A Little Graph Theory for the
Busy Developer



Roadmap

* I[mprisoned data
* Graph models

* Graph theory
— Local properties, global behaviours

- Predictive technigues
* Graph matching

- Predictive, real-time analytics for fun and
profit

* Fin
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Aggregate-Oriented Data

“There is a sienificant downside - the whole approach works really well
when data access is aligned with the aggregates, but what if vou want to
look at the data in a different way? Ovrder entry naturally stores orders as
ageregates, but analvzing product sales cuts across the aggregate structure.
The advantage of not using an aggregate structure in the database is that it
allows vou to slice and dice vour data different wavs for different
audiences.

This is why aggrecate-oriented stores talk so much about map-reduce. ™
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complexity = f(size, connectedness, uniformity)
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Property graphs

* Property graph model:
— Nodes with properties
- Named, directed relationships with properties

- Relationships have exactly one start and end
node
* Which may be the same node
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Property Graph Model
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Labeled Property Graph Model

(Neodj 2.0)
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Property graphs are verywhiteboard-friendly




http:/fblogs.adobe com/digitalmarksting/ analytics/ predictive-ana lytics/predictave-analytics-and-the-digital- marketer,



Meet Leonhard Euler

* Swiss mathematician

* [nventor of Graph
Theory (1736)



















Triadic Closure
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Structural Balance




Structural Balance




Structural Balance




Structural Balance




Structural Balance




Structural Balance




Structural Balance is a key
predictive technique
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Allies and Enemies




Predicting WWI
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Strong Triadic Closure

It if a node has strong relationships to two
neighbours, then these neighbours must have at
least a weak relationship between them.

[Wikipediaf



Triadic Closure

(weak relationship)




Triadic Closure
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Weak relationships

* Relationships can have “strength” as well as
intent

- Think: weighting on a relationship in a property
graph
* Weak links play another super-important
structural role in graph theory
— They bridge neighbourhoods



Local Bridges




Local Bridge Property

“If a node A in a network satisties the Strong
Triadic Closure Property and is involved in at
least two strong relationships, then any local
bridge it is involved in must be a weak

relationship.”

[Easley and Kleinberg]



University Karate Club




Graph Partitioning

* (NP) Hard problem

— Recursively remove the spanning links between
dense regions

— Or recursively merge nodes into ever larger
“subgraph” nodes

- Choose your algorithm carefully — some are
better than others for a given domain

* Can use to (almost exactly) predict the
break up of the karate club!



University Karate Clubs
(predicted by Graph Theory)




University Karate Clubs

what actually happened!
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Cypher

* Declarative graph pattern matching language
— “SQL for graphs”
— Columnar results

* Supports graph matching commands and
gueries

— Find me stuff like this...
- Aggregation, ordering and limit, etc.
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Flatten the graph

[daddy)~[:BOUGHT | => () — [ :tMEMBER OF | ->({napples)
(daddy) = [ :BOUGHT ] -> () — [ :MEMBER OF] ->{beer)
[daddy) = [b: BOUGHT] => () = [ :MEMBER OF]=> (conhsole]



Wrap in a Cypher MATCH clause

MATCH (qaddy)-[:BOUGHT]->()-[:MEMBER OF]|->(napples),
(daddy) - [ :BOUGHT ] -> () - [ :MEMBER OF] -> (beer) ,
(daddy) = [b: BOUGHT ] => () = [ :MEMBER OF]=> (console)



Cypher WHERE clause

MATCH {(daday)-[:BOUGHT|=>()-[:MEMBEER OF]->{nappies),
(daddy) - [ :BOUGHT ] -> () — [ :MEMBER OF] ->(beer) ,

[daddy) - [b: BOUGHT] => () ~[ : MEMBER OF]-> [console)

WHERE b is null



Full Cypher query

START beer=node:categories (category=‘beer’),
napples=nodeicategories (cateqgory="napples’),
Xxbox=node :products (product="xbox 360")

MATCH (daddy)-[:BOUGHT]->()~-[:MEMBER OF]-> (beer),
(daddy) = [ :BOUGHT] => () -[ :MEMBER OF]-> (nappies),
(daddy) - [b?:BOUGHT ] -> (xbox)

WHEEE b is null

RETURN distinct daddy



Results

1

==2> | MNodel[l%]{name:"Reory Williams",dob:19880121}

necdj-sh (0)5

http.//console.neodj.org/7id=dptxq8




Full Cypher query

START beer=node:categories (category=‘beer’),
napples=nodeicategories (cateqory="napples’),
xbox=node :products (product="xbox 360")

MATCH (daddy)-[:BOUGHT]=->{()~-[:MEMBER OF]-> (beer),
(daddy) =[ :BOUGHT] =>()-[ :MEMBER OF]-> (nappies),
(daddy)=-[b?:BOUGHT] => (xbox)

WHEEE b is null

RETURN distinct daddy



Results

==> | HNodel[l%] {name:"Rory Williams",dob:19880121 )

necdj-sh (0Q)5

http.//console.neod|.org/7id=dptxg8
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Introducing Graph Search
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Discover restaurants, music and more



Facebook Graph Search

,Find indian restaurants in Southwark which
my friends like.”



name: Kath

' categary: Imndian category. Yegatarian

neighbourhood; East negighbourhood; Forest
Diulwich HIS
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FB Graph Search with Cypher

START Jim = node:node auto index({name='Jim'),
southwark = node:node auto index(borough='Scuthwark’'),

indian = node:node auto index(cuisine='Indian')

MATCH Jim-[:FEIEND]->friend,
friend-[:LIKES]->»restaurant,

restaurant-[:IN]->()-[:IN]->southwark,
restaurant— [ :CUISINE]->indian

RETUERN restaurant



What are graphs good for?

* Recommendations

* Business intelligence

* Social computing

* Geospatial

* MDD

* Data centre management
* Web of things

* Genealogy

* Time series data

* Product catalogue

* Web analytics

* Scientlfic computing (especially bloinformatics)
* Indexing your s/ow RDBMS
* And much more!
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Thank you!
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