Reactive Streams

Handling Data-Flows the Reactive Way

Dr. Roland Kuhn

Akka Tech Lead
@rolandkuhn

o= Typesafe

Introduction: Streams

What is a Stream?

» ephemeral flow of data
» focused on describing transformation

* possibly unbounded in size

Common uses of Streams

* bulk data transfer

» real-time data sources
* batch processing of large data sets

* monitoring and analytics

What is special about Reactive Streams?

The Four Reactive Traits

http:/reactivemanifesto.org/

Needed: Asynchrony

* Resilience demands it:

* encapsulation

« solation

» Scalability demands it:

* distribution across nodes

* distribution across cores

Needed: Asynchrony

I
|
I * Resilience demands it:
I * encapsulation

|

: * isolation
~ * Scalability demands it:

* distribution across nodes

|
I

!

I 1 1 .

| distribution across cores
|

I

I

I

Many Kinds of Async Boundaries

Many Kinds of Async Boundaries

* between different applications

Many Kinds of Async Boundaries

* between different applications

* between network nodes

Many Kinds of Async Boundaries

* between different applications

 * between network nodes
|
~ * between CPUs

Many Kinds of Async Boundaries

* between different applications

* between network nodes
* between CPUs

* between threads

Many Kinds of Async Boundaries

* between different applications

* between CPUs
* between threads

i
|
| * between network nodes
i
i

* between actors

Async Boundary

Possible Solutions

Possible Solutions

* the Traditional way: blocking calls

Possible Solutions

Possible Solutions

» the Push way: buffering and/or dropping

Possible Solutions

Possible Solutions

* the Reactive way:
non-blocking & non-dropping & bounded

How do we achieve that?

' Supply and Demand

» data items flow downstream
» demand flows upstream
 « dataitems flow only when there Is demand

| * recipient is in control of incoming data rate

* datain flight is bounded by signaled demand

demand

Dynamic Push-Pull

* “push” behavior when consumer is faster
 “pull” behavior when producer is faster

» switches automatically between these

* batching demand allows batching data

demand

Explicit Demand: Tailored Flow Control

----- * demand

Explicit Demand: Tailored Flow Control

. - c = s s &« :‘. :"--------.-4.;

-—’——-.--—-—

merging the data means splitting the demand

Reactive Streams

» asynchronous non-blocking data flow

~* asynchronous non-blocking demand flow
* minimal coordination and contention

* message passing allows for distribution
* across applications
* across nodes
* across CPUs
* across threads
* across actors

Are Streams Collections?

What is a Collection?

What is a Collection?

i
- » Oxford Dictionary:
« “a group of things or people”

What is a Collection?

* Oxford Dictionary:
* “a group of things or people”

~* wikipedia:

* “a grouping of some variable number of data items”

What is a Collection?

* Oxford Dictionary:

* “a group of things or people”

» wikipedia:

* “a grouping of some variable number of data items”

~ * backbone.js:

* “collections are simply an ordered set of models”

f Typesafe s

What is a Collection?

* Oxford Dictionary:

i * “a group of things or people”
» wikipedia:
* “a grouping of some variable number of data items”

~ * backbone.js:

* “collections are simply an ordered set of models”

» java.util.Collection:

« definite size, provides an iterator, query membership

!
|
f Typesafe 20

User Expectations

* an lterator is expected to visit all elements
(especially with immutable collections)

i s . .head + x.tail == x

* the contents does not depend on who is
processing the collection

» the contents does not depend on when the

processing happens

| (especially with immutable collections)

f Typesafe 21

i
~ Streams have Unexpected Properties

-+ the observed sequence depends on

* ...when the observer subscribed to the stream

| * ... whether the observer can process fast enough

* ... whether the streams flows fast enough

~ Streams are not Collections!

» java.util.stream:
i Stream is not derived from Collection
} “Streams differ from Coll’s in several ways”

* no storage

» functional in nature
* laziness seeking

* possibly unbounded

* consumable

Streams are not Collections!

* 3 collection can be streamed
* a stream observer can create a collection

* ... butsaying that a Stream is just a lazy
Collection evokes the wrong associations

So, Reactive Streams:
why not just java.util.stream.Stream?

Java 8 Stream

import java.util.stream. *;

final Stream<Integer> s = Stream.of(1l, 2, 3);

I

final Stream<String> s2 s.map(i -> "a" + i)
s2.1terator () ;

s2.forEach(i -> System.out.println(i));

Java 8 Stream

» provides a DSL for describing transformation

* introduces staged computation

(but does not allow reuse)

* prescribes an eager model of execution

» offers either push or pull, chosen statically

What about RxJava?

RxJava

I

| .

| import rx.0bservable;

! import rx.0bservable.*;

!
I
i final Observable<Integer> obs = range(l, 3);
I .
' Final Observable<String> obs2 =
obs.map{1 -> "b" + 1);

obs2.subscribe(i -> System.out.println(i));
obs2.filter(i -> i.equals("b2"))

.subscribe(1 -> System.out.println(i));

o= Typesafe 23

- RxJava

* Implements pure “push™ model
* includes extensive DSL for transformations

» only allows blocking for back pressure

* currently uses unbounded buffering for
Crossing an async boundary

- » work on distributed Observables sparked
participation in Reactive Streams

The Reactive Streams Project

Participants

* Engineers from
» Netflix

* Oracle

! * Pivotal
: * Red Hat
* Twitter

» Typesafe

* Individuals like Doug Lea and Todd Montgomery

The Motivation

» all participants had the same basic problem
~+ all are building tools for their community
~« acommon solution benefits everybody

* interoperability to make best use of efforts

» e.g. use Reactor data store driver with Akka
transformation pipeline and Rx monitoring to drive a

vert.x REST API (purely made up, at this point)

f Typesafe 13

|

i Recipe for Success
-+ minimal interfaces

|

* rigorous specification of semantics

~* full TCK for verification of implementation
‘ » complete freedom for many idiomatic APIs

The Meat

trait Publisher([T] {
def subscribe(sub: Subscriber|[T]): Unat
}
trait Subscription {
| def requestMore(n: Int): Unit
def cancel(): Unit

| }

trait Subscriber[T] {
def onSubscribe(s: Subscription): Unat
def onNext(elem: T): Unit
def onError(thr: Throwable): Unit

def onComplete(): Unat

}

f Typesafe 5

The Sauce

. all calls on Subscriber must dispatch async

~ * all calls on Subscription must not block
: * Publisher is just there to create Subscriptions

|
|
|
|
|
|
|
|
|
f Typesafe =

How does it Connect?

Publisher Subscriber

Subscription

Akka Streams

» powered by Akka Actors

 distribution

I

|

I

|

| * execution
|

I .

| * resilience
I

* type-safe streaming through Actors with
bounded buffering

Basic Akka Example

. -

implicit val system = ActorSystem(
val mat = b i

| (text.split() .toVector).
(word => word. tolUpperCase).
(tranformed => println(tranformed)).
(mat) {
case Success(_) => system.shutdown()
case Failure(e) =>
println(+ e.getMessage)
system.shutdown ()

f Typesafe

Basic Akka Example

implicit val system = ActorSystem()
val mat = b
(text.split() .toVector).

(word => word. tolUpperCase).
(tranformed => println(tranformed)).
(mat) {
case Success(_) => system.shutdown()
case Failure(e) =>
praintln(: + e.getMessage)
system.shutdown ()

f Typesafe

Basic Akka Example

implicit val system = ActorSystem('"Sys")
val mat = | iLizerl...)
(text.split(’ ") .toVector).

iap(word => word.toUpperCase).
(tranformed => println(tranformed)).
(mat) {
case Success(_) => system.shutdown()
case Failure(e) =>
println("Failure: " + e.getMessage)
system.shutdown ()

Typesafe

Java 8 Example

final ActorSystem system = ActorSystem.create()3

final settings =
MaterializerSettings.create();

final materializer =

FlowMaterializer.create(settings, system);

final String[] lookup = { "a", , : , . | &
final Iterable<Integer> 1input = Arrays.aslist(®, 1, 2, 3, 4, 5);
(input). (1) . (3).

(elem -> lookup[elem]).
(elem -> !elem.equals()).
(2).
t{list -> list).
(""", (acc, elem) -> acc + elem).
(elem -» System.out.println{elem)).
(materializer);

§ Typesafe

Akka HTTP Server Overview

4

e User handler .
\

Akka HTTP Server Part 1

g |
| |

val (bypassConsumer, bypassProducer) =
uct| (RequestOutput, Producer|RequestOutput])]
Llect[MessageStart with RequestOutput]
{ case (x: MessageStart, _) => x }
1 Lld (materializer)

Akka HTTP Server Part 2

i |
|

val requestProducer =
w(tcpConn.inputStream)
tran (rootParser)
(_.isInstance0f[MessageStart])

.tee(bypassConsumer)
| {
case (x: RequestStart, entityParts) =>
HttpServerPipeline.constructRequest(x,
entityParts) }
. toProducer(materializer)

f Typesafe 44

Akka HTTP Server Part 3

val responseConsumer =
uct | HttpResponse |
(bypassProducer)
(applyApplicationBypass)
(rendererFactory.newRenderer)
(concat)

(LogErrors)
(materializer)

(tcpConn.outputStream)

&= Typesafe "

Akka HTTP server Part 4

val logErrors =

new Transi r|ByteString, ByteString] {
def onNext(element: ByteString) =
element :: Nil
override def onEj (cause: Throwable) =

log.error(cause, "Response stream error")

Typesafe 4

Closing Remarks

Current State

* Early Preview iIs available:

"org.reactivestreams" % "reactive-streams-spai" % "o.2"
"com.typesafe.akka" %% "akka-stream-experimental” % "0.3"

» check out the Activator template
"Akka Streams with Scala!"
(huﬂiﬂﬂﬁhu.b& nesatehub/activator-akka-stream-sce }

ﬁ Typesafe 13

Next Steps

« we work towards inclusion in future JDK
» we aim at polyglot standard (JS, wire proto)
* try it out and give feedback!

* http://reactive-streams.org/
» https://github.com/reactive-streams

&= Typesafe 13

=:= Typesafe

L Typesafe 2014 - All Rights Reserved

