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OUTLINE

• Introduction to AI and Deep learning in healthcare

− Demystifying AI

− A success story: skin cancer detection

• Challenges and current limitations

− The data challenge

− The curse of dimensionality

− The ‘black-box’

• Solutions: current research topics

− Reducing the need for annotations

− Introducing prior knowledge

− Dealing with volumetric data

− Decision visualisation
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From regression to Deep Learning

Regression

• Linear: z=ax+by
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LEARNING FROM DATA

From regression to Deep Learning

Deep Learning (~Highly non-linear)

→ ‘trained’ on data

Regression

• Linear: z=ax+by

• Non-linear: z=f(ax+by)
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A lot of data !

ImageNet: 1.2 Mio mmm

AlphaGo: 30 Mio mmm
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LEARNING FROM DATA

Convolutional Neural Networks for Computer Vision Applications

Applications

• Classification of images → Skin-moles classification

• Detection of objects → Vertebrae detection

• Automated segmentation → Heart ventricle volume measurement

• Detection of abnormalities → Detection of eye fondus hemorrage

https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html

https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html


LEARNING FROM DATA

Summary

DL = fancy and highly non-linear regression

• Neural networks are trained by examples

• The features that are used for decision-
making are ‚learned‘ by the network itself

• Lots of examples are needed to properly
cover the variability of the data

• After training, networks can be used to
predict information (e.g. classification of an 
image) on unseen data

https://mapr.com/blog/demystifying-ai-ml-dl/



DEEP LEARNING IN HEALTHCARE

Scientific publications

F. Jiang etal, Artificial intelligence in healthcare: past, 

present and future. Stroke and Vascular Neurology (2017)

Number of papers Data sources

imaging

electr.
gen.



A SUCCESS STORY: SKIN CANCER DETECTION

Network architecture

A. Esteva etal, Nature 542, 115-118 (2017)  
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A SUCCESS STORY: SKIN CANCER DETECTION

Network architecture

A. Esteva etal, Nature 542, 115-118 (2017)  

Inception v3: C. Szegedy etal, arXiv:1512.00567  

Google Inception v3 CNN

30 Mio parameters

130,000 mmm / 757 classes



A SUCCESS STORY: SKIN CANCER DETECTION

Dermatologist-level performance

Algorithm vs Dermatologists

Sensitivity =
Detected Malign.

Malignant

A. Esteva etal, Nature 542, 115-118 (2017)  
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Enables better imaging biomarkers

Multiple Myeloma:

- plasma-cell disorder

- causes bone damage

- 3 stages: 

MGUS/sMM/MM

→ Risk stratification

U-Net CNN

6 Mio parameters

900+ lesions / 220 3D wb-MRI scans

U-Net: O. Ronnerberger etal, MICCAI (2015)  
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Multiple Myeloma:

- plasma-cell disorder

- causes bone damage

- 3 stages: 

MGUS/sMM/MM

→ Risk stratification

U-Net CNN

6 Mio parameters

900+ lesions / 220 3D wb-MRI scans

→ Better predictor!
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CHALLENGES AND CURRENT LIMITATIONS

1) The data challenge

Variability: Medical data is ill-structured / highly-variable

Scarceness: expensive to collect and label

ImageNet: 1.2 Mio

Dermato article: 130,000

Med Study: 100s of cases

Christ et al MICCAI 2016



CHALLENGES AND CURRENT LIMITATIONS

2) The curse of dimensionality

M. Bieth etal IEEE Trans. Med. Imag. 2017

Memory Comp. time
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3) The ‚black-box‘ problem

No explicit programming! How are decisions reached?

Explanation:            to acceptance

GDPR: Automated individual decision-making should be contestable

→ Testing/ Certification

Jan 2017: 1st DL software to obtain FDA clearance...

April 2018: 1st DL diagnostic software to obtain FDA

clearance

www.arterys.com

www.eyediagnosis.net
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SOLUTIONS

Some of our research activities

Data scarceness and variability: 

• Data augmentation

& Semi-supervised learning

• Transfer learning

• Input prior knowledge

Volumetric Data: 

• ‘2.5D’ solutions

• Cross-hair filters

Hacking the black-box:

• Visualization

• Model-aware learning

• Link with dynamical systems

Cross-hair filters for Brain vessel segmentation

arXiv:1803.09340

Multi-level activation for nuclei segmentation

BioComputing@ECCV 2018 

Reducing the need for annotations

in Breast Cancer detection

Class maximization for Breast Cancer classification



REDUCING THE NEED FOR ANNOTATIONS

e.g. Whole-Slide Images for breast Cancer detection

CAMELYON 16 challenge

400 WSIs (100 000 px small side), >1TB total

> >

https://camelyon16.grand-challenge.org/

https://camelyon16.grand-challenge.org/


REDUCING THE NEED FOR ANNOTATIONS

CAMELYON 

Data Augmentation and Generation
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REDUCING THE NEED FOR ANNOTATIONS

CAMELYON dataset:
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Method FROC score 
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Supervised 61.1

Data 
augmentation
(FM-GAN)
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REDUCING THE NEED FOR ANNOTATIONS

CAMELYON dataset: classify tumor patches

Method FROC score 
(best: 100)

Supervised 61.1

Data 
augmentation
(FM-GAN)

65.1

Semi-Supervised 
(Temporal
ensembling)

68.4

Semi-supervised learning

10% labeled + 90% unlabeled examples

Labeled set Unlabeled set

Full set

https://www.cs.toronto.edu/~kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html
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INCLUDING PRIOR KNOWLEDGE

Multi-level activation for topological inclusion

Standard multi-class: soft-max with cross-entropy loss

- exclusive classes

- no topological awareness

Logistic regression for hierarchically-nested classes
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INCLUDING PRIOR KNOWLEDGE

Achieving Faster and better segmentation

Method Test Dice scores

Multi-class 0.832 (0.058)

NCE 0.844 (0.061)

SSE 0.859 (0.052)

MCE 0.868 (0.082)

Kaggle challenge: only 16 images(!)

→ heavy online data augmentation

(flips, warping, rotations, translations, rescaling)

M. Piraud, A. Sekuboyina and B. H. Menze, Multi-level Activation for Segmentation of 

Hierarchically-nested Classes, BioComputing@ECCV 2018



DEALING WITH VOLUMETRIC DATA

3D cross-hair filters

3𝑘2 ≤ 𝑘3 if 𝑘 ≥ 3

M. Bieth etal IEEE Trans. Med. Imag. 2017



DEALING WITH VOLUMETRIC DATA

3D cross-hair filters

No. of param. → 𝑘3 No. of param. → 3𝑘2

3𝑘2 ≤ 𝑘3 if 𝑘 ≥ 3

3𝑘2 ≤ 𝑘3 if 𝑘 ≥ 3

M. Bieth etal IEEE Trans. Med. Imag. 2017



DEALING WITH VOLUMETRIC DATA

Gain in memory and speed

V-Net: Milletari et al. 3DV 2016

40% gain in memory

Tetteh et. al, M. Piraud, and B. H. Menze, deepVesselNet: Vessel Segmentation, 

Centerline Prediction and Bifurcation Detection in Magnetic Resonance 

Angiography, arXiv:1803.09340



DEALING WITH VOLUMETRIC DATA

Gain in memory and speed

V-Net: Milletari et al. 3DV 2016

40% gain in memory

Vessel segmentation tasks (DeepVesselNet)

Dataset Methods F1 Score Execution 

time

Synthetic 

(600x304x325)

CF filters 0.9956 17s

3D filters 0.9949 23s

MRA (fine-tuning)

(580x640x136)

CF filters 0.8425 20s

3D filters 0.8497 26s

SRXTM (transfer 

learning)

(254x254x254)

CF filters 0.9601 7s

3D filters 0.9555 11s

Tetteh et. al, M. Piraud, and B. H. Menze, deepVesselNet: Vessel Segmentation, 

Centerline Prediction and Bifurcation Detection in Magnetic Resonance 

Angiography, arXiv:1803.09340

23% gain in computation speed.



DECISION VISUALISATION

Feature inversion

Reconstruct image from features of a 
specific layer

backpropagation

M. Baust etal, Understanding regularization to visualize CNNs, arXiv:1805.00071
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Feature inversion

Reconstruct image from features of a 
specific layer

backpropagation

Network 1 Network 2

M. Baust etal, Understanding regularization to visualize CNNs, arXiv:1805.00071



DECISION VISUALISATION

Class maximization

Reconstruct ‘archetypical’ image which maximizes a specific class

https://research.konicaminolta.eu/understanding-deep-convolutional-neural-networks-through-visualization/

backpropagation

spider daisy gondola cobra

https://research.konicaminolta.eu/understanding-deep-convolutional-neural-networks-through-visualization/


DECISION VISUALISATION

Class maximization

Reconstruct ‘archetypical’ image which maximizes a specific class

https://research.konicaminolta.eu/understanding-deep-convolutional-neural-networks-through-visualization/

backpropagation

benign invasive

carcinoma

normalin-situ

carcinoma

https://research.konicaminolta.eu/understanding-deep-convolutional-neural-networks-through-visualization/


CHALLENGES AND CURRENT LIMITATIONS

Summary

Data scarceness and variability

Semi-supervised learning/ Transfer Learning/ Use prior knowledge …

The ‘black-box’ problem

Some visualization methods… Very active research field!

Testing/ Certification for development in the clinic

(15+ FDA-approved and 8+ CE softwares)

Currently: extensive ‘heuristic’ testing

www.arterys.com

See e.g.: http://www.technologyreview.com/s/604271/deep-learning-is-a-black-box-but-health-care-wont-mind/

www.eyediagnosis.net
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