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New Challenges:

. Working in IT has a steep learning curve

Mentorship & Inspiration:

. Opportunity to learn from experienced colleagues

Challenge to Innovate:

. Encouraged to build something from scratch, to foster technical
and personal growth

What's my personal project?




Rise of Al TNG = consuiming

Al Disruption:
. Al driven tools like Chat GPT change the way we work

Curiosity & Concerns:

. Potential of Al - thrilling and threatening at the same time

Embracing Al:

. Learn and leverage Al to boost productivity
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Remote Work Challenges:

. Increased distractions and multitasking demands in digital
environments

The [llusion of Multitasking:

. Multitasking makes us less efficient [1]

Meeting Inefficiencies:

. Taking Meeting Minutes - a tedious task distracting you from
the actual meeting

[1] http://news.bbc.co.uk/2/hi/uk_news/4471607.stm



http://news.bbc.co.uk/2/hi/uk_news/4471607.stm
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I Meminto - Meeting Minutes Tool

Automated Meeting Minutes:

» Uses Al tools to transcribe and summarize meetings

» Freeing the user from the distraction of note-taking

@ Open Source and Secure:

. Ensures transparency and allows users full control over their
data

Data Sovereignty:

. Supports local processing or user-selected trusted services,
enhancing data privacy and security

Works out of the box:

. No training or fine-tuning needed
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https://github.com/FlorianSchepers/Meminto
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Who speaks when?
speaker 1

speaker 2 spedaker 3

Essential for accurate meeting
minutes

Utilizing pyannote.audio for
cutting-edge speaker recognition




(i) pyannote.audic TNG = s

. An open-source toolkit written in Python Q,

. Based on PyTorch

. Provides a set of trainable end-to-end neural building blocks to build
speaker diarization pipelines

https://github.com/pyannote/
. Pretrained models available pyannote-audio

. Runs locally

. overlapped |
i speech |

feature =—> Sctivit ——— speaker I clusterin ] resegmen- N
|Oetection | speaker { | | .
i change i
detection

[1] Hervé Bredin et al., .Pyannote.audio: neural building blocks for speaker diarization”,
arXiv:1911.01255, (2019)


https://github.com/pyannote/pyannote-audio
https://github.com/pyannote/pyannote-audio
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[1] https://github.com/pyannote/pyannote-audio
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7.2 SPEAKER_©1
7.2 SPEAKER_©2

9.9 SPEAKER_©2
18.9 SPEAKER_©1

6.7
7.2
/.6 8.3 SPEAKER_©1
8.3
9.9

Transcript

Audio

Splitting
Transcription

Whisper (OpenAl] [1]
. Open source (MIT license) Q,

. Runs locally
. Multiple models of different sizes available

[1] https://huggingface.co/collections/openai/whisper-release-6501bba2cf999715fd953013



@ Whisper

Multitask training data (680k hours]

English transcription

Any-to-English speech translation

® he quick brown fox jJumps over ...

Non-English transcription

O .Mein Text"
@ Mein Text

No speech

[background music playing]
(1) g g
® nothing

O -Ask not what your country can do for

® Ask not what your country can do for ...

O El rapido zorro marron salta sobre ..."

Frequency
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Log-Mel-Spectogram

[1] Adapted from Alec Radford et al., "Robust Speech Recognition
via Large-ScaleWeak Supervision™, arXiv:2212.04356, (2022]
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Log-Mel Spectrogram Tokens in Multitask Training Format
[1] Adapted from Alec Radford et al., "Robust Speech Recognition

via Large-ScaleWeak Supervision™, arXiv:2212.04356, (2022]
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Tokens in Multitask Training Format
[1] Adapted from Alec Radford et al., "Robust Speech Recognition

via Large-ScaleWeak Supervision™, arXiv:2212.04356, (2022]



— CONSULTING

y @ Whisper Transformer Architecture TNG = Fcivowoer

Embedding

7
3
dog  — l;
5




2 @ Whisper Transformer Architecture TNG = Fcivowoer

— CONSULTING

Embedding

car

motorcycle

Embedding
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Tokens in Multitask Training Format
[1] Adapted from Alec Radford et al., "Robust Speech Recognition

via Large-ScaleWeak Supervision™, arXiv:2212.04356, (2022]
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Positional Encoding
.The cat sits on the elephant.”

VS

.The elephant sits on the cat.”
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Tokens in Multitask Training Format
[1] Adapted from Alec Radford et al., "Robust Speech Recognition
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S
- (seffattenion Self Attention

,Elizabeth Il. was the Queen of England.”
3 VS
T T 3 .l went to a Queen concert.”
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@ Whisper Transformer Architecture TN G = [EchinoLooy

| 3 Multi-Layer Perceptron (MLP)
self attention

. Refines and enhances information from attention blocks

. ....turns arough sketch into a detailed painting by adding
" (_sefatenion layers of color.” - ChatGPT (2024)
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Tokens in Multitask Training Format
[1] Adapted from Alec Radford et al., "Robust Speech Recognition

via Large-ScaleWeak Supervision™, arXiv:2212.04356, (2022]
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LP

~ self attention

Cross Attention

.Der Hund mochte nur spielen.” L

 cross attention |
.The dog just wants to play.” MLP

cross attention
self attention
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Instructions

o

O

©

e LLM Meeting Minutes

Transcript

LARGE LANGUAGE MODEL (LLM])
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Log-Mel Spectrogram Tokens in Multitask Training Format
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[1] Adapted from Alec Radford et al., "Robust Speech Recognition
via Large-ScaleWeak Supervision™, arXiv:2212.04356, (2022]
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[1] Adapted from Alec Radford et al., "Robust Speech Recognition
via Large-ScaleWeak Supervision™, arXiv:2212.04356, (2022]
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Outputs
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) via Large-ScaleWeak Supervision™, arXiv:2212.04356, (2022]
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[1] Adapted from Alec Radford et al., "Robust Speech Recognition
via Large-ScaleWeak Supervision™, arXiv:2212.04356, (2022]
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Ollama Both run locally

https://github.com/ollama/ollama
Q, Open source [MIT license)

Various open-source models available
le.g. Llama3, Mistrall

ama.cpp
https://github.com/ggerganov/llama.cpp
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User-defined LLM endpoint:

. Meminto calls a user-provided LLM endpoint

Local LLM

____________ 0 On-Premise LLM
Scalability: Meminto

. Seamless switching in a fast paced environment e — @ Third-Party LLM

Free choice:

. Select model and provider of your choice
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Context size:

. LLMs canonly process a limited number of tokens at once

. The context size is determined during training / fine-tuning

Typical context sizes:
o GPT-4 Turbo: 128k tokens

. Llama 3: 8k tokens

Example:

. Contextsize: b

_lunch s at  the

. Context size: 4

_luach s at  the
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Output

"y g - -
**Goals:*

Plan the new high scoreboard for the game Pegasus
Store and show the achieved score and player name for each game played
Discuss and plan the implementation of a game leaderboard with a limit of 10,000 stored games

Implement a sortable table with search function

- »

y '[)w( 1€S10Ns

Scoreboard:
Ask players for their names at the end of the game
Provide an option for players to opt out of having their name shown on the board
Use an SQLite database to store player scores for the beginning
Limit the score to a certain number of entries (exact number to be determined)
Leaderboard:
- Store the top 10,000 games to ensure good performance
- Implement a sortable table by score and name
- Add a search function to find games of a specific player faster

- SPEAKER 01: Implement the frontend part of the table and talk to legal
- SPEAKER 00: Take care of the backend part of the table implementation

¥**Additional Notes:**

Consider compliance-related issues and consult with GleeGlyph

Potential issue with long loading times if too many scores are stored in the database
Discussion around the ideal number of entries to limit the scoreboard to (10 vs 50k)
The meeting was considered productive and goals were achieved

The discussion about grabbing a beer at the Hercules bar at five was not related to the main meeting topic
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Parallel Generation ® LLM (7 calls]
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IE Alternative Chunking Approach

Consecutive Generation

Transcript

@0

@
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@ LLM (4 calls])

@
® @

®

Meeting Minutes
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On-the-fly Generation:
. Generate meeting minutes during the meeting.
. Record audio over a given time frame (2-3 minutes])

. Update meeting minutes based on the most recent recording

On-the-fly Modification:

. Participants can modify or correct meeting minutes during
the meeting

. Changes will be considered during the next itteration
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Expanded technical horizon:

. Practical experience with cutting-edge technologies

Getting started was easier than expected:

. Many well-maintained and easy to use open-source libraries

Building connections:

. Expanding my professional network and fostering a sense of
community

What's your next project?
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Florian Schepers

Software Consultant
florian.schepers(dtngtech.com
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