

Technische Universität Münche

IS A/ GOING TO REPLACE YOUR DOCTOR ?

(Medical applications of Artificial Intelligence)

Dr. Marie Piraud

Konica Minolta Laboratory Europe (Guest researcher TU München)

AI reaching human-level

13 May 2015

Computers now <u>better than humans</u> at recognising and sorting images

AI reaching human-level

13 May 2015

Computers now <u>better than humans</u> at recognising and sorting images

9 March 2016

Also in healthcare!

```
Dermatologist-level classification of skin
cancer with deep neural networks
Nature 542, 115-118 (02 February 2017)
```


Also in healthcare!

```
Dermatologist-level classification of skin
cancer with deep neural networks
Nature 542, 115-118 (02 February 2017)
```

Forget your GP, robots will 'soon be able to diagnose more ac Frank Chen @withfries2 almost any doctor' Geoff Hinton: "we should radiologists right now in

Geoff Hinton: "we should stop training radiologists right now, in 5 years #deeplearning will have better performance" #mkt4intel

12:18 - 27. Okt. 2016 aus Toronto, Ontario

Folgen

 \sim

Also in healthcare!

```
Dermatologist-level classification of skin
cancer with deep neural networks
Nature 542, 115-118 (02 February 2017)
```

Forget your GP, robots will 'soon be able to diagnose more ac
Frank Chen withfries2
Geoff Hinton: "we should stop training radiologists right now in 5 years

radiologists right now, in 5 years #deeplearning will have better performance" #mkt4intel

Exciting?

Folgen

 \sim

Scary?

12:18 - 27. Okt. 2016 aus Toronto, Ontario

OUTLINE

- Introduction to AI and Deep learning in healthcare
 - Demystifying Al
 - A success story: skin cancer detection
- Challenges and current limitations
 - The data challenge
 - The curse of dimensionality
 - The 'black-box'
- Solutions: current research topics
 - Reducing the need for annotations
 - Introducing prior knowledge
 - Dealing with volumetric data
 - Decision visualisation

WHAT IS AI?

"Machines that learn, think and act like humans"

WHAT IS AI?

"Machines that learn, think and act like humans"

Regression

feature

feature

Regression

feature

Regression

feature

From regression to Deep Learning

Regression

• Linear: z=ax+by

Non-linear: z=f(ax+by)

From regression to Deep Learning

Regression

• Linear: z=ax+by

Non-linear: z=f(ax+by)

Deep Learning (~Highly non-linear)

 \rightarrow 'trained' on data

From regression to Deep Learning

Regression

• Linear: z=ax+by

Non-linear: z=f(ax+by)

 \rightarrow 'trained' on data

From regression to Deep Learning

Regression

• Linear: z=ax+by

Non-linear: z=f(ax+by)

 \rightarrow 'trained' on data

Convolutional Neural Networks for Computer Vision Applications

https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html

Applications

- Classification of images → Skin-moles classification
- Detection of objects → Vertebrae detection
- Automated segmentation → Heart ventricle volume measurement
- Detection of abnormalities → Detection of eye fondus hemorrage

Summary

DL = fancy and highly non-linear regression

- Neural networks are trained by examples
- The features that are used for decisionmaking are ,learned' by the network itself
- Lots of examples are needed to properly cover the variability of the data
- After training, networks can be used to predict information (e.g. classification of an image) on unseen data

https://mapr.com/blog/demystifying-ai-ml-dl/

DEEP LEARNING IN HEALTHCARE

Scientific publications

Data sources

F. Jiang *etal*, Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology (2017)

A SUCCESS STORY: SKIN CANCER DETECTION

Network architecture

Dermatologist-level classification of skin cancer with deep neural networks

A. Esteva *etal*, Nature **542**, 115-118 (2017)

Inception v3: C. Szegedy etal, arXiv:1512.00567

A SUCCESS STORY: SKIN CANCER DETECTION

Network architecture

Dermatologist-level classification of skin cancer with deep neural networks

A. Esteva *etal,* Nature **542**, 115-118 (2017)

KONICA MINOLTA

A SUCCESS STORY: SKIN CANCER DETECTION

Dermatologist-level performance

A. Esteva *etal,* Nature **542**, 115-118 (2017)

Enables better imaging biomarkers

Multiple Myeloma:

- plasma-cell disorder
- causes bone damage
- 3 stages:
- MGUS/sMM/MM

Enables better imaging biomarkers

Multiple Myeloma:

- plasma-cell disorder
- causes bone damage
- 3 stages:
- MGUS/sMM/MM
- \rightarrow Risk stratification

Enables better imaging biomarkers

U-Net: O. Ronnerberger etal, MICCAI (2015)

Enables better imaging biomarkers

M. Wennmann, ..., <u>M. Piraud</u> *etal* Oncotarget (2018) / <u>M. Piraud</u> *etal*, bioRxiv: 613869 / M. Perkonigg, ..., <u>M. Piraud</u> *etal*, Submitted (2019)

Enables better imaging biomarkers

M. Wennmann, ..., <u>M. Piraud</u> etal Oncotarget (2018) / <u>M. Piraud</u> etal, bioRxiv: 613869 / M. Perkonigg, ..., <u>M. Piraud</u> etal, Submitted (2019)

OUTLINE

- Introduction to AI and Deep learning in healthcare
 - Demystifying AI
 - A success story: skin cancer detection
- Challenges and current limitations
 - The data challenge
 - The curse of dimensionality
 - The 'black-box'
- Solutions: current research topics
 - Reducing the need for annotations
 - Introducing prior knowledge
 - Dealing with volumetric data
 - Decision visualisation

1) The data challenge

Variability: Medical data is ill-structured / highly-variable

Scarceness: expensive to collect and label

Christ et al MICCAI 2016

2) The curse of dimensionality

M. Bieth etal IEEE Trans. Med. Imag. 2017

3) The ,black-box' problem

No explicit programming! How are decisions reached? Explanation: to acceptance GDPR: Automated individual decision-making should be **contestable**

3) The ,black-box' problem

No explicit programming! How are decisions reached? Explanation: to acceptance GDPR: Automated individual decision-making should be **contestable**

\rightarrow Testing/ Certification

Jan 2017: 1st DL software to obtain FDA clearance...

ARTFRYS

www.arterys.com

3) The ,black-box' problem

No explicit programming! How are decisions reached? Explanation: to acceptance GDPR: Automated individual decision-making should be **contestable**

\rightarrow Testing/ Certification

Jan 2017: 1st DL software to obtain FDA clearance...

www.arterys.com

April 2018: 1st DL diagnostic software to obtain FDA clearance

www.eyediagnosis.net

OUTLINE

- Introduction to AI and Deep learning in healthcare
 - Demystifying Al
 - A success story: skin cancer detection
- Challenges and current limitations
 - The data challenge
 - The curse of dimensionality
 - The 'black-box'
- Solutions: current research topics
 - Reducing the need for annotations
 - Introducing prior knowledge
 - Dealing with volumetric data
 - Decision visualisation

Reducing the need for annotations in Breast Cancer detection

SOLUTIONS

Some of our research activities

Data scarceness and variability:

- Data augmentation
 & Semi-supervised learning
- Transfer learning
- Input prior knowledge

Volumetric Data:

- '2.5D' solutions
- Cross-hair filters -

Hacking the black-box:

- Visualization
- Model-aware learning
- Link with dynamical systems

Multi-level activation for nuclei segmentation BioComputing@ECCV 2018

Cross-hair filters for Brain vessel segmentation arXiv:1803.09340

Class maximization for Breast Cancer classification

e.g. Whole-Slide Images for breast Cancer detection

CAMELYON 16 challenge 400 WSIs (100 000 px small side), >1TB total

https://camelyon16.grand-challenge.org/

Data Augmentation and Generation

generated data

Patches generated by a FM-GAN

tumor patches

real data

https://thispersondoesnotexist.com/

healthy patches

Data Augmentation and Generation

Patches generated by a FM-GAN generated data

real data

CAMELYON dataset: classify tumor patches

Method	FROC score (best: 100)		
Supervised	61.1		
Data	65.1		
augmentation			
(FM-GAN)			

Semi-supervised learning

Labeled set

1

Unlabeled set

CAMELYON dataset: classify tumor patches

Method	FROC score (best: 100)
Supervised	61.1
Data augmentation (FM-GAN)	65.1
Semi-Supervised (Temporal ensembling)	68.4

10% labeled + 90% unlabeled examples

https://www.cs.toronto.edu/~kriz/cifar.html

INCLUDING PRIOR KNOWLEDGE

Multi-level activation for topological inclusion

INCLUDING PRIOR KNOWLEDGE

Multi-level activation for topological inclusion

Standard multi-class: soft-max with cross-entropy loss

Technische Universität München

- exclusive classes
- no topological awareness

Logistic regression for hierarchically-nested classes

KONICA MINOLTA

INCLUDING PRIOR KNOWLEDGE

Achieving Faster and better segmentation

Kaggle challenge: only 16 images(!)

 \rightarrow heavy online data augmentation

(flips, warping, rotations, translations, rescaling)

Method	Test Dice scores
Multi-class	0.832 (0.058)
NCE	0.844 (0.061)
SSE	0.859 (0.052)
MCE	0.868 (0.082)

<u>M. Piraud</u>, A. Sekuboyina and B. H. Menze, *Multi-level Activation for Segmentation of Hierarchically-nested Classes*, BioComputing@ECCV 2018

3D cross-hair filters

M. Bieth etal IEEE Trans. Med. Imag. 2017

M-

3D cross-hair filters

M. Bieth etal IEEE Trans. Med. Imag. 2017

KONICA MINOLTA

Gain in memory and speed

V-Net: Milletari et al. 3DV 2016

40% gain in memory

Tetteh et. al, <u>M. Piraud</u>, and B. H. Menze, *deepVesselNet: Vessel Segmentation, Centerline Prediction and Bifurcation Detection in Magnetic Resonance Angiography*, arXiv:1803.09340

Gain in memory and speed

V-Net: Milletari et al. 3DV 2016

Vessel segmentation tasks (DeepVesselNet)

Dataset	Methods	F1 Score	Execution time
Synthetic (600x304x325)	CF filters	0.9956	17s
	3D filters	0.9949	23s
MRA (fine-tuning) (580x640x136)	CF filters	0.8425	20s
	3D filters	0.8497	26s
SRXTM (transfer learning) (254x254x254)	CF filters	0.9601	7s
	3D filters	0.9555	11s

40% gain in memory

23% gain in computation speed.

Tetteh et. al, <u>M. Piraud</u>, and B. H. Menze, *deepVesselNet: Vessel Segmentation, Centerline Prediction and Bifurcation Detection in Magnetic Resonance Angiography*, arXiv:1803.09340

Feature inversion

Reconstruct image from features of a specific layer

M. Baust etal, Understanding regularization to visualize CNNs, arXiv:1805.00071

Feature inversion

Reconstruct image from featu specific layer

Network 1

M. Baust etal, Understanding regularization to visualize CNNs, arXiv:1805.00071

Class maximization

Reconstruct 'archetypical' image which maximizes a specific class

https://research.konicaminolta.eu/understanding-deep-convolutional-neural-networks-through-visualization/

Class maximization

Reconstruct 'archetypical' image which maximizes a specific class

https://research.konicaminolta.eu/understanding-deep-convolutional-neural-networks-through-visualization/

Data scarceness and variability

Semi-supervised learning/ Transfer Learning/ Use prior knowledge ...

The 'black-box' problem

Some visualization methods... Very active research field!

Testing/ Certification for development in the clinic (15+ FDA-approved and 8+ CE softwares)

Currently: extensive 'heuristic' testing

 \int

A R T E R Y S www.arterys.com

www.eyediagnosis.net

See e.g.: http://www.technologyreview.com/s/604271/deep-learning-is-a-black-box-but-health-care-wont-mind/

WHAT DEEP LEARNING IS BRINGING TO HEALTHCARE

medical errors / +reproducibility

+ quantitative and personalized medicine

WHAT DEEP LEARNING IS BRINGING TO HEALTHCARE

- medical errors / + reproducibility
- + quantitative and personalized medicine

- Make-up for shortage of medical doctors?
- More time for 'human' practice?

WHAT DEEP LEARNING IS BRINGING TO HEALTHCARE

- medical errors / + reproducibility
- + quantitative and personalized medicine

- Make-up for shortage of medical doctors?
- More time for 'human' practice?

So...

- Exciting?
- Scary?

