

Pyramid Technical Consultants, Inc

1050 Waltham Street, Suite 200
Lexington, MA 02421, USA
Phone: 781.402.1700 Website: www.ptcusa.com

Pyramid Product Documentation

T1 Programmer's Guide

Document ID: 2025914461

Version: 1.1.2

Author: Matthew Nichols

Last modified on: 06/22/2021

Exported by: Matthew Nichols

Exported on: 06/22/2021

mailto:support@ptcusa.com

T1 – T1 Programmer's Guide

Table of Contents

1 Introduction..5
1.1 Purpose.. 5

1.2 Intended Audience ... 5

2 Programming Quick Start ...6
2.1 Use cURL to get measured field value ... 6

2.2 Use Excel to get measured field value ... 6

2.3 Use Python, HTTP, and requestshttps://docs.python-requests.org/en/master/ to get
measured field value.. 6

2.4 Use Python, EPICS, and pyepicshttps://github.com/pyepics/pyepics to get measured
field value... 6

3 How Device Data is Structured ..7
4 Available Protocols ..8
4.1 HTTP ... 8

4.2 HTTP via cURL.. 8

4.3 SFTP .. 9

4.4 EPICS... 9

4.5 WebSockets ... 9

5 IO Tables ...10
5.1 Probe Data and Configuration .. 10

5.2 T1 Configuration ... 10

6 Practical Code Examples...12
6.1 Read field value using Python and HTTP ... 12

6.2 Get field value using Python and EPICS ... 12

6.3 Programatically zeroing the probe using Python and HTTP.. 13

6.4 Programatically zeroing the probe using Python and EPICS... 14

6.5 Collect full data rate field data and write to CSV using Python and WebSockets......... 14

T1 – T1 Programmer's Guide

7 Best Practices ...18

Document by:

Document: 2025914461

T1 Programmer's Guide

Author: Matthew Nichols

Version: 1.1.2

Copyright (c) 2020

Pyramid Product
Documentation

©Pyramid Technical Consultants
www.ptcusa.com

Page 4 of 18

This document is CONTROLLED only
when viewed electronically.

Page: 2025914461-V8
Date: 06/22/2021

Document by:

Document: 2025914461

T1 Programmer's Guide

Author: Matthew Nichols

Version: 1.1.2

Copyright (c) 2020

Pyramid Product
Documentation

1 https://pyramidtc.atlassian.net/servicedesk/customer/portal/1
2 mailto:support@ptcusa.com

©Pyramid Technical Consultants
www.ptcusa.com

Page 5 of 18

This document is CONTROLLED only
when viewed electronically.

Page: 2025914461-V8
Date: 06/22/2021

1 Introduction

Document ID: 2025914461

Version 1.1.2

Author Matthew Nichols

1.1 Purpose
This guide should serve as a starting point for programmers to get started, collecting
data and configuring devices. The biggest benefit of using Pyramid devices is that you
automatically get the Pyramid software team on your side. If you have questions, bugs,
or feature requests, we want to help and we love talking to our customers about their
projects. Get in touch with us by opening a ticket through the support portal1 or just
sending us an email at support@ptcusa.com2.

1.2 Intended Audience
Programmers who are interested in writing code that works with the T1 and
corresponding hall probe devices. Software management team members looking to
evaluate software integration requirements.

https://pyramidtc.atlassian.net/servicedesk/customer/portal/1
https://pyramidtc.atlassian.net/servicedesk/customer/portal/1
mailto:support@ptcusa.com
mailto:support@ptcusa.com

Document by:

Document: 2025914461

T1 Programmer's Guide

Author: Matthew Nichols

Version: 1.1.2

Copyright (c) 2020

Pyramid Product
Documentation

3 https://docs.python-requests.org/en/master/
4 https://github.com/pyepics/pyepics

©Pyramid Technical Consultants
www.ptcusa.com

Page 6 of 18

This document is CONTROLLED only
when viewed electronically.

Page: 2025914461-V8
Date: 06/22/2021

2 Programming Quick Start

2.1 Use CURL To Get Measured Field Value

curl -X GET http://<IP ADDRESS>/io/t1/probe/field/value.json

2.2 Use Excel To Get Measured Field Value
Enter the following function into a cell, click outside the cell, and use Ctrl+Alt+F9 to
refresh the value.

=WEBSERVICE("http://<IP ADDRESS>/io/t1/probe/field/value.json")

2.3 Use Python, HTTP, And requests3 To Get Measured Field Value

import requests
print("Field =", requests.get("http://<IP ADDRESS>/io/t1/probe/field/
value.json").json(), "Gauss")

2.4 Use Python, EPICS, And pyepics4 To Get Measured Field Value

import epics
pv = epics.PV("/t1/probe/field/value")
print("Field =", pv.get(), "Gauss")

https://docs.python-requests.org/en/master/
https://docs.python-requests.org/en/master/
https://github.com/pyepics/pyepics
https://github.com/pyepics/pyepics

Document by:

Document: 2025914461

T1 Programmer's Guide

Author: Matthew Nichols

Version: 1.1.2

Copyright (c) 2020

Pyramid Product
Documentation

©Pyramid Technical Consultants
www.ptcusa.com

Page 7 of 18

This document is CONTROLLED only
when viewed electronically.

Page: 2025914461-V8
Date: 06/22/2021

3 How Device Data Is Structured
All data and configurations are stored in data structures called an IO. All IOs are primitive
values (number, string, or boolean) or arrays of primitives. Each IO has a handful of
Fields associated with them to describe their values and metadata. For example, there
could be an IO with the name field “voltage”, the value field 1.23, the label field “Voltage”,
and a units field “V”.

IO and fields exist on an organized tree structure similar to a file system. Also like a file
system, they are referenced by their unique Path in the structure. For example /device/
sub_module/voltage/value would be the path to the value field of an IO with the name
field “voltage” whose parent has the name field “sub_module” and whose grandparent
name field is “device”.

Document by:

Document: 2025914461

T1 Programmer's Guide

Author: Matthew Nichols

Version: 1.1.2

Copyright (c) 2020

Pyramid Product
Documentation

5 https://curl.se/
6 https://curl.se/

©Pyramid Technical Consultants
www.ptcusa.com

Page 8 of 18

This document is CONTROLLED only
when viewed electronically.

Page: 2025914461-V8
Date: 06/22/2021

4 Available Protocols
All fields are stored in a virtual file system on the device. We can read and write to those
files in several ways that will be described below.

4.1 HTTP
Devices have an HTTP server built-in that can serve any file on the filesystem include the
special field files. Simply using GET and PUT requests you can read and write field files.
This method is great if you are already using HTTP or need to implement something
quickly to get up and running. Standard tools like curl5 are invaluable for debugging or
even just implementing small scripts.

URLs should be structured like the following http://<ip address>/io/device/
sub_module/voltage/value.json.

Python GET and PUT example:

import requests
print(requests.get("http://<ip address>/io/device/sub_module/voltage/
value.json").json())
requests.put("http://<ip address>/io/device/sub_module/command/value.json", str(command)
)

4.2 HTTP Via CURL
cURL6 is a great choice for debugging or writing a quick and dirty script. Simply enter the
following command to GET and PUT a field value.

curl -X GET http://<ip address>/io/device/sub_module/voltage/value.json
curl -X PUT -d "1.234" http://<ip address>/io/device/sub_module/command/value.json

https://curl.se/
https://curl.se/
https://curl.se/
https://curl.se/

Document by:

Document: 2025914461

T1 Programmer's Guide

Author: Matthew Nichols

Version: 1.1.2

Copyright (c) 2020

Pyramid Product
Documentation

7 https://epics.anl.gov/
8 mailto:support@ptcusa.com

©Pyramid Technical Consultants
www.ptcusa.com

Page 9 of 18

This document is CONTROLLED only
when viewed electronically.

Page: 2025914461-V8
Date: 06/22/2021

4.3 SFTP
Devices have an SFTP server that clients can use to mount the device drive local to their
development machine. This method is particularly useful if you are using a Linux-based
operating system or are used to mounting network drives. This method also allows you
to use text editors to easily open and view the files before writing your code.

4.4 EPICS
EPICS7 comes for free when using IGX devices. No need to write your own drivers, the
device is an EPICS server all on its own. The PV names for all the fields are just the path
for that field. Optionally if you are running multiple of the same device, you can prepend
the IP address of the device before the channel name, for example, 192.168.0.5:/
device/sub_module/voltage/value and 192.168.0.6:/device/sub_module/voltage/
value. EPICS is great if you are already using EPICS in your control system. If not, then
you may want to look into the other communication methods first, as they will be much
easier to get up and running without significant library support.

Python example:

import epics
pv = epics.PV("/device/sub_module/voltage/value")
print(pv.get())

4.5 WebSockets
The WebSockets API is what our built-in web GUI uses, and enables streaming data at
high rates. Unfortunately, the protocol is still under active development and may be
subject to radical changes going forward. If you are still interested please, contact us at
support@ptcusa.com8 and tell us about your project, we want as much user input as
possible when designing our protocols.

The protocol, as it stands today, simply exchanges plain JSON structures. One message
from the client to the device to establish “subscriptions” to various IO, then another to
request the latest data.

https://epics.anl.gov/
https://epics.anl.gov/
mailto:support@ptcusa.com
mailto:support@ptcusa.com

Document by:

Document: 2025914461

T1 Programmer's Guide

Author: Matthew Nichols

Version: 1.1.2

Copyright (c) 2020

Pyramid Product
Documentation

©Pyramid Technical Consultants
www.ptcusa.com

Page 10 of 18

This document is CONTROLLED only
when viewed electronically.

Page: 2025914461-V8
Date: 06/22/2021

5 IO Tables

5.1 Probe Data And Configuration

Path Units Type Direction Notes

/t1/probe/field Gauss Number Readonly The measured magnetic field
at the probe tip.

/t1/probe/average_field Gauss Number Readonly The measured field with
extra averaging. Useful for
display purposes.

/t1/probe/average_temperature Celsius Number Readonly The average temperature at
the probe tip. Useful for
doing your own temperature
monitoring.

/t1/probe/offset Gauss Number Read/Write User settable field offset.
Useful for zeroing before
measurements.

/t1/probe/connected - Boolean Readonly True if the probe is properly
connected to the device. Use
it for sanity checking.

5.2 T1 Configuration

Path Units Type Direction Notes

/t1/configuration/range - String Read/Write Set’s the programmable gain
for the measurements.
Possible values are “1x”, “4x”,
“10x”, and “40x”.

Document by:

Document: 2025914461

T1 Programmer's Guide

Author: Matthew Nichols

Version: 1.1.2

Copyright (c) 2020

Pyramid Product
Documentation

©Pyramid Technical Consultants
www.ptcusa.com

Page 11 of 18

This document is CONTROLLED only
when viewed electronically.

Page: 2025914461-V8
Date: 06/22/2021

Path Units Type Direction Notes

/t1/configuration/rate Hertz String Read/Write The data collection and
averaging rate. Possible
values are “10”, “50”, “100”,
“500”, “1000”, “5000”, and
“25000”.

Document by:

Document: 2025914461

T1 Programmer's Guide

Author: Matthew Nichols

Version: 1.1.2

Copyright (c) 2020

Pyramid Product
Documentation

9 https://github.com/pyepics/pyepics

©Pyramid Technical Consultants
www.ptcusa.com

Page 12 of 18

This document is CONTROLLED only
when viewed electronically.

Page: 2025914461-V8
Date: 06/22/2021

6 Practical Code Examples

6.1 Read Field Value Using Python And HTTP
A super simple example to show how you can collect the measured field value. For
simplicity, all the methods are called inline. In production code, you should create
wrapper functions to reduce your code complexity.

import requests

Device IP address
ip = "192.168.55.239"

The target URL to make our request
url = "http://" + ip + "/io/t1/probe/field/value.json"

Send our GET request and parse the resulting JSON value
print("Field =", requests.get(url).json(), "Gauss")

6.2 Get Field Value Using Python And EPICS
This example uses the Python package pyepics9. Note that the IP address is not required
if you are using a single T1. If you have multiple on the network you will need to prepend
the IP address in the channel name. For example 192.168.0.5:/t1/probe/field/value.

import epics

Create a PV object for the field
pv = epics.PV("/t1/probe/field/value")

Get the current field value
print("Field =", pv.get(), "Gauss")

https://github.com/pyepics/pyepics
https://github.com/pyepics/pyepics

Document by:

Document: 2025914461

T1 Programmer's Guide

Author: Matthew Nichols

Version: 1.1.2

Copyright (c) 2020

Pyramid Product
Documentation

©Pyramid Technical Consultants
www.ptcusa.com

Page 13 of 18

This document is CONTROLLED only
when viewed electronically.

Page: 2025914461-V8
Date: 06/22/2021

6.3 Programatically Zeroing The Probe Using Python And HTTP
A more complicated example that shows how to get data, and set configurable values.
Programatically zeroing a probe is a common procedure before doing a relative
measurement.

import requests
import time

Device IP address
ip = "192.168.55.239"

Helper function that returns the current field measurement
def GetField():
 return requests.get("http://" + ip + "/io/t1/probe/average_field/value.json").json()

Helper function that sets the device offset to the given value
def SetOffset(offset):
 return requests.put("http://" + ip + "/io/t1/probe/offset/value.json", str(offset)).
json()

print("Zeroing field probe")

First we get rid of any existing offset, by setting it to zero and waiting
SetOffset(0.0)

Wait for the new offset to propagate to the new data
time.sleep(0.5)

Get the current field.
Set the offset to the previously measured field, effectively zeroing it.
SetOffset(GetField())

Wait for the new offset to propagate to the new data
time.sleep(0.5)

Get the field again to confirm the zeroing worked.
print("Newly zeroed field", GetField(), "G")

Document by:

Document: 2025914461

T1 Programmer's Guide

Author: Matthew Nichols

Version: 1.1.2

Copyright (c) 2020

Pyramid Product
Documentation

©Pyramid Technical Consultants
www.ptcusa.com

Page 14 of 18

This document is CONTROLLED only
when viewed electronically.

Page: 2025914461-V8
Date: 06/22/2021

6.4 Programatically Zeroing The Probe Using Python And EPICS
Same example as above but using EPICS.

import epics
import time

Create our PV objects
field = epics.PV("/t1/probe/average_field/value")
offset = epics.PV("/t1/probe/offset/value")

print("Zeroing field probe")

First we get rid of any existing offset, by setting it to zero and waiting
offset.put(0.0)

Wait for the new offset to propagate to the new data
time.sleep(0.5)

Get the current field.
Set the offset to the previously measured field, effectively zeroing it.
offset.put(field.get())

Wait for the new offset to propagate to the new data
time.sleep(0.5)

Get the field again to confirm the zeroing worked.
print("Newly zeroed field", field.get(), "G")

6.5 Collect Full Data Rate Field Data And Write To CSV Using Python And
WebSockets

This example is considerably more involved but allows you to stream full-speed device
data and collect it to a CSV file.

Document by:

Document: 2025914461

T1 Programmer's Guide

Author: Matthew Nichols

Version: 1.1.2

Copyright (c) 2020

Pyramid Product
Documentation

©Pyramid Technical Consultants
www.ptcusa.com

Page 15 of 18

This document is CONTROLLED only
when viewed electronically.

Page: 2025914461-V8
Date: 06/22/2021

import websocket
import time
import json
import csv

ip = "192.168.55.239" # Device IP address
collection_time = 2.0 # Seconds to collect data
output_file = "t1_data.csv" # Data output file

Database for storing collected data
database = {
 "/t1/probe/field/value": []
}

Create the WebSocket, uses port 80 by default
ws = websocket.create_connection("ws://" + ip)

Sends the device an event structure
Optionally contains a payload called data
def sendEventData(event, data=None):
 # Convert dictionary to JSON and send
 ws.send(json.dumps({"event": event, "data": data}))

Subscribe to the IO fields we are intereseted in
In this case it is just the field value but there could be more
The boolean value indicates wether the data should be buffered or not
Buffered data means that all samples are send to the client on a get event
Unbuffered data means that only the most recent sample is sent on a get event
def sendSubscribeEvent():
 sendEventData("subscribe", {
 "/t1/probe/field/value": True
 })

Request the device sends us the new data it has collected
since the last time we sent a get event.
def sendGetEvent():
 # No data needed for the get event if you have already
 # previously sent the subscribe event message
 sendEventData("get")

Document by:

Document: 2025914461

T1 Programmer's Guide

Author: Matthew Nichols

Version: 1.1.2

Copyright (c) 2020

Pyramid Product
Documentation

©Pyramid Technical Consultants
www.ptcusa.com

Page 16 of 18

This document is CONTROLLED only
when viewed electronically.

Page: 2025914461-V8
Date: 06/22/2021

Response event handler, called every time we get a response
from the device. Handles the processing of newly collected data
def onMessageEvent(event, data):
 # Check to make sure the response is an update event
 # Update events carry our subscription data
 if (event == "update"):
 # The dictionary contains all the values for each path
 for (path, values) in data.items():
 # Append the new values to the local database
 database[path] += values
 # Send another get event to request more data
 sendGetEvent()

print("Starting collection at", ip, "for", collection_time, "seconds")

Send an initial subscription event and get event
in order to start the collection process
sendSubscribeEvent()
sendGetEvent()

Remember the start time
start = time.time()

Collect data for a given time
while time.time() - start < collection_time:
 # Wait for a responses from the device
 response = json.loads(ws.recv())
 # Process the received event and data
 onMessageEvent(response["event"], response["data"])

Once we've finished collecting data we can process
it however we like. In this case we write it to a CSV file
with open(output_file, "w", newline="") as file:
 writer = csv.writer(file, delimiter=",", quotechar="\"",
 quoting=csv.QUOTE_MINIMAL)
 writer.writerow(["Values", "Timestamps"])

 value_pairs = database["/t1/probe/field/value"]

 for (value, time) in value_pairs:

Document by:

Document: 2025914461

T1 Programmer's Guide

Author: Matthew Nichols

Version: 1.1.2

Copyright (c) 2020

Pyramid Product
Documentation

©Pyramid Technical Consultants
www.ptcusa.com

Page 17 of 18

This document is CONTROLLED only
when viewed electronically.

Page: 2025914461-V8
Date: 06/22/2021

 writer.writerow([value, time])

 print("Collected", len(value_pairs), "samples, written to", output_file)

Close our connection
ws.close()

Document by:

Document: 2025914461

T1 Programmer's Guide

Author: Matthew Nichols

Version: 1.1.2

Copyright (c) 2020

Pyramid Product
Documentation

10 mailto:support@ptcusa.com

©Pyramid Technical Consultants
www.ptcusa.com

Page 18 of 18

This document is CONTROLLED only
when viewed electronically.

Page: 2025914461-V8
Date: 06/22/2021

•

•

•

•

•

7 Best Practices
Keep IO paths parameterized - Paths might change in future versions of firmware
as the API evolves. Parameterize your path variables to keep your code flexible.
Reuse connections when possible - Reuse your sockets if you want to make
multiple requests, the firmware supports recycling TCP connections for HTTP and
WebSockets. The resulting code will be more performant.
Make your own wrapper functions - No generic API can ever beat the
convenience of custom wrappers specifically made for your application. All the IO
behaves the same way, and that lends itself well to being generalized.
When possible, decouple from a specific protocol - HTTP might suit your needs
well today, but maybe down the line you want to use EPICS instead. Write your code
in such a way that it makes it possible to switch between either.
Ask for help - Pyramid is here to help you. Your feedback drives how we develop
our interfaces in the future. Send any questions you have to support@ptcusa.com10

mailto:support@ptcusa.com
mailto:support@ptcusa.com

	Introduction
	Purpose
	Intended Audience

	Programming Quick Start
	Use cURL to get measured field value
	Use Excel to get measured field value
	Use Python, HTTP, and requestshttps://docs.python-requests.org/en/master/ to get measured field value
	Use Python, EPICS, and pyepicshttps://github.com/pyepics/pyepics to get measured field value

	How Device Data is Structured
	Available Protocols
	HTTP
	HTTP via cURL
	SFTP
	EPICS
	WebSockets

	IO Tables
	Probe Data and Configuration
	T1 Configuration

	Practical Code Examples
	Read field value using Python and HTTP
	Get field value using Python and EPICS
	Programatically zeroing the probe using Python and HTTP
	Programatically zeroing the probe using Python and EPICS
	Collect full data rate field data and write to CSV using Python and WebSockets

	Best Practices

