Designing Type-Safe
Haskell APls

Michael Snoyman - BigTechDay 2012




What is type safety?

e Combination of static and strong typing

e Static typing: type errors caught compile
time

e Strong typing: express invariants in the types



Strong/weak vs

dynamic/static

Whatdoes "hello" + 1 do”?

: Strong Weak
Static Haskell &
Compile-time error "ello"
Dynamic | Python Javascript

Run-time error "hello1"



Static typing

e¢ Compare to dynamic (e.qg., Python, Ruby)

e Mostly a binary choice

e Even in statically typed languages, some
dynamic typing exists (RTTI, reflection,
Typeable)



Strong typing

e Compare to weak (e.q., Perl, Javascript)

e Not a binary choice: there's a large spectrum

e Not just a language feature: libraries and
programming style have a strong impact

e Some languages make strong typing easier



Weakly typed Haskell






0
O
Q.
£
O
-
Q.
C
<
L
O

Il

.
.|

=

r =



Use the right datatype

e Use Map instead of assoc list
o If order doesn't matter

e Use Set instead of list
e Don't be afraid to combine them

Make sure to use the right kind of union, e.g.:

i — .'."._I 2 - L -—.I-.I-. - = :t.- I::- el ] . T, "
i g i o L il 1 " E: - B | m T rF
_..I':]. hd I..-I._J. J—I::I——I-_-. II'I I_ P l |._..I N et o — '-._.-I_-

=



Express invariants in types

e User must provide phone number, or emall
address, or both

Bad: (Maybe Phone, Mavybe Email)
Good:
data ContactInfo

= OnlvPhone Phone

OnlvEmail Email

:.l F i T _l"lr-..-—:.T'r'-r'--_- : T k-\.,-_-.'.- T'l'-'l'-l'_'- ' 1
| hs_a'.--_cff.-'.'.'__u_:._;u-‘:..l_ P _q__E Laillcr 4 1



Use the right libraries

LYPe FilePath = String
Nc: type safety at all.
Use: system-filepath

Similarly: text, bytestring, blaze-htmli, ...



The Strings Issue




OverloadedStrings

Makes It cheap to create newtypes

Simple literal syntax for ByteString, HTML
Replace String with improved Text
Separate type for XML names

o Compare to the Java solution: double the methods!

Downside: no compile time checking

> Not a huge problem In practice
> Can always use QuasiQuotes instead



text versus bytestring

e Need to explicitly state character encoding
e \Works as a tool for explanation

encodeUL R "2vT") -- compile tme error



e Automatic entity escaping (avoids X55)

e Explicit functions to avoid escaping

e Newtypes like Textarea have special
features



Going too far

Ascil data 1s neither Text nor ByteString
ldea: create a newtype!

Result: lots of complaints, too difficult to use
Lesson learned: sometimes safer != better



Type tricks, extensions



Phantom data types

e Problem: all database keys look the same
e Solution: use a phantom

5
T e e o ol e ook el oo i el




GADTs and data kinds



GADTs and data kinds (2)

] — = = af mm



GADTs and data kinds (3)

— - cEgE g gy g



GADTs and data kinds (2)

=] — = = ] m

— T — m— cEggm e g e e, e B TR el



GADTs and data kinds (3)

— — cEgEm gy g g



Type parameters

e Read a list of employees, some have IDs
e Assign IDs to employees without



Keep it general

e Program to typeclasses when possible

e Use Monad minstead of I0
> Won't accidentally perform actions
> Code reuse

Monoid covers a lot of use cases too
Downside: more confusing error messages



Type parameters

e Read a list of employees, some have |IDs
e Assign IDs to employees without



Keep it general

e Program to typeclasses when possible

e Use Monad m instead of I0
> Won't accidentally perform actions
> Code reuse

Monoid covers a lot of use cases too
Downside: more confusing error messages



Examples from Yesod



The boundary issue

e You lose all type safety when Interacting with
the outside world

e Solution: keep everything strongly typed
e Render at the last moment
e Parse to strong types immediately



Example: type-safe URLs

Every route In a web app == value of a type
Requested path gets converted to value

immediately
o Ifit can't be converted, send a 404 "not found”

Render to text at the last minute

We can introspect on these values

> Permissions

> Breadcrumbs
> Request body limiting

Compiler prevents us from generating invalid
INks



Typeclasses state

requirements

e Simple example: MonadIO

e [n Yesod:
> Tells us which messages need to be translated

{_r—.-.—l.—l.—-_.—-—._:.:l.:—.r.—.j
el Lol Sy e b o e el B ol g

State Javascript_d eps (e.g., YesodJguery)



Type families

e State a relationship between two types
e In Yesod: type-safe URLs and web app
e Combines nicely with typeclasses



Selling type safety




A means to an end”

e People don't buy programs because they're
type safe

e [ype safety Is a technique to move runtime
pugs to compile time

e .. also just a means to bug-free code

e [ype safety Is one tool among many
> Unit testing
o Static analysis

o QA

o

* This is true for our purpases loday. In some cases. type safety is an end in and of itsalf.



Why use type safety?

e [ype checking is run every time you compile
> Impossible to produce output that's not type safe

e Any invariant enforced by the type system is

automatically guaranteed to be correct
> Example: you don't need to write a unit test that the
two arguments to + are numbers

e Helps make code self documenting
> Not an excuse to avoid writing real documentation!



Cost/benefit analysis

e \We're looking for large benefits with low
costs

e Haskell makes many techniques cheap
See rest of this talk for examples :)

e Many of these techniques would be too

expensive in other languages (e.qg., Java)
This is why static typing has a bad rap
Popular static typed languages offer:
m little benefit (few Invariants enforced)
m high cost (verbose syntax)

e Even In Haskell we sometimes draw the line
Mo hard-and-fast rule, it's a judgement call



Cost/benefit analysis

e \We're looking for large benefits with low
costs

e Haskell makes many techniques cheap
See rest of this talk for examples :)

e Many of these techniques would be too

expensive in other languages (e.qg., Java)
This iIs why static typing has a bad rap
Popular static typed languages offer:
m little benefit (few Invanants enforced)

m high cost (verbose syntax)

e Even In Haskell we sometimes draw the line
Mo hard-and-fast rule, it's a judgement call



