTERS



- Associate a hierarchical Bloom filter with each array tuned to a
 false positive rate that balances the cost of the cache misses for
 the binary search against the cost of hashing into the filter.
- · Improves upon a version of the "Stratified Doubling Array"
- Not Cache-Oblivious!

BENEFITS

- Match the asymptotic B-Tree performance without knowing B
- Fully persistent, can edit previous versions.
- Always uses sequential writes on disk
- We get ~ I 0x faster inserts than Data.Map
- We can reuse these techniques for other problem domains

QUESTIONS?

The code is on github:

http://github.com/ekmett/structures

http://github.com/ekmett/succinct

IMPLICIT FRACTIONAL CASCADING

- · New trick:
- · We copy every kth entry up from the next largest array.
- If we had a way to count the number of forwarding pointers up to a given position we could just multiply that # by k and not have to store the pointers themselves

Binary

Zeroless Binary Zeroless Binary

Modified Zeroless Binary

0				0
1				1
2			I	0
3			Ι	1
4		1	0	0
5		1	0	1
6		1	1	0
7		1	1	1
8	1	0	0	0
9	L	0	0	L
10	1	0	I	0

0			
T			1
2			2
3			1
4		1	2
5		1	1
6		2	2
7		2	1
8	1	I	2
9	1	1	1
10	1	2	2

0			
1			1
2			2
3			3
4		1	2
5		1	3
6		2	2
7		2	3
8		3	2
9		3	3
10	I	2	2

PERSISTENTLY AMORTIZED

```
data Map k a
 = M0
   M1 ! (Chunk k a)
   M2 ! (Chunk k a) ! (Chunk k a) (Chunk k a) ! (Map k a)
   M3 !(Chunk k a) !(Chunk k a) !(Chunk k a) (Chunk k a) !(Map k a)
data Chunk k a = Chunk ! (Array k) ! (Array a)

    O(log(N)/B) persistently amortized. Insert an element.

insert :: (Ord k, Arrayed k, Arrayed v) => k -> v -> Map k v -> Map k v
insert k0 v0 = go $ Chunk (singleton k0) (singleton v0) where
 go as M0
  go as (M1 bs) = M2 as bs (merge as bs) M0
 go as (M2 bs cs bcs xs) = M3 as bs cs bcs xs
 go as (M3 bs _ _ cds xs) = cds 'seq' M2 as bs (merge as bs) (go cds xs)
{-# INLINE insert #-}
```