
IGX
IGX - Programmer Manual

Document ID: 2439249921

Version: v2

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 2

Table of Contents

1 Introduction.. 6
2 Document Control ..7
2.1 Version History .. 7
2.2 Approvals ... 7
2.2.1 Signatures ..7

3 IGX Network Protocols.. 8
3.1 Overview of IGX Protocols ... 8
3.1.1 HTTP...8

3.1.2 WebSocket...8

3.1.3 EPICS ..8

3.1.4 SFTP ...9

3.1.5 Qnet ..9

3.2 IGX HTTP Protocol Guide ... 10
3.2.1 IGX HTTP Server Introduction.. 10

3.2.2 HTTP Quick Start... 10

Use cURL to GET field value. ... 10

use cURL to PUT a field value.. 10

Use Microsoft Excel to GET field value. .. 10

Use Python and requests library to SET and GET field value...10

Suitable HTTP Libraries .. 11

3.2.3 The HTTP Protocol Basics.. 12

The TCP Connection... 12

HTTP URLs... 12

HTTP Request Structure...13

HTTP Response Structure..13

3.2.4 HTTP Python Examples ..14

Python Requests Sessions ...14

Sending a GET Request ..14

Sending a PUT Request .. 15

3.2.5 Postman for HTTP Testing ... 16

Sending a GET Request .. 16

Sending a PUT Request .. 16

3.2.6 PLC HTTP Programming... 17

Converting Strings to Numeric or Binary Values.. 18

Protocol Gateways .. 18

Custom Code Solutions .. 18

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 3

3.3 IGX WebSocket Protocol Guide ...20
3.3.1 WebSocket Overview... 20

3.3.2 IGX JSON Message Protocol... 22

Config Event ... 22

Subscribe Event.. 23

Get Event... 24

Set Event ... 24

Update Event .. 25

Update ID Event ... 26

Get ID Event ...27

Typical Protocol Sequence...27

3.3.3 Suitable WebSocket Libraries ... 28

3.3.4 Python T1 Example... 29

3.3.5 Conclusion..31

3.4 IGX EPICS Protocol Guide...32
3.4.1 EPICS Overview.. 32

EPICS Network Protocols and Ports... 32

Choosing EPICS for Your Control System ... 34

3.4.2 IGX EPICS Interface.. 34

Handling Multiple Devices ... 35

EPICS Utility Programs... 35

3.4.3 Python Examples .. 37

Python Library Overview ... 37

Getting a PV (IO) Value .. 38

Putting a PV (IO) Value .. 39

Zeroing a T1 Probe ... 39

Polling Heartbeat.. 40

Subscribing to Heartbeat ...41

3.4.4 Conclusion... 42

3.5 IGX SFTP Protocol Guide..42
3.5.1 Use SFTP for IGX IO Data .. 42

Accessing IGX IO Data via SFTP ... 43

Python Example.. 43

3.6 IGX Qnet Protocol Guide...44
3.6.1 Qnet Overview.. 44

Network Protocol ... 44

Device Discovery.. 44

The Net Directory... 44

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 4

Network Packet Passing.. 45

File Exposure between Nodes .. 45

3.6.2 Integrating Qnet with IGX .. 45

Accessing IO Data through Qnet .. 45

File Path Conventions in IGX ... 46

3.6.3 Python Qnet Example... 46

4 IGX File Format Specifications ... 48
4.1 IGX JSON IO Files ..48
4.1.1 Introduction... 48

Example JSON .. 48

Field Types.. 48

Index JSON Files .. 49

Field JSON Files.. 49

JSON Schema... 49

Availability of Protocols ... 50

Helpful Links ... 50

4.2 IGX XML Configuration Files... 51
4.2.1 Overview .. 51

Structured Node Format...51

Possible Field Types (Attributes)...51

Possible Node Types ... 52

Possible IO Types... 52

A Simple Example ... 53

5 IGX Standard IO Interfaces... 54
5.1 IGX Button IO Interface...54
5.1.1 Overview ... 54

5.2 IGX High Voltage IO Interface ..54
5.2.1 Overview ... 54

Interface IO ... 55

Module States... 55

Safety Interlocks... 55

Internal Voltage Sense Circuit... 55

External Voltage Sense Circuit.. 55

5.2.2 Use Case Examples.. 56

Setting and Enabling High Voltage Output .. 56

Reading Internal Voltage Values... 56

Monitoring External Voltage Values (Optional) ... 56

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 5

5.3 IGX Dose Controller IO Interface..56
5.3.1 Overview ... 56

Primary Control IO ...57

Calibration and Configuration IO .. 58

Q-Pulse Charge Monitor IO ... 58

Quadrant Detector IO... 59

5.3.2 Controller Interlock and Permits ... 59

Ready Permit... 59

Stopping Permit .. 60

Pausing Permit.. 60

5.3.3 Simple Charge Prescription Example ... 60

5.4 IGX Admin IO Interface ... 61
5.4.1 Overview ..61

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 Introduction: 6

1 Introduction

Author @ Matthew Nichols

Purpose Explain IGX programmer's concepts in order to facilitate the development of
complementary applications.

Scope IGX related software development outside the scope of IGX itself.

Intended Audience Software developers interested in creating applications that work with the
IGX control system framework.

Document ID: 2439249921

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 Document Control: 7

2 Document Control

2.1 Version History
Version Description Saved by Saved on Status

v2 Improved network
protocol documentation. Matthew Nichols Apr 10, 2024 9:54

PM APPROVED

v1 Matthew Nichols Feb 21, 2024 11:40
PM APPROVED

2.2 Approvals
This document has been reviewed and approved as follows.

 Document Control

 Current document version: v.1

No reviewers assigned.

2.2.1 Signatures
Wednesday, Apr 10, 2024, 09:54 PM UTC, (v. 1)
Matthew Nichols signed with meaning Review

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 8

•
•
•

•
•

•
•
•

•

3 IGX Network Protocols

3.1 Overview of IGX Protocols
IGX devices support multiple network protocols to enable integration with various applications and
systems. Each protocol has its own strengths and weaknesses, and it is important to choose one that
fits your particular application well. Here is an overview of the supported protocols and their usage in
the context of IGX.

3.1.1 HTTP
All IGX devices are equipped with a high-performance HTTP file server that allows you to build
external applications with ease. This file server can read and write files on the device's file system,
granting access to all files on the device.

IGX utilizes plain text JSON files to store I/O data, which can be queried and modified periodically to
collect or update dynamic data effortlessly. These dynamic files reside in a special directory at the
root of the file system called /io . To access the I/O data through HTTP, prepend /io to the
beginning of the I/O path.

Strengths

Very simple to implement and prototype.
Robust and mature libraries.
Practically universal language and platform support.

Weaknesses

Lots of overhead per transaction.
Lacks support for lossless buffered data.

See the full guide here: IGX HTTP Protocol Guide (see page 10)

3.1.2 WebSocket
WebSocket is a communication protocol that facilitates two-way, real-time communication between a
client (typically a web browser) and a server via a single, long-lived connection. Designed to work
over the same ports as HTTP, WebSocket easily integrates with existing web infrastructure.

In the context of IGX, WebSocket provides a convenient and efficient method for exchanging data
between a client (e.g., a Python script) and an IGX device. This protocol is particularly suited for
scenarios that require continuous, real-time updates, such as monitoring sensor values or controlling
actuators.

Strengths

Streaming lossless buffered data.
Can manage hundreds of IO through a single TCP connection.
Strong community of developers and libraries.

Weaknesses

Can be complex to implement without pre-made libraries.

See the full guide here: IGX WebSocket Protocol Guide (see page 20)

3.1.3 EPICS
The Experimental Physics and Industrial Control System (EPICS) is a popular, open-source,
distributed control system used in scientific instruments like particle accelerators, telescopes, and
large-scale experiments. EPICS streamlines communication between hardware devices and software
applications, enabling effective data acquisition, device control, and monitoring.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 9

•
•

•
•
•

•
•

•
•

•
•

•
•

With IGX devices, you can leverage the power of EPICS to integrate them with existing control
systems or build custom applications for scientific and industrial purposes. This ensures smooth
interoperability with a wide range of hardware and software components in your infrastructure.

Strengths

Standard in some big-experiment facilities.
Simple to use with the given libraries.

Weaknesses

Libraries are hard to compile for some platforms.
Lack of community support.
Lots of pitfalls in the implementation process.

See the full guide here: IGX EPICS Protocol Guide (see page 32)

3.1.4 SFTP
Secure File Transfer Protocol (SFTP) is a robust and secure protocol for transferring files over a
network. By integrating SFTP with IGX systems, you can transfer IO data and other files while
ensuring data confidentiality and integrity during transmission. SFTP uses the Secure Shell (SSH)
protocol for data encryption and authentication, making it a reliable choice for secure file transfers.

SFTP is a good choice if you are already using SFTP transferring for other purposes, and you only
need to query or upload a few files periodically from the IGX system. This protocol should not be used
for data intensive applications where low latency is important.

Strengths

Cryptographically secure and encrypted.
Useful for all file transfers not just for IO.

Weaknesses

High latency per transaction.
Low overall network bandwidth capability.

See the full guide here: IGX SFTP Protocol Guide (see page 42)

3.1.5 Qnet
Qnet is a transparent distributed processing protocol native to the QNX Neutrino RTOS. It allows
multiple QNX-based systems to communicate and share resources with one another as if they were
part of a single, unified system. Qnet enables seamless access to files and processes across the
network, making it an ideal choice for distributed applications and complex system architectures.

In the context of IGX devices, Qnet can be utilized for sharing IO data and accessing remote files or
processes. By integrating Qnet, you can simplify the interaction between various nodes in the system,
eliminating the need for specialized APIs or custom communication protocols. Qnet's transparent
networking capabilities ensure efficient management and exposure of IO data through a virtual file
system, facilitating easy access and manipulation of data between devices.

Qnet is a good choice if the system your code is deploying to is already a QNX device with Qnet
enabled. For instance, if you are writing code that is intended to be embedded and run on a Pyramid
device. If your code is running on a Linux or Windows system, Qnet is not recommended.

Strengths

Incredible performance and latency.
Very easy to implement and use.

Weaknesses

Requires the QNX operating system.
Currently lacks support for buffered data.

Document ID: 2439249921 IGX – IGX - Programmer Manual

1 https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
2 https://en.wikipedia.org/wiki/JSON
3 https://curl.se/
4 https://curl.se/
Version: v2 IGX Network Protocols: 10

See the full guide here: IGX Qnet Protocol Guide (see page 44)

3.2 IGX HTTP Protocol Guide

3.2.1 IGX HTTP Server Introduction
All IGX devices come with a high-performance HTTP1 file server that can be used to build external
applications. This file server is capable of reading and writing files on the device's file system. All files
on the device can be queried through the HTTP server.

IGX uses plain text JSON files to store IO data, which can be queried and written periodically to
collect or set dynamic data easily. These dynamic files are stored in a special directory located at the
root of the file system called /io . When accessing the IO data through HTTP, you will need to
prepend /io to the beginning of the IO path.

By leveraging the IGX HTTP server, developers can easily create web-based or traditional
applications that interact with the control system. The HTTP server's high-performance capabilities
enable it to handle a large number of requests simultaneously, making it an excellent choice for
building responsive and dynamic applications. The use of plain text JSON2 files for storing IO data
makes it easy to integrate with various programming languages and data exchange formats.

3.2.2 HTTP Quick Start
To query an IO value field in IGX, the path should be in the following format: /device/component/
channel/value . You can use various tools and programming languages to GET or PUT the value of an
IO field. Here are some quick examples:

Use cURL3 to GET field value.

curl -X GET http://<IP ADDRESS>/io/heartbeat/value.json

use cURL4 to PUT a field value.

curl -X PUT -d "MY-DEVICE" http://<IP ADDRESS>/io/net/hostname/value.json

Use Microsoft Excel to GET field value.
Enter the following function into a cell:

=WEBSERVICE("http://<IP ADDRESS>/io/heartbeat/value.json")

Click outside the cell and use Ctrl + Alt + F9 to refresh the value.

Use Python and requests library to SET and GET field value.

import requests
import json

url = "http://<IP ADDRESS>/io/net/hostname/value.json"

print(requests.put(url, json.dumps("NEW-NAME")).json())
print(requests.get(url).json())

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/JSON
https://curl.se/
https://curl.se/
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/JSON
https://curl.se/
https://curl.se/

Document ID: 2439249921 IGX – IGX - Programmer Manual

5 https://www.python.org/
6 https://docs.python-requests.org/en/master/
7 https://pypi.org/project/requests/
8 https://urllib3.readthedocs.io/en/stable/
9 https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
10 https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest
11 https://curl.se/libcurl/
12 https://docs.libcpr.org/
13 https://github.com/elnormous/HTTPRequest
14 https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient?view=net-6.0
15 https://docs.microsoft.com/en-us/dotnet/api/system.net.httpwebrequest?view=net-6.0
16 https://openjdk.java.net/groups/net/httpclient/intro.html
17 https://hc.apache.org/httpcomponents-client-5.1.x/
18 https://www.ni.com/docs/en-US/bundle/labview/page/lvcomm/http_client_get.html
19 https://www.ni.com/docs/en-US/bundle/labview/page/lvcomm/http_client_put.html
Version: v2 IGX Network Protocols: 11

Suitable HTTP Libraries
In this guide we will be using Python5 and the requests library6 for example code, but any language
and HTTP library should work well.

The following is a table of libraries that can be used with IGX for different languages. The list is
incomplete, and there are many more options to choose from in addition to these.

Language Library Notes

Python requests7 Very simple to use library, used at Pyramid for internal
testing tools. Uses urllib3 under the hood.

Python urllib38 Lower-level library, useful if you want to have more
control and don’t want extra code.

JavaScript fetch9 Newer built-in JS function for making HTTP requests.

JavaScript XMLHttpRequest10 The old way of making HTTP requests, useful if your
environment doesn’t support modern JavaScript.

C libcurl11 A very complete library that includes HTTP and other
file transfer protocols.

C++ cpr12 A C++ wrapper for libcurl that is inspired by the Python
library requests.

C++ HTTPRequest13 Single header file implementation. Great for small
projects or if you need a simple build process.

C# HTTPClient14 Newer and preferred way to make HTTP requests
in .NET.

C# HTTPWebRequest15 The older way of making an HTTP request.

Java Java 11 HttpClient16 Newer built-in library for HTTP.

Java Apache HttpClient17 Older but still a very popular library.

LabView GET VI18 Built-in LabView HTTP VI to send GET requests.

LabView PUT VI19 Built-in LabView HTTP VI to send PUT requests.

https://www.python.org/
https://docs.python-requests.org/en/master/
https://pypi.org/project/requests/
https://urllib3.readthedocs.io/en/stable/
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest
https://curl.se/libcurl/
https://docs.libcpr.org/
https://github.com/elnormous/HTTPRequest
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.net.httpwebrequest?view=net-6.0
https://openjdk.java.net/groups/net/httpclient/intro.html
https://hc.apache.org/httpcomponents-client-5.1.x/
https://www.ni.com/docs/en-US/bundle/labview/page/lvcomm/http_client_get.html
https://www.ni.com/docs/en-US/bundle/labview/page/lvcomm/http_client_put.html
https://www.python.org/
https://docs.python-requests.org/en/master/
https://pypi.org/project/requests/
https://urllib3.readthedocs.io/en/stable/
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest
https://curl.se/libcurl/
https://docs.libcpr.org/
https://github.com/elnormous/HTTPRequest
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.net.httpwebrequest?view=net-6.0
https://openjdk.java.net/groups/net/httpclient/intro.html
https://hc.apache.org/httpcomponents-client-5.1.x/
https://www.ni.com/docs/en-US/bundle/labview/page/lvcomm/http_client_get.html
https://www.ni.com/docs/en-US/bundle/labview/page/lvcomm/http_client_put.html

Document ID: 2439249921 IGX – IGX - Programmer Manual

20 https://docs.python-requests.org/en/master/
Version: v2 IGX Network Protocols: 12

1.
2.
3.

•
•
•

•

3.2.3 The HTTP Protocol Basics
This section provides an overview of the basics of HTTP and its usage in the context of IGX. By
understanding HTTP, developers can easily communicate with IGX and access the data generated by
the control system using a variety of programming languages and tools that support HTTP
communication. If you already are familiar with HTTP, feel free to skip this section and move on to the
IGX specific examples.

We will cover the TCP connection required by HTTP, the structure of HTTP requests, URLs, and HTTP
responses. Later, we also provided Python and Postman examples to help you understand how to use
HTTP to send GET and PUT requests to IGX.

The TCP Connection
When using HTTP to communicate with IGX, most HTTP libraries will handle the TCP connection
automatically. However, if you're implementing your own HTTP stack, you'll need to set up the TCP
socket and manage it yourself.

To establish a TCP socket at the target device IP address on port 80, you should follow these steps:

Open a TCP socket at the target device IP address on port 80.
Send an HTTP request message to the server.
Receive the HTTP response message from the server.

It's worth noting that IGX allows a single TCP socket to be reused multiple times for sending and
receiving multiple messages. All TCP messages are plain text with ASCII encoding. All IGX responses
are in plain text too, with the bodies encoded using the JSON format.

TCP Keep Alive
If you are sending multiple requests in quick succession or very frequently, it helps to reuse the same
TCP connection for all those requests. The requests20 library for Python does this automatically if you
use a session object (see example later), so you don't have to worry about it. However, if you're using
a different library or language, make sure that it keeps the connection alive between requests to
improve performance.

HTTP URLs
A URL (Uniform Resource Locator) is a standardized way of specifying the location of a resource on
the internet. In the context of IGX, a URL is used to specify the path to an IO field. The URL consists of
several parts that define the location and type of the resource being accessed.

The general format of a URL is:

scheme://host:port/path

Scheme: Specifies the protocol being used to access the resource, such as HTTP or HTTPS.
Host: Specifies the hostname or IP address of the device hosting the resource.
Port: Specifies the port number on which the device is listening for requests. The default port
for HTTP is 80 and typically does not need to be specified for most HTTP clients.
Path: Specifies the location of the resource being accessed. In the context of IGX, the path
would be in the format /io/device/component/channel/value.json .

For example, a URL to access the value of an IO field with the path /io/device/component/channel/
value on a device with the IP address 192.168.1.100 would look like:

http://192.168.1.100/io/device/component/channel/value.json

https://docs.python-requests.org/en/master/
https://docs.python-requests.org/en/master/

Document ID: 2439249921 IGX – IGX - Programmer Manual

21 https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages
Version: v2 IGX Network Protocols: 13

By understanding the basics of URLs, developers can easily access and manipulate data generated
by the control system using a variety of programming languages and tools that support HTTP
communication.

HTTP Request Structure
To interact with IGX, programmers can send HTTP requests, which are plain ASCII text and have two
main parts: the header and the body. The header and body are separated by new lines. With IGX, the
only thing required in the header is the first line. HTTP uses standard "verbs" to differentiate the
intentions of a request, and the verb is the first word in a request.

IGX currently supports two verbs: GET , which is used to request a file, and PUT , which is used to write
files. Below is an example of the simplest possible request:

GET /io/heartbeat/value.json HTTP/1.1

In this example, the GET verb is used to request the value of an IO field with the path /io/heartbeat/
value . The HTTP version used is 1.1. Take note in the use of two new line characters creating a blank
line at the end of the message. This is the standard way to tell the sever that the message header or
body is complete.

While it's useful to understand the structure of an HTTP request, most programming languages or
frameworks come with HTTP support out of the box, so you typically won't have to worry about it.
You'll only need to provide a URL to make a request.

For more extensive documentation on HTTP messages, you can refer to resources such as the
Mozilla Developer Network (MDN) HTTP21 Messages page.

HTTP Response Structure
When an HTTP request is sent to IGX, it responds with an HTTP response message. The response
message also consists of a header and a body, which are separated by new lines. The header
contains information about the response, such as the status code, while the body contains the
response data.

The following is an example of a typical HTTP response for the /io/heartbeat/value.json URL from
IGX:

HTTP/1.1 200 OK
Server: IGX
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: 1
Content-Type: application/json
Content-Encoding: identity
Content-Length: 4

true

In this example, the first line of the response message contains the HTTP version, status code, and
status message. The status code of 200 indicates that the request was successful. The header also
includes the Content-Type, which specifies the type of data in the response body. If you are
requesting a JSON file, this type will always be application/json .

The URL requested returns a Boolean value, so only the value is returned in the response body. The
response body contains the actual response data, which in this example is a Boolean value of true .

The response body contains the actual response data, which in this example is a JSON-encoded
value or object depending on the resource requested. The value of the data field contains the value
of the requested IO field.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 14

•
•
•
•

IGX responds with a variety of HTTP status codes depending on the success or failure of the request.
Some common HTTP status codes include:

200 OK: Request was successful.
400 Bad Request: Request was malformed or invalid.
404 Not Found: Requested resource was not found.
500 Internal Server Error: Server encountered an error while processing the request.

3.2.4 HTTP Python Examples
Python provides built-in support for HTTP communication, making it easy to interact with IGX. The
requests library is commonly used for sending HTTP requests and handling responses. Here are some
examples of how to use Python and the requests library to interact with IGX.

Python Requests Sessions
In the following examples we will be using the requests library. This library has two ways of making
requests, directly from the requests object or creating a session object and making a request from
that. Sessions are usually the superior choice for production code, but it does complicate the
examples. If you want to make requests to multiple devices, you will need to create a session object
for each device.

The following shows how to create a session object and use it to make requests.

import requests

session = requests.Session() # Create a session
session.get(...) # Make a GET request
session.put(...) # Make a PUT request

The following examples will use the form requests.get and requests.put , but if you are using a
session, you can just replace the requests object with session and the example will still work.

Sending a GET Request
You can create a convenience function that queries an IP address with a given path, called a URL, and
returns the translated JSON value. Here's an example of how to do this using the requests library:

import requests

def getURL(url):
 return requests.get(url, timeout=1.0).json()

Now you can create a more useful function that queries a device's hostname and returns the value:

def getHostName(ip):
 return getURL("http://" + ip + "/io/net/hostname/value.json")

The getHostName function takes an IP address as an argument and appends a fixed path to the file
that contains the hostname value. You can then use this function to print out a local device hostname:

Get the hostname of a device on our local network
print(getHostName("192.168.0.50"))

You can imagine creating a whole variety of convenient functions that consolidate these kinds of
requests or combine multiple requests. This kind of encapsulation is highly encouraged, but keep in
mind that URLs and IP addresses may change in future API versions, so your functions shouldn't be
overly difficult to change in the future.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 15

A more complete example:

import requests

Target device IP address.
ip = "192.168.55.239"

Helper function, does an HTTP GET and returns the parsed JSON value.
def getIOValue(path):
 return requests.get("http://" + ip + "/io" + path + "/value.json", timeout=1.0).json(
)

Helper function for a specific IO.
def getHostname():
 return getIOValue("/net/hostname")

def getHeartbeat():
 return getIOValue("/heartbeat")

Requesting the device IO.
print(getHostname())
print(getHeartbeat())

In this example, the getIOValue function is used to send a GET request to IGX and return the parsed
JSON value. The getHostname and getHeartbeat functions use getIOValue to request the hostname
and heartbeat IO fields from IGX. Finally, the values of the hostname and heartbeat IO fields are
printed to the console.

Sending a PUT Request
Sending a PUT request will modify the file or IO on the device. If the IO or file is read-only, the
operation will fail. The structure of the PUT request is just like the GET request, except this time the
client supplies the body (the value).

The following is an example of the new request structure:

PUT /io/net/hostname.json HTTP/1.1

"New-Hostname"

In Python, sending a PUT request is easy using the requests library. Here's an example of how to use
requests to send a PUT request to set the IO /net/hostname to "New-Hostname" :

import json
import requests

requests.put("http://<IP ADDRESS>/io/net/hostname/value.json", json.dumps("New-
Hostname"), timeout=1.0)

The json.dumps function is used to convert the value to a JSON-encoded string before sending it in
the PUT request body.

Here's a more complete example:

import json
import requests

Target device IP address.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 16

1.
2.

3.

ip = "192.168.55.239"

def putIOValue(path, value):
 return requests.put("http://" + ip + "/io" + path + "/value.json", json.dumps(value),
timeout=1.0).json()

def getIOValue(path):
 return requests.get("http://" + ip + "/io" + path + "/value.json", timeout=1.0).json(
)

Helper function for a specific IO.
def getHostname():
 return getIOValue("/net/hostname")

def putHostname(value):
 return getIOValue("/net/hostname", value)

print("Old Hostname", getHostname())
putHostname("New-Hostname")
print("New Hostname", getHostname())

In this example, the putIOValue function is used to send a PUT request to IGX to set the value of an IO
field. The getIOValue function is used to send a GET request to IGX to retrieve the value of an IO field.
The getHostname and putHostname functions use getIOValue and putIOValue , respectively, to get and
set the value of the hostname IO field.

3.2.5 Postman for HTTP Testing
Postman is a powerful tool for sending and receiving HTTP messages with a user-friendly GUI
interface. It can be invaluable for debugging your code and testing new queries without the hassle of
programming. You can download Postman from the following link:

https://www.postman.com/downloads/

Sending a GET Request
To send a GET request using Postman, follow these steps:

Select GET method from the dropdown list.
Enter the target URL in the field at the top of the page.

Click the Send button and observe the response.

Sending a PUT Request
To send a PUT request using Postman, follow these steps:

https://www.postman.com/downloads/

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 17

1.
2.
3.

4.

5.

•
•
•
•

Select PUT method.
Enter the target URL in the field at the top of the page.
Add the header Content-Type: application/json . This tells IGX that the content you are sending
is encoded using the JSON format.

Add data to the Body field in raw format.

Click the Send button and observe the response.

3.2.6 PLC HTTP Programming
A Programmable Logic Controller (PLC) is a specialized computer that is used in industrial control
systems to control various processes and machines. While most PLCs do not have built-in HTTP
support, it is possible to make HTTP requests using a PLC in a number of ways.

One way to make HTTP requests from a PLC is to use a module or add-on that supports HTTP
communication. Many PLC manufacturers offer modules or add-ons that can be added to a PLC to
provide HTTP communication capabilities. These modules typically connect to the PLC via a standard
interface such as Ethernet and may include a library or software that can be used to make HTTP
requests.

The following is a list of some PLCs that support HTTP:

Siemens S7-1500
Allen-Bradley ControlLogix
Mitsubishi iQ-R Series
Beckhoff TwinCAT

Document ID: 2439249921 IGX – IGX - Programmer Manual

22 https://support.industry.siemens.com/cs/mdm/91696622?c=61295869963&lc=en-US
23 https://www.anybus.com/products/gateway-index/anybus-x-gateway
24 https://www.moxa.com/en/products/industrial-edge-connectivity/serial-device-servers/general-device-

servers/nport-5100-series#overview
25 https://www.redlion.net/products/industrial-automation/controllers-and-data-acquisition/data-station-plus
Version: v2 IGX Network Protocols: 18

•
•
•
•
•

•
•
•

Wago PFC200
Schneider Electric Modicon M580
B&R Automation APROL
Phoenix Contact ILC 2050 BI
Omron NJ/NX series

Note that not all PLCs support HTTP out of the box and may require additional hardware or software
modules to enable HTTP communication. Additionally, the implementation of HTTP support may vary
between PLC manufacturers and models.

Converting Strings to Numeric or Binary Values
With HTTP, all data is transmitted as ASCII, human readable, strings, this makes the data very
portable and easy to debug, however it requires the PLC to convert the strings back into their native
types explicitly. This process can be prone to errors, so the following section includes some pointers
and guidance we have found useful.

On Siemens PLCs, when using the STRG_VAL22 instruction to convert from strings to numbers, there
is a key parameter you should remember to use. Always use the FORMAT argument and use the 0002
value, this will use the exponential format with the "." character as the decimal point. This format
aligns with the IGX formatting convention, where the “.” is consistently used to denote the decimal
point, and an exponential suffix might be employed to reduce redundancy in zeros.

Protocol Gateways
Another way to make HTTP requests from a PLC is to use a gateway or protocol converter. These
devices act as a bridge between the PLC and the network and can translate between different
protocols such as Modbus and HTTP. By using a gateway or protocol converter, a PLC can be
configured to make HTTP requests in the same way as any other network device. The following is a
list of some possible gateway solutions:

Anybus X-Gateway23

Moxa NPort Gateway24

Red Lion Data Station25

Note that Pyramid provides no guarantees for compatibility for these gateways. Please consult the
specific gateway vendor and Pyramid together to ensure that your system will work.

Custom Code Solutions
It is also possible to write custom code for a PLC that implements HTTP communication. This can be
done using a variety of programming languages and libraries, depending on the capabilities of the
PLC and the requirements of the application. However, this approach requires a higher level of
expertise and may not be suitable for all applications.

For example, some PLCs offer the capability to write custom function blocks or modules in languages
like Structured Text, C/C++, or Java, which can then be used to perform HTTP communication.
Additionally, some PLC programming environments provide built-in support for HTTP communication,
such as the Siemens TIA Portal or the CODESYS Development System.

Writing custom code can offer more flexibility and control over the communication process, but it also
requires more development effort and maintenance. It is important to carefully consider the
requirements of the application and the capabilities of the PLC before deciding to write custom code.

The following is a simple example of custom C code for a Siemens S7-1500 PLC that implements the
HTTP GET request:

https://support.industry.siemens.com/cs/mdm/91696622?c=61295869963&lc=en-US
https://www.anybus.com/products/gateway-index/anybus-x-gateway
https://www.moxa.com/en/products/industrial-edge-connectivity/serial-device-servers/general-device-servers/nport-5100-series#overview
https://www.redlion.net/products/industrial-automation/controllers-and-data-acquisition/data-station-plus
https://support.industry.siemens.com/cs/mdm/91696622?c=61295869963&lc=en-US
https://www.anybus.com/products/gateway-index/anybus-x-gateway
https://www.moxa.com/en/products/industrial-edge-connectivity/serial-device-servers/general-device-servers/nport-5100-series#overview
https://www.redlion.net/products/industrial-automation/controllers-and-data-acquisition/data-station-plus

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 19

1.

2.

3.
4.

#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

// Define the URL of the resource being accessed
const char* url = "http://192.168.1.100/io/device/component/channel/value.json";

int main() {
 // Parse the URL to extract the host and path
 char host[128];
 char path[128];
 sscanf(url, "http://%127[^/]/%127s", host, path);

 // Define the request message using the extracted host and path
 char requestMessage[1024];
 snprintf(requestMessage, sizeof(requestMessage), "GET /%s HTTP/1.1\r\nHost:
%s\r\nConnection: close\r\n\r\n", path, host);

 // Open a TCP socket to the server
 int sockfd = socket(AF_INET, SOCK_STREAM, 0);
 struct sockaddr_in serverAddr;
 serverAddr.sin_family = AF_INET;
 serverAddr.sin_port = htons(80);
 serverAddr.sin_addr.s_addr = inet_addr("192.168.1.100");
 connect(sockfd, (struct sockaddr*)&serverAddr, sizeof(serverAddr));

 // Send the request message
 write(sockfd, requestMessage, strlen(requestMessage));

 // Read the response message
 char responseMessage[1024];
 read(sockfd, responseMessage, sizeof(responseMessage));

 // Close the TCP socket
 close(sockfd);

 // Parse the response message
 char* response = strstr(responseMessage, "\r\n\r\n") + 4;
 int value = atoi(response);

 // Do something with the value
 // ...

 return 0;
}

Include the necessary header files for sockets, string manipulation, and standard I/O
operations.
Define the URL of the resource being accessed, which is a JSON file containing the value of a
channel in an I/O device.
In the main function, parse the URL using sscanf() to extract the host and path components.
Construct the HTTP GET request message using the extracted host and path components
with snprintf() .

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 20

5.

6.
7.
8.

9.
10.

11.
12.

Create a TCP socket using the socket() function and configure the server's address and port
number.
Connect to the server using the connect() function.
Send the HTTP GET request message to the server using the write() function.
Read the server's response using the read() function and store it in a buffer (responseMessage)
.
Close the TCP socket using the close() function.
Parse the server's response to extract the value from the JSON file by finding the start of the
actual response (after the HTTP header) using strstr() .
Convert the extracted value (as a string) to an integer using the atoi() function.
Perform any desired operation using the extracted value (value variable).

Note that this is just a simple example, and the actual implementation of HTTP communication will
depend on the capabilities of the PLC and the requirements of the application. Additionally, custom
code like this requires a higher level of expertise and may not be suitable for all applications.

3.3 IGX WebSocket Protocol Guide

3.3.1 WebSocket Overview
The WebSocket protocol is a communication protocol that enables two-way, real-time communication
between a client (frequently a web browser) and a server over a single, long-lived connection. It is
designed to work over the same ports as HTTP to allow for easy integration with existing web
infrastructure.

In the context of IGX, the WebSocket protocol provides a convenient and efficient way to exchange
data between a client (such as a Python script) and an IGX device. The protocol is particularly well-
suited for use cases where continuous, real-time updates are required, such as monitoring sensor
values or controlling actuators.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 21

This diagram depicts the sequence of events
that take place when a client establishes a
connection to a server using the TCP, HTTP, and
WebSocket protocols.

The client initiates the connection by sending a
TCP SYN message to the server, which
responds with a SYN/ACK message. After the
connection is established, the client sends an
HTTP GET request to the server for a specific
resource. The server responds with an HTTP
200 OK message, indicating that the request
was successful.

At this point, the server sends an Upgrade
header to the client, indicating that it supports
the WebSocket protocol. The client then sends
an Upgrade request to the server, which
responds with an HTTP 101 Switching Protocols
message. This indicates that the server has
switched to the WebSocket protocol and the
client can now send WebSocket data to the
server. The sequence ends with both the client
and server closing the WebSocket connection.

1 WebSocket Timing Diagram

Connection Establishment: The client initiates a WebSocket connection to the IGX device by sending
an HTTP request with an "Upgrade" header indicating a desire to switch to the WebSocket protocol.
The device, upon accepting the request, sends an HTTP response with a corresponding "Upgrade"
header, and the connection is then switched from HTTP to WebSocket.

ws = websocket.create_connection("ws://" + ip)

Message Exchange: Once the WebSocket connection is established, the client and the device can
exchange messages in a bidirectional, real-time manner. In the case of IGX, the messages are
formatted as JSON objects containing "event" and "data" fields described in more detail later.

ws.send(json.dumps({"event": event, "data": data}))
response = json.loads(ws.recv())

Message Handling: Both the client and the device should implement appropriate handlers to process
incoming messages based on their "event" type. In the provided Python example, the
onMessageEvent(event, data) function handles incoming "update" events from the device, processes
the received data, and stores it in a local database. This handler is described in more detail later.

def onMessageEvent(event, data):
 ...

Connection Termination: When communication is no longer required, either the client or the device
can close the WebSocket connection by sending a close frame and closing the underlying TCP

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 22

connection. In the provided Python example, the WebSocket connection is closed using the
ws.close() function.

ws.close()

By leveraging the WebSocket protocol, IGX devices can efficiently communicate with clients in real-
time, allowing for continuous monitoring and control of various parameters, such as sensor values or
actuator states. The protocol is well-suited for use cases that require low latency and minimal
overhead, making it an ideal choice for many industrial and IoT applications.

3.3.2 IGX JSON Message Protocol
The messages are structured as JSON objects containing two main fields: "event" and "data". The
"event" field describes the type of event, while the "data" field contains any additional information
associated with the event.

Config Event
This completely optional event can be sent by a client to the server at the start of a session to
configure specific parameters about this session. The default session configuration is reasonable for
most use cases, but in some cases, you may find these settings helpful to change.

Example Message

{
 "event": "config",
 "data": {
 "use_short_id": false,
 "always_update": false
 }
}

JSON Schema

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Config Event",
 "description": "Schema for config event in IGX JSON Message Protocol",
 "type": "object",
 "properties": {
 "event": {
 "type": "string",
 "const": "config"
 },
 "data": {
 "type": "object",
 "patternProperties": {
 "use_short_id": { "type": "boolean", "default": false },
 "always_update": { "type": "boolean", "default": false }
 },
 "additionalProperties": false
 }
 },
 "required": ["event", "data"],
 "additionalProperties": false
}

Configurable Parameters

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 23

Parameter Description

use_short_id
False by default. If set to true, the IGX server will use short IDs in its update
message events. See the update_id and get_id messages bellow for more
information.

always_update

False by default. If set to true, the IGX server will always include all subscribed
data in the update message, regardless of if the data has changed or not. By
default, the protocol only sends new data if the data has changed, but this
parameter allows you to always get updates regardless. Use caution with this
parameter, as it can be easy to create very large update messages if
subscribing to many values, which may impact your client performance.

Subscribe Event

Sent by the client to subscribe to specific data paths on the device. The data field contains a
dictionary with the paths as keys and Boolean values indicating whether the data should be buffered
or not.

Buffered data will include all the data in an array since the last get event, while unbuffered data will
only contain the latest data point.

This message only tells the server that the client intends on using this data. In order to request the
data itself, the client must send a get event message.

Example Message

{
 "event": "subscribe",
 "data": {
 "/t1/probe/field/value": true
 }
}

JSON Schema

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Subscribe Event",
 "description": "Schema for subscribe event in IGX JSON Message Protocol",
 "type": "object",
 "properties": {
 "event": {
 "type": "string",
 "const": "subscribe"
 },
 "data": {
 "type": "object",
 "patternProperties": {
 "^/.+$": { "type": "boolean" }
 },
 "additionalProperties": false
 }
 },
 "required": ["event", "data"],
 "additionalProperties": false
}

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 24

Get Event

Sent by the client to request new data from the device since the last get event. If the client has
already sent a subscribe event, no additional data field is required for this message. After receiving a
get event, the IGX service will send an update event with the requested data.

Clients should send a new get event whenever they want to receive another update message. Clients
should not send more than one get event without first receiving an update message. This is to
prevent the server from being overloaded with incoming messages.

Example Message

{
 "event": "get"
}

JSON Schema

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Get Event",
 "description": "Schema for get event in IGX JSON Message Protocol",
 "type": "object",
 "properties": {
 "event": {
 "type": "string",
 "const": "get"
 }
 },
 "required": ["event"],
 "additionalProperties": false
}

Set Event

Sent by the client to request a modification to a field value. The data field is a dictionary containing
all fields and their corresponding new values. It is wise to subscribe to fields that you plan on
modifying, so that you can confirm the value has changed in later update messages.

Example Message

{
 "event": "set",
 "data": {
 "/t1/probe/offset/value": 1.234,
 ...
 }
}

JSON Schema

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Set Event",
 "description": "Schema for set event in IGX JSON Message Protocol",
 "type": "object",
 "properties": {

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 25

 "event": {
 "type": "string",
 "const": "set"
 },
 "data": {
 "type": "object",
 "patternProperties": {
 "^/.+$": { "type": ["string", "number", "boolean", "array", "object"] }
 },
 "additionalProperties": false
 }
 },
 "required": ["event", "data"],
 "additionalProperties": false
}

Update Event

Sent by the device in response to a get event, carrying the subscribed data. The data field is a
dictionary containing the values for each path.

Example Message

{
 "event": "update",
 "data": {
 "/t1/probe/field/value": [
 [123, 1617981812.5],
 [124, 1617981812.6],
 ...
]
 }
}

JSON Schema

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Update Event",
 "description": "Schema for update event in IGX JSON Message Protocol",
 "type": "object",
 "properties": {
 "event": {
 "type": "string",
 "const": "update"
 },
 "data": {
 "type": "object",
 "patternProperties": {
 "^/.+$": {
 "type": "array",
 "items": {
 "type": "array",
 "items": [
 { "type": ["string", "number", "boolean", "array", "object"] },
 { "type": "number" }
],
 "additionalItems": false

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 26

 }
 }
 },
 "additionalProperties": false
 }
 },
 "required": ["event", "data"],
 "additionalProperties": false
}

Update ID Event
This message will be sent by the server when it is assigning new shorter ID strings to full path names.
These short names are used to save network bandwidth by not repeating potentially very long path
names.

The data object of the event holds a series of key value pairs for all subscribed paths, where the key
is the short name, and the value is the long path name. Clients should remember this mapping so that
subsequent update messages can be remapped or translated back into the full path name and
correctly handled. If, for whatever reason, a client forgets what IDs to use or needs to be reminded,
they can send a get_id message to force another update_id message from the server.

Example Message

{
 "event": "update_id",
 "data": {
 "123": "/example/path/value",
 "abc": "/example/other/path/value",
 ...
 }
}

JSON Schema

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Update ID Event",
 "description": "Schema for update ID event in IGX JSON Message Protocol",
 "type": "object",
 "properties": {
 "event": {
 "type": "string",
 "const": "update_id"
 },
 "data": {
 "type": "object",
 "patternProperties": {
 "^[0-9a-zA-Z]+$": {
 "type": "string",
 "pattern": "^/([^/]+/)*[^/]+$"
 }
 },
 "additionalProperties": false
 }
 },
 "required": ["event", "data"],
 "additionalProperties": false

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 27

1.

2.

3.
4.
5.
6.

}

Get ID Event

If a client would like to request the server to send an update_id message, they can use the get_id
message to force an update. Once they server receives a get_id message, it will send an update_id
message with all the subscribed paths and their corresponding IDs.

Example Message

{
 "event": "get_id"
}

JSON Schema

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Get ID Event",
 "description": "Schema for get ID event in IGX JSON Message Protocol",
 "type": "object",
 "properties": {
 "event": {
 "type": "string",
 "const": "get"
 }
 },
 "required": ["event"],
 "additionalProperties": false
}

Typical Protocol Sequence
The basic protocol operates in the following way:

The client can optionally send a config event to the server to set any, non-default session
configurations the client requires.
The client sends a subscribe event to the server, specifying the data paths it wants to
subscribe to and whether the data should be buffered.
The client sends a get event to request new data from the device.
The device responds with an update event containing the requested data.
The client processes the update event and stores the received data locally.
The client can repeatedly send get events to request more data from the device.

The following is a basic example of how a typical sequence of events may happen:

Document ID: 2439249921 IGX – IGX - Programmer Manual

26 https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
27 https://github.com/websocket-client/websocket-client
28 https://github.com/TooTallNate/Java-WebSocket
29 https://github.com/warmcat/libwebsockets
Version: v2 IGX Network Protocols: 28

2 JSON Event Timing Diagram

This JSON-based protocol provides a simple and flexible way to communicate between the client and
the device over a WebSocket connection, allowing the client to subscribe to specific data paths
ahead of time and receive updates as needed, conserving network resources.

3.3.3 Suitable WebSocket Libraries
The following is a list of WebSocket client libraries that you can use to create connections and send
messages. This guide will mostly use the Python library, but the other libraries will work in similar
ways.

Language Library Name Description

JavaScript WebSocket API26 Built-in WebSocket API in web browsers for real-time
communication.

Python websocket-client27 A WebSocket client library for Python with a focus on
simplicity and ease of use.

Java Java-WebSocket28 A full-featured WebSocket client library for Java
applications.

C libwebsockets29 A lightweight, event driven WebSocket client and server
library for C.

https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://github.com/websocket-client/websocket-client
https://github.com/TooTallNate/Java-WebSocket
https://github.com/warmcat/libwebsockets
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://github.com/websocket-client/websocket-client
https://github.com/TooTallNate/Java-WebSocket
https://github.com/warmcat/libwebsockets

Document ID: 2439249921 IGX – IGX - Programmer Manual

30 https://www.zaphoyd.com/websocketpp/
31 https://github.com/kerryjiang/WebSocket4Net
32 https://github.com/gorilla/websocket
33 https://github.com/ruby-jp/websocket-client-simple
34 http://socketo.me/
35 https://github.com/daltoniam/Starscream
36 https://www.ni.com/en-us/support/downloads/tools-network/download.websockets-api.html#374385
Version: v2 IGX Network Protocols: 29

•
•

Language Library Name Description

C++ WebSocket++30
A lightweight, high-performance, and header only
WebSocket client and server library for C++
applications.

C# WebSocket4Net31 A .NET WebSocket client implementation with support
for various WebSocket protocol versions.

Go gorilla/websocket32 A WebSocket client and server library for Go with a
simple, idiomatic API.

Ruby websocket-client-simple33 A simple and easy-to-use WebSocket client library for
Ruby.

PHP Ratchet34
A PHP library for building WebSocket servers and
clients, enabling real-time communication in PHP
applications.

Swift Starscream35 A WebSocket client library for iOS, macOS, and tvOS,
written in Swift.

LabVIEW LabVIEW WebSockets
API36

An unofficial WebSocket API for LabVIEW, providing
WebSocket client and server functionality.

3.3.4 Python T1 Example
This guide will walk you through the process of setting up a WebSocket connection to collect,
process, and store data in a CSV file using Python. This example uses the T1 device to collect
magnetic field data.

Prerequisites:

Python 3.x
WebSocket client library: Install by running pip install websocket-client

Import the necessary Python libraries: websocket , time , json , and csv .

import websocket
import time
import json
import csv

Set up the device IP address, data collection time, and output file name.

ip = "192.168.55.239" # Device IP address
collection_time = 2.0 # Seconds to collect data
output_file = "t1_data.csv" # Data output file

Create a Python dictionary to store the data collected from the device. This will be used to
temporarily store all the data points as they stream to the client.

https://www.zaphoyd.com/websocketpp/
https://github.com/kerryjiang/WebSocket4Net
https://github.com/gorilla/websocket
https://github.com/ruby-jp/websocket-client-simple
http://socketo.me/
https://github.com/daltoniam/Starscream
https://www.ni.com/en-us/support/downloads/tools-network/download.websockets-api.html#374385
https://www.zaphoyd.com/websocketpp/
https://github.com/kerryjiang/WebSocket4Net
https://github.com/gorilla/websocket
https://github.com/ruby-jp/websocket-client-simple
http://socketo.me/
https://github.com/daltoniam/Starscream
https://www.ni.com/en-us/support/downloads/tools-network/download.websockets-api.html#374385

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 30

Database for storing collected data
database = {
 "/t1/probe/field/value": []
}

Create a WebSocket connection to the device using the websocket.create_connection() function.

Create the WebSocket, uses port 80 by default
ws = websocket.create_connection("ws://" + ip)

Define functions to send and handle events, such as subscribing to data and requesting new data
from the device. These helpers are simplified for the purpose of this document. In production code, it
is a good idea to generalize functions like this further.

Sends the device an event structure
Optionally contains a payload called data
def sendEventData(event, data=None):
 # Convert dictionary to JSON and send
 ws.send(json.dumps({"event": event, "data": data}))

Subscribe to the IO fields we are intereseted in
In this case it is just the field value but there could be more
The boolean value indicates wether the data should be buffered or not
Buffered data means that all samples are send to the client on a get event
Unbuffered data means that only the most recent sample is sent on a get event
def sendSubscribeEvent():
 sendEventData("subscribe", {
 "/t1/probe/field/value": True
 })

Request the device sends us the new data it has collected
since the last time we sent a get event.
def sendGetEvent():
 # No data needed for the get event if you have already
 # previously sent the subscribe event message
 sendEventData("get")

Response event handler, called every time we get a response
from the device. Handles the processing of newly collected data
def onMessageEvent(event, data):
 # Check to make sure the response is an update event
 # Update events carry our subscription data
 if (event == "update"):
 # The dictionary contains all the values for each path
 for (path, values) in data.items():
 # Append the new values to the local database
 database[path] += values
 # Send another get event to request more data
 sendGetEvent()

Send a subscription event and a get event to start collecting data from the device. Once the first get
event is sent, the following events will trigger from the onMessageEvent() function. It is important to
not send a new get event until you have received an update from the server, as to not overload the
device will requests.

Send an initial subscription event and get event

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 31

in order to start the collection process
sendSubscribeEvent()
sendGetEvent()

Collect data from the device for the specified duration using a while loop and the onMessageEvent()
function. In this example we use time as a stopping condition, however it is perfectly acceptable to
keep requesting new data forever.

Remember the start time
start = time.time()

Collect data for a given time
while time.time() - start < collection_time:
 # Wait for a responses from the device
 response = json.loads(ws.recv())
 # Process the received event and data
 onMessageEvent(response["event"], response["data"])

Once data collection is complete, process the data and store it in a CSV file.

Once we've finished collecting data we can process
it however we like. In this case we write it to a CSV file
with open(output_file, "w", newline="") as file:
 writer = csv.writer(file, delimiter=",", quotechar="\"",
 quoting=csv.QUOTE_MINIMAL)
 writer.writerow(["Values", "Timestamps"])

 value_pairs = database["/t1/probe/field/value"]

 for (value, time) in value_pairs:
 writer.writerow([value, time])

 print("Collected", len(value_pairs), "samples, written to", output_file)

Close the WebSocket connection using the ws.close() function.

Close our connection
ws.close()

3.3.5 Conclusion
In conclusion, this user manual is designed to help you, as a programmer, understand how to use the
WebSocket protocol and JSON messaging system to establish real-time communication between
your Python script and an IGX device. By utilizing the WebSocket protocol, you'll be able to create
efficient two-way communication for monitoring and controlling various parameters in industrial and
IoT applications. The provided Python example serves as a guide, showing you how to set up a
WebSocket connection, subscribe to data paths, handle incoming messages, and save the gathered
data into a CSV file. With a clear understanding of these concepts and techniques, you can
confidently adapt the example to fit your unique requirements and make the most of IGX devices in
your projects.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 32

1.
2.

3.4 IGX EPICS Protocol Guide

3.4.1 EPICS Overview
The Experimental Physics and Industrial Control System (EPICS) is a widely used, open-source,
distributed control system for scientific instruments, such as particle accelerators, telescopes, and
large-scale experiments. EPICS facilitates communication between hardware devices and software
applications, enabling efficient data acquisition, device control, and monitoring.

The core of EPICS is the Channel Access protocol, which allows efficient and scalable communication
between servers (Input/Output Controllers, or IOCs) and clients (user interfaces, scripts, or other
applications). IOCs are responsible for interfacing with hardware devices and exposing their data as
Process Variables (PVs). Clients can read or write to these PVs through the Channel Access protocol,
which supports both synchronous and asynchronous communication.

EPICS has a modular architecture and supports various device types and communication interfaces
through its extensive library of device drivers and protocol modules. This flexibility allows users to
integrate a wide range of hardware devices and create custom control systems tailored to their
specific needs.

For more information on EPICS, you can refer to the following resources:

EPICS Website: https://epics-controls.org/
EPICS Wiki: https://epics.anl.gov/

These resources provide in-depth information about EPICS, its architecture, components, and
applications. They also include guidelines for getting started, tutorials, and examples to help users
effectively utilize EPICS in their projects.

EPICS Network Protocols and Ports
EPICS primarily uses TCP for sending and receiving PV updates as well as for the Channel Access
(CA) protocol. The CA protocol is used for managing communications between clients and servers, as
well as for sending/receiving PV data.

EPICS also uses UDP for network broadcast, which is used for discovering other devices on the
network that are running the CA protocol. UDP is also used for CA search, which allows clients to
locate and connect to available servers on the network.

Protocol Port Description

TCP 5064 Used for sending/receiving PV updates.

TCP 5065 Used for Channel Access (CA) protocol.

UDP 5064 Used for network broadcast.

UDP 5065 Used for network broadcast and CA search.

https://epics-controls.org/
https://epics.anl.gov/

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 33

Protocol Port Description

UDP 5066 Used for network broadcast and CA search.

UDP 5067 Used for CA search.

It is important to note that some of these ports may need to be opened on your firewall in order for
EPICS to function properly in a networked environment.

The timing diagram shows the sequence of
events that occurs during a typical exchange
between a client and server using the EPICS
network protocol.

The client initiates the exchange by sending a
Channel Access request to the server. The
server responds with a Channel Access
response, and the client then sends a series of
requests to create and connect to the channel,
get and put values, and create and clear
subscriptions.

Whenever a process variable's value changes,
the server sends a value change notification to
the client, which then processes the change.

Finally, the client sends a request to disconnect
from the channel, and the server responds with
a disconnect response.

3 Example EPICS Timing Diagram

Automatic Network Discovery
EPICS control systems leverage a powerful network-based discovery mechanism, which is designed
to identify and communicate with devices on the local network without the need for manual IP
address configuration. This auto-discovery process is facilitated by the Channel Access (CA)
protocol, which utilizes User Datagram Protocol (UDP) broadcasts to locate and establish
connections with available devices.

When a client attempts to connect to a Process Variable (PV) on an EPICS Input/Output Controller
(IOC) server, the client sends a UDP broadcast request containing the PV name. All IOCs on the
network receive the broadcast and compare the requested PV name with their internal PV lists. If an
IOC has the specified PV, it responds to the client with its IP address and the connection is

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 34

established using the Transmission Control Protocol (TCP). This exchange occurs automatically,
enabling efficient and seamless communication between the client and multiple devices within the
control system.

The EPICS discovery mechanism not only simplifies device connectivity, but it also enhances the
overall performance and reliability of the control system. By eliminating the need for manual IP
address specification, EPICS reduces the potential for human error and ensures that devices can be
easily added, removed, or replaced as needed. Furthermore, the broadcast nature of the discovery
process ensures that clients can locate devices even if their IP addresses change, providing a robust
and flexible control system environment.

Using EPICS Across Network Barriers
EPICS can be used across network barriers, such as firewalls or across different subnets, by
configuring EPICS to use gateway or proxy servers. These servers act as intermediaries, allowing
communication between EPICS clients and servers that are not directly connected.

One approach is to use the Channel Access Gateway (CAG) which enables secure communication
between EPICS clients and servers that are on different subnets or behind firewalls. The CAG allows
clients to connect to the gateway and the gateway will route the requests to the appropriate server.
This is done through TCP/IP communication over port 5064 for the CAG server and port 5065 for the
CAG client.

Another approach is to use the EPICS Channel Access over Secure Shell (CASSH) which uses SSH
port forwarding to create a secure tunnel between the client and the server. This allows clients to
access EPICS servers without needing to open ports on the firewall or set up a gateway. However,
CASSH requires that an SSH server be installed on the gateway machine and the clients must have
SSH client software installed.

Additionally, using the EPICS Gateway Application (GATE) allows communication between two EPICS
networks that are isolated by a firewall or across different subnets. The GATE software operates as a
proxy, allowing clients on one network to communicate with servers on the other network. This is
done through TCP/IP communication over port 2064 for the GATE server and port 2065 for the GATE
client.

Choosing EPICS for Your Control System
EPICS is a powerful and widely used control system framework that offers numerous benefits for
managing and controlling devices in various scientific and industrial applications. If your control
system already employs EPICS, it can be an excellent choice for managing and controlling your IGX
devices.

However, if your control system does not currently utilize EPICS, you may want to investigate
alternative communication methods before committing to EPICS. Some alternatives might be easier to
set up and require less library support, making them more suitable for specific use cases or smaller-
scale projects.

Ultimately, the choice of communication method should be based on your project requirements,
existing infrastructure, and the level of expertise within your team. EPICS offers a convenient way to
access field values on IGX devices without needing to develop custom drivers, but it is essential to
carefully evaluate the pros and cons of using EPICS compared to other communication options
available.

3.4.2 IGX EPICS Interface
An IGX device functions as an Input/Output Controller (IOC) server within the EPICS (Experimental
Physics and Industrial Control System) framework. As an IOC server, the IGX device enables seamless
integration with EPICS-based control systems without requiring custom drivers.

In the EPICS framework, an IOC is a device that hosts one or more Process Variables (PVs) and
handles the communication between the control system and the actual hardware. PVs represent the
properties of the controlled devices, such as sensor readings, control parameters, and system status.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 35

1.

2.

3.

•
•

•
•

By functioning as an IOC server, an IGX device exposes its PVs to the control system, allowing the
EPICS clients to monitor and control the device's parameters and functions.

The IGX device, when acting as an IOC server, handles the following tasks:

Exposing PVs: The IGX device automatically generates PV names corresponding to the field
paths of the device parameters. These PVs can be accessed by EPICS clients to read or write
data.
Communication: The IGX device communicates with the EPICS clients using the Channel
Access (CA) protocol, a high-performance communication protocol designed for use within the
EPICS framework. This allows for efficient data exchange between the device and the control
system.
Device management: As an IOC server, the IGX device takes care of handling the device-
specific operations, such as reading sensor data, controlling actuators, and managing internal
settings.

By functioning as an IOC server, the IGX device simplifies integration with EPICS-based control
systems, allowing users to focus on developing their applications without worrying about creating
custom drivers for their devices. This approach also provides the benefits of the EPICS ecosystem,
such as a robust and flexible architecture, a wide range of supported devices, and an active
community of developers and users.

Handling Multiple Devices
In cases where you have multiple IGX devices of the same type within your control system, it is
important to differentiate between them to ensure proper communication and control. To achieve
this, you can use a unique identifier, such as the IP address, serial number, or hostname, and
prepend it to the corresponding channel name. This allows you to target specific devices when
reading or writing PV values.

For example, all of the following PV names are acceptable and point to the same channel.

/device/sub_module/voltage/value
IP:/device/sub_module/voltage/value
SERIAL:/device/sub_module/voltage/value
HOSTNAME:/device/sub_module/voltage/value

An example set up with two of the same type of device may look like this:

Device 1 192.168.0.5:/device/sub_module/voltage/value
Device 2 192.168.0.6:/device/sub_module/voltage/value

Alternatively, using hostnames:

Device 1 MY-DEVICE-1:/device/sub_module/voltage/value
Device 2 MY-DEVICE-2:/device/sub_module/voltage/value

By using this approach, you can effectively manage multiple IGX devices within the EPICS control
system, ensuring accurate and reliable communication between the devices and your applications.
Utilizing the device serial number or hostname as an identifier can be particularly helpful in cases
where IP addresses might change due to network configurations or device reassignments. This allows
for a more stable and consistent identification method for your IGX devices within the control system.

EPICS Utility Programs

EPICS provides several command-line utilities for interacting with PVs, including caget , caput , and
camonitor .

The caget utility is used to read the current value of a PV. It accepts one or more PV names as
arguments and returns their current values. For example, to read the value of a PV named my_pv , you
can use the command caget my_pv .

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 36

The caput utility is used to write a new value to a PV. It accepts two arguments: the PV name and the
new value. For example, to set the value of a PV named my_pv to 5.0 , you can use the command
caput my_pv 5.0 .

The camonitor utility is used to continuously monitor a PV for changes and print them to the console.
It accepts one or more PV names as arguments and continuously updates their values on the console.
For example, to monitor a PV named my_pv , you can use the command camonitor my_pv .

These utilities are typically installed as part of the EPICS Base distribution. To install them, you need
to download and install the EPICS Base distribution for your platform. Once installed, the utilities
should be available on the command line.

Getting the Current Hostname

To get the current hostname of an IGX device, you can use the caget utility to read the
corresponding Process Variable (PV) value. The PV for the hostname is located at /net/hostname/
value. To read the current value, enter the following command in a terminal window:

caget /net/hostname/value

This command will output the current hostname of the device. For example:

192.168.1.100:/net/hostname/value MY-DEVICE

In this example, the current hostname of the device is "MY-DEVICE".

Setting a New Hostname
To set a new hostname for an IGX device, you can use the caput utility to write the new value to the
corresponding PV. The PV for the hostname is located at /net/hostname/value . To set a new value,
enter the following command in a terminal window:

caput /net/hostname/value NEW-HOSTNAME

Replace "NEW-HOSTNAME" with the desired new hostname for the device. After entering this
command, the new hostname value will be written to the device, and it will become accessible via the
new hostname.

Note that changing the hostname of an IGX device may require updating the IP address associated
with the device in your network configuration, depending on your network setup.

Monitoring Heartbeat

In the example below, we use the camonitor utility to continuously monitor the /heartbeat/value
Process Variable on an IGX device. The /heartbeat/value variable is a boolean type, and it alternates
between true and false at a frequency of 1 Hz.

The camonitor command continuously queries the value of the PV and prints the updated value to the
terminal as soon as it changes. This allows you to monitor the state of the variable in real-time and
react to changes as necessary.

To monitor the /heartbeat/value Process Variable, use the following command:

camonitor /heartbeat/value

This will print the updated value of the /heartbeat/value variable to the terminal as it changes, similar
to the following:

/heartbeat/value false

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 37

1.
2.

◦

•

•

•

•

•

•

•
•

/heartbeat/value true
/heartbeat/value false
/heartbeat/value true
/heartbeat/value false
/heartbeat/value true
/heartbeat/value false
/heartbeat/value true
/heartbeat/value false
/heartbeat/value true
/heartbeat/value false

3.4.3 Python Examples
This programming guide demonstrates how to access field values on an IGX device using EPICS in
Python. Before you begin, ensure you have the following prerequisites:

Python 3.x installed.
EPICS Base and the Python epics library (pyepics) installed.

To install pyepics , run pip install pyepics .

Python Library Overview

pyepics is a Python library that provides an easy-to-use interface to the Experimental Physics and
Industrial Control System (EPICS), a set of software tools for building distributed control systems.
pyepics allows Python developers to interact with process variables (PVs) and monitor them for
changes.

I/O Functions

The pv_get() function is used to read the current value of a PV, and the pv_put() function is used to
write a new value to a PV. The functions are just convenient wrappers for the channel functions, they
are helpful for writing simple scripts.

pv_get(pvname, as_string=False, as_numpy=False) : Get the current value of the specified PV.
Returns a string or a numpy array, depending on the value of as_string and as_numpy .
pv_put(pvname, value, wait=True) : Write the specified value to the PV. If wait is True (default),
wait for the write operation to complete before returning.

Channel Functions

Channels are used to represent PVs in the pyepics library. The following functions are used to create,
connect to, and manipulate channels:

create_channel(pvname, callback=None, connect=True) : Create a channel object representing the
specified PV. If connect is True (default), connect to the PV immediately. If callback is
provided, call the specified function when the connection is established.
connect_channel(chid, timeout=None) : Connect to the specified channel. If timeout is provided,
wait for the specified number of seconds for the connection to be established.
get(chid, as_string=False, as_numpy=False) : Get the current value of the specified channel.
Returns a string or a numpy array, depending on the value of as_string and as_numpy .
put(chid, value, wait=True) : Write the specified value to the channel. If wait is True (default),
wait for the write operation to complete before returning.
disconnect_channel(chid) : Disconnect from the specified channel.
destroy_channel(chid) : Destroy the specified channel object.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 38

•

•

•

•
•
•

Subscription Functions
Subscriptions are used to listen for changes to PVs. The following functions are used to create and
manage subscriptions:

create_subscription(chid, callback=None) : Create a subscription object for the specified
channel. If callback is provided, call the specified function when the value of the channel
changes.
clear_subscription(eventID) : Remove the specified subscription.

Other Functions
The following functions are used for miscellaneous tasks:

poll(evt=None, iot=None) : Wait for EPICS events and I/O to occur. If evt is specified, wait for
the specified number of seconds for an event to occur. If iot is specified, wait for the
specified number of seconds for I/O to occur.
ca.initialize_libca() : Initialize the Channel Access library.
ca.finalize_libca() : Finalize the Channel Access library.
ca.flush_io() : Flush pending I/O operations.

Getting a PV (IO) Value

Start by importing the epics library, which provides the necessary functions and classes for
interacting with EPICS PVs.

import epics

Create an EPICS Process Variable (PV) object using the field path of the value you wish to access on
the IGX device. In this example, we will access the heartbeat value located at /heartbeat/value .

pv = epics.PV("heartbeat/value")

Use the get() method of the PV object to retrieve the current value of the specified field.

value = pv.get()

The complete Python script for accessing field values on an IGX device using EPICS is shown below:

import epics

Create a PV object for the desired field path
pv = epics.PV("/heartbeat/value")

Retrieve the current value of the field
value = pv.get()

Print the retrieved value to the console
print(value)

This script demonstrates a straightforward way to read field values from an IGX device using EPICS in
Python. You can modify the field path in the epics.PV() constructor to access other values as
needed.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 39

Putting a PV (IO) Value

This Python script sets the hostname of an IGX device using the put function in EPICS.

import epics

Create a PV object for the desired field path
hostname_pv = epics.PV("/net/hostname/value")

Set a new hostname for the IGX device
new_hostname = "MY-DEVICE"
hostname_pv.put(new_hostname)

Retrieve the updated hostname value
updated_hostname = hostname_pv.get()

Print the updated hostname to the console
print("Updated hostname:", updated_hostname)

In this script, we start by importing the epics library. Next, we create a PV object for the desired field
path (/net/hostname/value) by calling the epics.PV() constructor. This field path corresponds to the
hostname of the IGX device.

We then set a new value for the hostname using the put function, passing in the desired new
hostname as a string (in this case, "MY-DEVICE"). After setting the hostname, we retrieve the updated
hostname value from the device using the get function and print the updated hostname to the
console.

This script demonstrates a simple way to set field values on an IGX device, specifically the hostname,
using the put function with EPICS in Python. You can modify the field path in the epics.PV()
constructor and the new_hostname variable to set other field values as needed.

Zeroing a T1 Probe
This example demonstrates how to zero a probe by setting the device offset to the current field
measurement using EPICS in Python. This is a common procedure before performing a relative
measurement.

import epics
import time

Create our PV objects
field = epics.PV("/t1/probe/average_field/value")
offset = epics.PV("/t1/probe/offset/value")

print("Zeroing field probe")

First, we get rid of any existing offset by setting it to zero and waiting
offset.put(0.0)

Wait for the new offset to propagate to the new data
time.sleep(0.5)

Get the current field.
Set the offset to the previously measured field, effectively zeroing it.
offset.put(field.get())

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 40

1.

2.

3.
4.

5.

6.

7.

8.

9.

Wait for the new offset to propagate to the new data
time.sleep(0.5)

Get the field again to confirm the zeroing worked.
print("Newly zeroed field", field.get(), "G")

The script consists of the following steps:

Import the required libraries, epics for communicating with the EPICS server and time for
introducing delays.
Create two PV objects: field for the average field value and offset for the probe's offset
value. Both PVs are constructed using their respective field paths.
Print the message "Zeroing field probe" to indicate the start of the zeroing process.
Set the current offset value to 0.0 using the put function, effectively clearing any existing
offset.
Wait for 0.5 seconds using time.sleep to allow the new offset value to propagate through the
system.
Get the current field value using the get function and set the offset value to the retrieved field
value. This step effectively zeros the probe by compensating for the current field value.
Wait for another 0.5 seconds using time.sleep to let the new offset value propagate through
the system.
Get the field value again using the get function to confirm that the zeroing process was
successful.
Print the newly zeroed field value.

In production code, it is advisable to create wrapper functions to encapsulate the EPICS
communication logic, which helps reduce code complexity and enhances readability.

Polling Heartbeat
One way to get continuous data is to periodically poll EPICS PVs. The following example shows how
to do this for the /heartbeat/value IO.

import epics

def on_value_change(pvname=None, value=None, **kw):
 print(pvname, value)

pv = epics.PV('/heartbeat/value')
subscription = pv.add_callback(on_value_change)

while True:
 epics.ca.poll()

The on_value_change function is defined to print the name and value of the PV whenever its value
changes.

The PV object is created with the epics.PV() constructor and its value changes are monitored with
pv.add_callback(on_value_change) .

The while loop calls the epics.ca.poll() function to check for new PV values and invoke the
on_value_change function when a change is detected. The poll() function checks for new events in
the channel access event queue and calls any associated callbacks. The loop runs indefinitely,
allowing the program to continuously monitor the PV.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 41

In this example, the /heartbeat/value field is changing between 1 and 0 at a rate of 1 Hz, so the
output alternates between these two values. The output of the program will look something like the
following:

/heartbeat/value 1
/heartbeat/value 0
/heartbeat/value 1
/heartbeat/value 0
/heartbeat/value 1
/heartbeat/value 0
/heartbeat/value 1
...

Subscribing to Heartbeat

In the pyepics subscription system, a channel is monitored for changes using a subscription. A
subscription is an object that listens for changes to a channel and calls a user-defined function (the
callback function) when a change occurs.

When you create a subscription object, you provide it with a channel object and a callback function.
The subscription object then monitors the channel for changes and calls the callback function
whenever a change occurs.

Subscriptions can be created and destroyed dynamically, which makes them very flexible. You can
create as many subscriptions as you need, and you can customize the behavior of each subscription
by providing a different callback function.

This example uses the EPICS channel access (CA) library to connect to the PV /heartbeat/value and
monitor changes to its value.

import epics # Import the epics module
import signal # Import the signal module
import sys # Import the sys module

Define a function to be called when a connection is made
def onConnect(pvname=None, **kw):
 print('on Connect %s %s' % (pvname, repr(kw)))

Define a function to be called when a value changes
def onChanges(chid=None, value=None, **kw):
 print('on Change chid=%i value=%s' % (int(chid), repr(value)))

Define a signal handler to exit the program gracefully
def signal_handler(signal, frame):
 print("Exiting program...")
 sys.exit(0)

Create a channel to monitor the heartbeat value
chid = epics.ca.create_channel('/heartbeat/value', callback=onConnect)

Connect to the channel
epics.ca.connect_channel(chid)

Create a subscription to receive notifications of changes to the channel

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 42

eventID = epics.ca.create_subscription(chid, callback=onChanges)

Set up the signal handler to exit the program gracefully on Ctrl+C
signal.signal(signal.SIGINT, signal_handler)

Poll for events and I/O every 0.025 seconds and 5 seconds, respectively
while True:
 epics.poll(evt=0.025, iot=5.0)

The onConnect() function is called when a connection is established to the channel. It prints a
message indicating that a connection has been made and the details of the connection.

The onChanges() function is called whenever the value of the channel changes. It prints a message
indicating the new value and the details of the change.

The signal_handler() function is used to exit the program gracefully when the user presses Ctrl+C
on the keyboard.

The create_channel() function creates a new channel object that represents the PV. The
connect_channel() function connects to the PV and starts monitoring it for changes.

The create_subscription() function creates a subscription object that listens for changes to the PV.
When a change occurs, the onChanges() function is called.

The poll() function is used to wait for events and I/O to occur. It waits for a short period of time
(0.025 seconds) and then checks for new events or I/O. If there are any, it handles them. This loop
runs indefinitely until the program is terminated.'

The program output should look something like this:

on Connect /heartbeat/value {'chid': 2015005851712, 'conn': True}
on Change chid=2015005851712 value=1
on Change chid=2015005851712 value=0
on Change chid=2015005851712 value=1
on Change chid=2015005851712 value=0
on Change chid=2015005851712 value=1
on Change chid=2015005851712 value=0
Exiting program...

3.4.4 Conclusion
EPICS is an open-source control system used for scientific instruments that allows efficient
communication between hardware devices and software applications. Its core is the Channel Access
protocol, which allows communication between servers (Input/Output Controllers, or IOCs) and
clients. EPICS leverages a network-based discovery mechanism that identifies and communicates
with devices on the local network without manual IP address configuration. The IGX device acts as an
Input/Output Controller (IOC) server within the EPICS framework, enabling seamless integration
without requiring custom drivers. By utilizing EPICS, users can monitor and control their devices'
parameters and functions easily.

3.5 IGX SFTP Protocol Guide

3.5.1 Use SFTP for IGX IO Data
Secure File Transfer Protocol (SFTP) is a widely used protocol for securely transferring files over a
network. Integrating SFTP with IGX systems allows users to efficiently transfer IO data while ensuring
data confidentiality and integrity during transmission. This document outlines the process of using
SFTP for IO file transfer in IGX environments.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 43

Accessing IGX IO Data via SFTP
By configuring an SFTP server on the IGX system, users can securely access and transfer IO data. To
facilitate this, IGX should expose its IO data as files within a designated directory (e.g., /io). Clients
can then connect to the SFTP server using an SFTP client, browse the /io directory, and transfer
files as needed.

To ensure consistency and ease of access, the IO files within the /io directory should adhere to a
standardized naming convention and path structure. This convention should be uniform across
various communication protocols, making it easier for users to locate and access specific IO data.

For example, if the heartbeat value field JSON file is located at /io/heartbeat/value.json in other
communication protocols, the same path should be used when accessing the file via SFTP.

Python Example
To connect to an IGX SFTP server programmatically, you can use an SFTP library in your preferred
programming language. In this example, we will use Python and the Paramiko library, which is a
widely used library for SSH and SFTP connections.

First, make sure you have the Paramiko library installed. You can install it using pip:

pip install paramiko

Now, you can use the following code snippet to connect to the IGX SFTP server using the default port
number (22), username (root), and password (root):

import paramiko

Define SFTP server connection details
hostname = 'your_igx_server_ip_or_hostname'
port = 22 # Default SFTP port
username = 'root'
password = 'root'

Create an instance of the SSH client
ssh_client = paramiko.SSHClient()

Automatically add the server's public key (this should be done with caution in
production)
ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

Connect to the SFTP server
ssh_client.connect(hostname, port, username, password)

Open an SFTP session
sftp = ssh_client.open_sftp()

Interact with the server's file system (e.g., list files in the /io directory)
files = sftp.listdir('/io')
print("Files in /io directory:", files)

Close the SFTP session and SSH connection
sftp.close()
ssh_client.close()

Replace 'your_igx_server_ip_or_hostname' with the actual IP address or hostname of your IGX server.
This code snippet demonstrates connecting to the IGX SFTP server, listing the files in the /io

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 44

1.

directory, and closing the connection. You can extend the script to perform additional tasks, such as
uploading or downloading files, based on your requirements.

Please note that using the username 'root' and password 'root' in a production environment is not
recommended due to security concerns. In a real-world scenario, you should use a secure
authentication method, such as key-based authentication, and follow the principle of least privilege
by using a dedicated user account with restricted permissions.

3.6 IGX Qnet Protocol Guide

3.6.1 Qnet Overview
QNX Qnet is a distributed, transparent networking system designed for real-time applications.
Developed by QNX Software Systems, it is an integral part of the QNX Neutrino Real-Time Operating
System (RTOS). Qnet enables devices to discover each other, communicate, and share resources in a
highly efficient and predictable manner. This overview will provide insights into the technical aspects
of Qnet, including device discovery, network packet passing, and file exposure between nodes.

Network Protocol
The QNX Qnet system does not rely on standard network protocols or specific port numbers for its
device discovery process. Instead, it uses a custom lightweight protocol built on top of the
Transparent Interprocess Communication (TIPC) protocol, which is designed specifically for QNX
Neutrino RTOS environments.

The device discovery process in Qnet is based on link-local multicast mechanisms. QNX Neutrino
nodes send out node advertisements containing their hostname, IP address, and available services
when they join the network. These advertisements are multicast to a predefined multicast address
reserved for Qnet.

While Qnet does not use traditional port numbers as in the case of TCP/IP-based protocols, it does
employ "service ranges" to identify and communicate with different services on a node. Service
ranges in TIPC are similar to port numbers in other protocols, providing unique identifiers for various
services running on a node.

Device Discovery
Qnet utilizes a serverless approach to automatically discover devices on the network. This is
achieved by employing a link-local multicast mechanism that allows devices to identify themselves
and their available services without the need for a centralized server. When a QNX Neutrino node is
connected to a network, it broadcasts a "node advertisement" to the network, which includes
information about its hostname, IP address, and available services. Other devices on the network
receive this advertisement and update their internal routing tables accordingly. The node discovery
process is continuous, allowing devices to join and leave the network dynamically.

The Net Directory

The Qnet /net directory is an essential component of the QNX Neutrino RTOS Qnet protocol that
allows transparent distributed processing across multiple QNX nodes. The /net directory serves as a
virtual mount point for remote file systems and processes, enabling seamless access to resources on
other QNX systems in the network.

When a QNX system with Qnet enabled wants to access resources on a remote QNX node, it can use
the /net directory to browse and interact with the remote file system as if it were local. The /net
directory provides a unified namespace for all connected nodes, making it easy to navigate and
access resources across the entire network.

Here's a brief explanation of how the /net directory works:

Discovery: When Qnet-enabled QNX nodes start up, they broadcast their presence over the
network. Neighboring Qnet nodes receive these broadcasts and automatically establish

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 45

2.

3.

4.

connections with each other. This process creates a network of interconnected QNX nodes, all
of which are accessible through the /net directory.
Accessing Remote Resources: To access a resource on a remote QNX node, the local QNX
system needs to reference the resource using the /net directory. The path format is /net/
remote_node_name/resource_path . For example, to access the /tmp directory on a remote node
named node2 , the local system would use the path /net/node2/tmp .
Remote Process Execution: In addition to accessing remote file systems, the /net directory
also allows for transparent remote process execution. When a process is launched with a
pathname that begins with /net/remote_node_name , the process runs on the specified remote
node but appears to be local from the perspective of the initiating system. This feature is
useful for load balancing and distributed processing across multiple QNX nodes.
Resource Sharing: Qnet's /net directory makes it possible to share resources, such as file
systems, devices, and processes, among QNX nodes in a transparent and efficient manner.
This resource sharing capability simplifies the development of distributed applications and
enables more effective system management.

Network Packet Passing
Qnet's efficient network packet passing is achieved through a lightweight, connection-oriented
protocol called Transparent Interprocess Communication (TIPC). This protocol is designed to provide
low-latency, reliable communication between processes on the same or different nodes.

TIPC operates at the transport layer, using a combination of connection-oriented (stream) and
connectionless (datagram) services to transmit data. This allows Qnet to adapt to varying application
requirements, such as handling high-frequency real-time data or streaming large files.

In order to minimize overhead, Qnet leverages zero-copy techniques, which eliminate the need for
data copying between user space and kernel space. Instead, data is transferred directly from the
sender's buffer to the receiver's buffer, reducing the number of memory operations and,
consequently, the communication latency.

File Exposure between Nodes
Qnet's transparent networking enables seamless access to files and resources on different nodes as
if they were located on the local node. The QNX Neutrino RTOS provides a unified file system
namespace, which allows applications to access remote files using standard file system operations.

When an application attempts to access a file on a remote node, the local node's file system layer
sends a request to the remote node's Qnet server via TIPC. The remote node processes the request
and sends the required data back to the local node. This transparency allows developers to create
distributed applications without the need for specialized APIs or programming paradigms.

3.6.2 Integrating Qnet with IGX
IGX leverages Qnet's transparent networking capabilities to efficiently manage and expose its IO data
through a virtual file system. By creating special files under the /io directory, IGX allows clients
connected to the Qnet system to easily interact with IO data by reading and writing these files. The
dynamic nature of these files ensures that the contents are updated based on the IO values in real-
time. Moreover, these files are not stored on non-volatile memory systems like traditional files, but
instead exist solely for facilitating IO data access and manipulation.

Accessing IO Data through Qnet
Clients can access IGX IO data via the Qnet system by reading and writing to the special files located
under the /io directory. Since Qnet provides a unified file system namespace, these files can be
accessed as if they were present on the local system. This transparent access to IO data simplifies
the interaction with IGX and eliminates the need for any specialized APIs.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 46

•

File Path Conventions in IGX

IO files within the /io directory adhere to standardized path conventions, which are identical to
those used in other IGX network protocols, such as HTTP. This consistency in path naming simplifies
the process of locating and accessing specific IO data across various communication protocols.

For instance, to access the heartbeat value field JSON file, clients can refer to the following path: /
io/heartbeat/value.json . By following this path convention, clients can easily navigate the file
structure and access the desired IO data.

3.6.3 Python Qnet Example
This guide demonstrates how to create a Python script that runs on a QNX Qnet node and reads the
/io/heartbeat/value.json file on another Qnet node. To follow this guide, you should have Python
installed on your QNX system and have a basic understanding of the Qnet protocol.

Requirements

A Qnet-enabled QNX network with at least two connected nodes

Preparing the Environment

Ensure that the Qnet nodes are properly configured and that your local node can access the remote
node's file system through the /net directory. Verify this by browsing the remote node's file system
from the local node:

ls /net/remote_node_name

Replace remote_node_name with the hostname or IP address of the remote QNX node.

Creating the Python script

Create a new Python script named read_remote_io.py using your preferred text editor. Add the
following code to the script:

import json
import sys

def read_remote_heartbeat(remote_node_name):
 remote_file_path = f"/net/{remote_node_name}/io/heartbeat/value.json"

 try:
 with open(remote_file_path, 'r') as file:
 data = json.load(file)
 print(f"Heartbeat value on {remote_node_name}: {data['value']}")
 except FileNotFoundError:
 print(f"Error: File not found on remote node '{remote_node_name}'.")
 except Exception as e:
 print(f"Error: {e}")

if __name__ == "__main__":
 if len(sys.argv) < 2:
 print("Usage: python read_remote_io.py <remote_node_name>")
 else:
 remote_node_name = sys.argv[1]
 read_remote_heartbeat(remote_node_name)

This script defines a function read_remote_heartbeat that takes a remote node name as an argument,
constructs the file path to the /io/heartbeat/value.json file on the remote node, and reads its
contents. The script then prints the heartbeat value from the JSON data.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Network Protocols: 47

Running the Python script

Save the read_remote_io.py script and run it on the local QNX node:

python read_remote_io.py <remote_node_name>

Replace <remote_node_name> with the hostname or IP address of the remote QNX node. The script will
read the /io/heartbeat/value.json file on the remote node and print the heartbeat value.

In case of any errors, such as the file not being found or an issue with the JSON data, the script will
print an appropriate error message.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX File Format Specifications: 48

4 IGX File Format Specifications

4.1 IGX JSON IO Files

4.1.1 Introduction
All IGX data is stored in objects called "Fields", which are stored in objects called "Nodes". Nodes can
contain Fields and other Nodes. The top-level Node is a special Node called the "root", which is the
only Node without a parent.

Both Nodes and Fields use a string to represent their name, which identifies the Node or Field within
the parent Node. This entire structure is referred to as the "vertex tree" or "vtree" for short. The
structure of this tree mimics what you would find in a filesystem, and like a filesystem, you can refer
to each Node or Field by its "path", which is the concatenation of that vertex name and the names of
all of its ancestor Nodes. These paths are how IGX will uniquely identify any particular object in the
vtree.

Example JSON
The JSON is structured using objects to represent nodes and key/value pairs to represent fields. For
example:

{
 "field_a": "value a",
 "field_b": 1.234,
 "child_a": {
 "field_a": "value aa",
 "field_b": 432.1,
 "child_aa": {
 "field_c": false,
 "field_d": [1.234, 5.678]
 }
 },
 "child_b": {
 "field_e": [[1.234, 3.456], [5.532, 32.33]]
 }
}

The path of field_d within child_aa would be /child_a/child_aa/field_d .

Field Types
Fields in IGX are standardized but can be expanded as the project develops. Currently, there are a
handful of standard fields you can find in the JSON today.

Field Type Required Notes

name string Yes Name of the Node.

type string Yes Name of the C++ class used by this Node.

label string No Human-friendly name for the Node, used by GUIs.

detail string No Brief description of the Node.

hidden bool No True if this Node is too complicated for the average user.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX File Format Specifications: 49

Field Type Required Notes

color string No Name of a color to assign to this Node.

icon string No Name of an icon to use for this Node.

value any No The value for this Node, if it is an I/O type.

readonly bool No True if this Node's value should only be read and not
written.

units string No The unit of measure for the value field (e.g., "V", "A", "mA",
etc.).

format string No The formatting specifier of how to format the value number.

Index JSON Files

Every Node on the vertex tree has a corresponding index.json file under its path in the /io directory.
This file contains the JSON for this Node and all child Nodes. So, if you read the /io/index.json file,
you will be reading a file containing all the fields and nodes for the entire tree. If you read the /io/
child/child/index.json file, you will only get the fields and nodes for the /child/child node.

Field JSON Files

In addition to the index.json files, there are also JSON files for every individual field on the vertex
tree that contain only the value of that field. For example, if we had a /io/index.json file that looked
like this:

{
 "field_a": 1.234,
 "child_a": {
 "field_b": [true, true, false]
 }
}

The body of the /io/field_a.json file would be:

1.234

The body of the /io/child_a/field_b.json file would be:

[true, true, false]

These field files provide an easy way to grab only the data you care about, although if you plan on
querying many fields, it will almost always be best to grab an index.json file instead and parse out
what you need.

JSON Schema
This JSON schema represents the structure of IGX data, which consists of a hierarchical arrangement
of "Nodes" and "Fields". Nodes can contain other nodes or fields as key/value pairs. The schema
enforces that each node must have a "name" and a "type", and also allows for optional properties
such as "label", "detail", "hidden", "color", "icon", "value", "readonly", "units", and "format". The
schema ensures that the IGX data adheres to the defined structure and properties.

Document ID: 2439249921 IGX – IGX - Programmer Manual

37 https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.neutrino.sys_arch/topic/qnet.html
38 https://www.json.org/
39 https://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
40 https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
41 https://en.wikipedia.org/wiki/Secure_Shell
Version: v2 IGX File Format Specifications: 50

•
•
•
•

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "IGX Index Files",
 "description": "IGX schema for nodes index files",
 "type": "object",
 "patternProperties": {
 "^[a-zA-Z0-9_]+$": {
 "oneOf": [
 {
 "type": "object",
 "properties": {
 "name": { "type": "string" },
 "type": { "type": "string" },
 "label": { "type": "string" },
 "detail": { "type": "string" },
 "hidden": { "type": "boolean" },
 "color": { "type": "string" },
 "icon": { "type": "string" },
 "value": { "type": ["string", "number", "boolean", "array", "object"] },
 "readonly": { "type": "boolean" },
 "units": { "type": "string" },
 "format": { "type": "string" }
 },
 "required": ["name", "type"],
 "additionalProperties": false
 },
 { "$ref": "#" }
]
 }
 },
 "additionalProperties": false
}

Availability of Protocols

The index.json and field.json files are special text files that exist on the server's file system. As
such, they can be read and written exactly like any other normal file. You may use SFTP, HTTP, SSH,
or, if your target machine is running QNX, Qnet37. You can use libraries to directly connect using one
of these protocols or mount the server filesystem to your local machine and use standard file I/O to
interact with IGX.

See the IGX Network Protocols (see page 8) section for a full overview of all available protocols.

Support for new protocols can be added as needed, so if you don’t see a protocol you’d like to use,
let the Pyramid’s staff know.

Helpful Links
JSON Specification38

SFTP - Secure File Transfer Protocol39

HTTP - Hypertext Transfer Protocol40

SSH - Secure Shell41

https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.neutrino.sys_arch/topic/qnet.html
https://www.json.org/
https://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Secure_Shell
https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.neutrino.sys_arch/topic/qnet.html
https://www.json.org/
https://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Secure_Shell

Document ID: 2439249921 IGX – IGX - Programmer Manual

42 https://www.qnx.com/developers/docs/6.5.0_sp1/index.jsp?
topic=%2Fcom.qnx.doc.neutrino_prog%2Fqnet.html

43 https://en.wikipedia.org/wiki/XML
Version: v2 IGX File Format Specifications: 51

• Qnet - QNX Networking Protocol42

4.2 IGX XML Configuration Files

4.2.1 Overview
IGX uses an XML43 file to know how to configure itself on startup. The default name for this file is
system.xml . IGX XML is naturally minimalist, meaning that anything that comes by “default” does not
need to be defined in the XML. Only if your configuration breaks from the normal case, do you need
to modify the system.xml file.

This XML file is stored by default at /root/config/system.xml .

Structured Node Format

The format of the XML file follows standard XML formatting rules. The top level node must be root .

<root>
 <node name="example" />
</root>

The parent child relationship in the XML mimicked in the runtime IGX structure. So if you define a new
node underneath another node, IGX will make that node a child of the parent node.

<root>
 <node name="parent" >
 <node name="child" />
 </node>
</root>

Fields can be assigned through node attributes. Fields allow you to define properties for nodes and
tell the system and GUI how it should handle this addition.

<root>
 <node name="parent" detail="My custom node that contains a custom XML IO" >
 <analog_io name="my_xml_io" label="My XML IO" units="pA" value="0.1" />
 </node>
</root>

Possible Field Types (Attributes)
The following is all the possible field types you can define on a node. The most commonly used fields
are, name, label, value, readonly, units, and format.

Field Type Required Notes

name string Yes
Name of the node, must be unique among sibling nodes. Must
not be the same as any field name. For example name can not
equal “name” or “label”.

alias string No A unique identifier for the IO, used by EPICS server for PV
name.

label string No Human friendly name for the node, used by GUIs.

https://www.qnx.com/developers/docs/6.5.0_sp1/index.jsp?topic=%2Fcom.qnx.doc.neutrino_prog%2Fqnet.html
https://en.wikipedia.org/wiki/XML
https://www.qnx.com/developers/docs/6.5.0_sp1/index.jsp?topic=%2Fcom.qnx.doc.neutrino_prog%2Fqnet.html
https://en.wikipedia.org/wiki/XML

Document ID: 2439249921 IGX – IGX - Programmer Manual

44 https://blueprintjs.com/docs/#icons
45 https://github.com/d3/d3-format
Version: v2 IGX File Format Specifications: 52

Field Type Required Notes

detail string No Brief description of the node, used by the GUI and automated
report generation.

hidden bool No True if this node is too complicated for the average user and
should be hidden by the GUI.

color string No Name of a color to assign to this node. Possible values are
“red”, “blue”, “green”, “orange”, and “gray”.

icon string No Name of an icon to use for this node. See here44 for a list of all
possible icon values.

value any No The value for this node, if it is an I/O type.

readonly bool No
True if this node’s value field should only be read only. This
will effect the API permissions and also the GUI’s display
widget.

units string No
The unit of measure for the value field. (“V”, “A”, “mA”, etc.)
Used by the GUI and APIs to help clarify to the user what
numerical value means.

format string No
The formatting specifier of how to format the value number.
See here45 for the documentation for this format specifier
language.

store string No
Set to “hourmeter” to save a rapidly changing readonly IO.
Set to “config” to save and restore a seldom changed writable
IO.

Possible Node Types

Name Description

node Just a node by itself, no special behavior of functions. Useful for organizing
other nodes into groups in a logical way.

Possible IO Types

Name Description GUI Element

analog_io A double floating point IO, used for any
numerical type data you may need.

digital_io A boolean IO, used for any digital signals, flags,
check-boxes, or status LEDs.

https://blueprintjs.com/docs/#icons
https://github.com/d3/d3-format
https://blueprintjs.com/docs/#icons
https://github.com/d3/d3-format

Document ID: 2439249921 IGX – IGX - Programmer Manual

46 https://ptcusa.com/products/t1
Version: v2 IGX File Format Specifications: 53

Name Description GUI Element

string_io A string IO, for any length string. Useful for
configuration values, states, IDs, file names,

button_io
Like a digital_io except, the GUI element is now
a button that will set the digital to true when
the button is pressed.

A Simple Example
Lets say you have a new T146 and you’d like the T1 to keep track of a special calculated value. What
you want to do is add a new analog_io node to the T1 XML.

Your default T1 XML will look something like the following.

<root>
 <t1/>
 <epics_server/>
</root>

By default your t1 node is configured for the completely standard set up. What we need to do is add
out new node bellow it.

<root>
 <t1>
 <analog_io name="my_io" label="My IO" value="1.234" />
 </t1>
 <epics_server/>
</root>

As you can see, we simply “expand” the t1 node and place our new analog_io node inside.

https://ptcusa.com/products/t1
https://ptcusa.com/products/t1

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Standard IO Interfaces: 54

5 IGX Standard IO Interfaces

5.1 IGX Button IO Interface

5.1.1 Overview
In IGX every interface is expressed as IO, including commands. This allows programmers to use the
same interface for settings configurable parameters as initiating commands, as opposed to a more
traditional approach where configurations and remote procedure calls use different interfaces. IGX
calls these button IO, after the graphical widget that is displayed when viewing them in the web
browser.

Button IO is a specialized form of digital IO which allows for specific functions to be called on a low to
high transition. Some button IO will have a continuous effect for the duration that the high state is
held for, while others will simply trigger a single shot event on the edge. Either way, once the client is
done, the IO should be returned to the low state to re-arm the button for another trigger. However,
IGX will automatically transition the button back to the low state regardless of client input.

An example of triggering a button:

// Return the button to the low state, only applicable if another client is active.
button.set(false);

// Then set the button to the high state in order to trigger the event.
button.set(true);

// Return the button to the low state to get it ready for another command.
// Technically only required if it is a "hold" type button.
button.set(false);

Ideally, you would never have to set the button to the low state first, however it is good practice just
in case a nonconforming client left the button in the wrong state at the end of its code.

If two clients attempt to transition the button into the high state at the same time, only one event will
trigger. This is an intentional behavior of IGX and protects the system from race conditions. If you
wish to allow arbitrary triggering between many clients, use the WebSocket interface to subscribe to
the button state then write your code such that your client will wait for other clients to be finished
with the button before triggering it itself.

5.2 IGX High Voltage IO Interface

5.2.1 Overview
Many IGX systems utilize an integrated high voltage power supply module. In order to simplify
integration and promote reuse of code, Pyramid has created a standardized IO interface that is
compatible with multiple products.

High voltage modules are essential components in a variety of applications, including medical control
systems, where reliable operation and fault detection are critical. These modules may feature both
internal and external sense circuits, which provide an additional layer of redundancy to ensure proper
functioning and connection.

This guide will cover how to manipulate and monitor the IO interface in order to work with this
controller effectively through a programable interface. See IGX Network Protocols (see page 8) for more
information about the fundamentals of how to interface with IO themselves.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Standard IO Interfaces: 55

Interface IO
To use the high voltage module interface pragmatically, you can use the following IO. They can be
used in different and flexible combinations to suite your particular application.

Typically, the high voltage component will have a parent path like: /<device>/high_voltage/ .

Name Detail Type

state
Corresponds to the current state of the
module. Read-only String

permit/user_command
Turns on or off the power supply if the permit
is granted by the interlock states. Digital

command_voltage
Sets the command voltage for the power
supply output. Units are in volts. Analog

monitor_voltage_internal
The output voltage as measured by the internal
sense circuit directly on the output. Units are in
volts.

Read-only Analog

monitor_voltage_external
The detected voltage as measured by the
external sense circuit. Units are in volts. Read-only Analog

Module States

The state IO represents the state of the module using a short and pain-English string.

State Description

ready HV module is off, but ready to be enabled and all interlocks are satisfied.

enabled HV module is enabled, and all interlocks are satisfied.

warning HV module is enabled, and there is at least one interlock in warning.

fault HV module is off, at least one interlock is in fault and preventing re-enable.

Safety Interlocks
Software interlocking can be enabled on the module preventing the module from being turned on
under some circumstances. This is in order to prevent the module from damaging itself or other
external equipment. All interlocks can be disabled, programmatically or through the GUI interface.

Internal Voltage Sense Circuit
The internal sense circuit is an integral part of the high voltage module, monitoring the output voltage
generated by the power supply. This circuit ensures that the module is functioning correctly and
providing the expected output voltage.

The feedback of this circuit may be quite slow depending on the voltage divider and filters used.
Please see the corresponding product documentation for more information.

External Voltage Sense Circuit
In some high voltage modules, an external sense circuit is also available. This additional circuit is
designed to monitor the voltage at the external device connected to the module. By feeding the
voltage information back to the control system, it provides a means of verifying the proper
functioning and connection of the external device, as well as the integrity of cables and connections.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Standard IO Interfaces: 56

External sense circuits play a crucial role in medical control systems where the accurate delivery of
high voltage is essential. In such applications, a lack of high voltage or a disconnected cable could
lead to serious harm or even fatal consequences. For example, an ion chamber may use the high
voltage as a bias for an electrode, and an external sense circuit will ensure that the connection is
secure and operating as expected.

It is important to note that not all high voltage modules are equipped with external sense circuits. To
determine whether a specific module includes this feature, consult the product documentation or
contact the manufacturer. In cases where a high voltage module does not have an external sense
circuit, the monitor_voltage_external IO will still be available. However, this IO value will always read 0
volts, as there is no external voltage information being fed back to the control system.

5.2.2 Use Case Examples
This section provides use case examples and pseudo code to demonstrate how to interact with the IO
interface for setting and reading voltage values.

Setting and Enabling High Voltage Output
In this example, the pseudo code illustrates how to set the output voltage to 100V and enable the
power supply.

set("command_voltage", 100) # Set the output voltage to 100V
set("permit/user_command", True) # Enable the power supply

Reading Internal Voltage Values
After enabling the power supply, the pseudo code demonstrates how to read the internal voltage
value from the high voltage module.

readback = get("monitor_voltage_internal") # Read the internal voltage value
print(f"The internal voltage value is: {readback} V") # Display the internal voltage
value

Monitoring External Voltage Values (Optional)
If your high voltage module has an external sense circuit, you can monitor the external voltage value
as well. Note: If your high voltage module does not have an external sense circuit, the
monitor_voltage_external IO will always read 0 volts. Here's the pseudo code to read the external
voltage value:

external_readback = get("monitor_voltage_external") # Read the external voltage value
print(f"The external voltage value is: {external_readback} V") # Display the external
voltage value

5.3 IGX Dose Controller IO Interface

5.3.1 Overview
The Dose Controller component in IGX is capable of delivering a pre-defined aliquot of dose to a
given target. It does this by measuring some given sense input that proportionally represents the
dose rate or dose accumulation. It also carefully measures time elapsed, and remaining, in order to
accurately stop a delivery through a flexible output interface.

The IGX Dose Controller features are in closed Beta testing. This interface is subject to changes
and is unsuitable for clinical use at this time. Please contact Pyramid for further information.



Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Standard IO Interfaces: 57

The controller software is optionally capable of converting from dose units (MU, Gy, Gp, etc.) to
machine units (nC). This conversion is handled by a flexible and powerful mathematical expression
system called “expression models”.

This guide will cover how to manipulate and monitor the IO interface in order to work with this
controller effectively through a programable interface. See IGX Network Protocols (see page 8) for more
information about the fundamentals of how to interface with IO themselves.

Primary Control IO
To use the dose controller interface pragmatically, you can use the following IO. They can be used in
different and flexible combinations to suite your particular application.

Typically, the dose controller will have a parent path like: /<device>/dose_controller .

IO Path Description

.../state READONLY STRING Corresponds to the current state of the
controller.

.../start_button BUTTON Start the controller if allowed by interlocks. Does nothing
if interlocks are not granted.

.../pause_button BUTTON Pause the controller unconditionally. Does nothing if the
controller is not dosing.

.../stop_button
BUTTON Stops the controller unconditionally and permanently,

preventing resuming the current session without an explicit reset
command.

.../reset_button BUTTON Reset current dose delivery session if allowed. Does
nothing unless the controller is stopped or completed.

.../dose_prescription

NUMBER The prescription in dose units (MU or Gy) to convert into
charge prescription. When this IO is modified, the
charge_prescription is automatically updated based on the
dose_to_charge_expression conversion expression.

.../charge_prescription
NUMBER The prescription based on charge units (nC). This IO is

only writable when the dose_prescription is set to 0.

.../charge_accumulation READONLY NUMBER The accumulated charge during the
session.

.../time_elapsed READONLY NUMBER The total elapsed time in seconds over the
session since the first start command.

.../time_active READONLY NUMBER The time in seconds during the session that
the controller was started and not paused.

Controller States

The state IO represents the state of the controller using a short and pain-English string.

State Description

ready The controller is ready for accepting new prescription settings and can be started.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Standard IO Interfaces: 58

State Description

dosing
The controller is active and potentially applying dose to reach the target. The dose
may be disabled if the controller is gated by an external signal.

locked The controller is stopped and unable to start due to interlocks being in fault.

paused
The controller was paused after starting and is now waiting to be started again or
stopped permanently.

stopped
The controller was stopped and is waiting to be reset. The stop may have been
from a stopping interlock faulting or an external stop command.

completed
The controller has successfully completed a dose target and is now waiting for a
reset command.

Controller Command Buttons
There are 4 button IO used to command the state of the controller. All the buttons only

Button Description

start_button
Starts the controller if all the interlocks are ok, and the controller is in the
ready or paused state.

pause_button
Pauses the controller if it is currently in the dosing state. The session can be
resumed with another start_button command.

stop_button

Permanently stops the controller if it is in the dosing or paused states. After
the controller is stopped it cannot be resumed and must be reset to start a
new session. This is equivalent to “terminating” a treatment if used in a clinical
setting.

reset_button
If the controller is in the ready , stopped , or completed state this command will
reset all of the accumulated values in the controller and prepares the
controller for a new prescription if the interlocks permit it.

If at any time during a session you want to pause or stop the session, the pause_button or stop_button
can be used, and the controller will respond accordingly. The successful result of this command can
be confirmed by optionally monitoring the controller state.

Calibration and Configuration IO
These IO are rarely changed programmatically very often but may need to verify or modified by a
client.

IO Path Description

.../dose_to_charge_expression STRING Expression used to convert from dose (MU) to charge
(nC).

.../threshold_current
NUMBER The minimum amount of input current in nA required

to consider dosing to be detected. This will be the threshold
used by interlocks that are tolerant to dose drop out.

Q-Pulse Charge Monitor IO
These IO are related to the Q-Pulse charge monitor outputs and configurations.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Standard IO Interfaces: 59

IO Path Description

.../q_pulse_dose

NUMBER The amount of dose in MU per Q-Pulse. When this IO
is modified, the q_pulse_charge is automatically updated based
on the dose_to_charge_expression conversion expression.

.../q_pulse_charge
NUMBER The amount of charge in nC per Q-Pulse. This IO is

only writable when the q_pulse_dose is set to 0.

.../q_pulse_min_width
NUMBER The period of time in microseconds for the minimum

Q-Pulse width. Q-Pulses may be longer but will never be shorter
than the time period.

.../q_pulse_count
READONLY NUMBER The number of Q-Pulses that have

been outputted so far during the session. Resets to 0 after
reset.

Quadrant Detector IO
If a dose controller supports quadrant detectors (typical of any dose controller with 4 or more inputs)
the following IO can be used to monitor and control the quadrant detector related functions. Not all
dose controllers will support quadrant detectors, so be sure to verify the support either in the user
manual for the device or by checking the GUI for the corresponding IO.

IO Path Description

.../position_x READONLY NUMBER The measured position in mm along the X
axis.

.../position_y READONLY NUMBER The measured position in mm along the Y
axis.

.../distance_from_nominal READONLY NUMBER The distance in mm from the nominal
position.

.../beam_sigma NUMBER The expected beam size sigma in mm. Used to convert
into mm units assuming a gaussian shaped beam.

.../nominal_x NUMBER The nominal position in mm along the X axis.

.../nominal_y NUMBER The nominal position in mm along the Y axis.

5.3.2 Controller Interlock and Permits

Ready Permit
This permit must be granted before starting or resuming a session. This permitting being revoked will
not cause the controller to pause or stop, but it will prevent a resume or start. The intention of this
permit is to control workflow and gate on interlocks that may only be ok while the dose source is
off. .../ready_permit

Interlock Path Description

.../safety_test_pass_interlock STATE_INTERLOCK The safety test must pass
before starting or resuming a session.

Document ID: 2439249921 IGX – IGX - Programmer Manual

Version: v2 IGX Standard IO Interfaces: 60

1.
2.
3.

Stopping Permit

If this permit becomes revoked while running, the controller will automatically stop. .../
stopping_permit

Interlock Path Description

.../elapsed_time_limit_interlock RANGE_INTERLOCK The total elapsed time must
be less than the given limit.

.../depositing_current_range_interlock
RANGE_INTERLOCK The dose rate, while the

dose is enabled and detected, must be within a safe
range.

.../enabled_current_range_interlock RANGE_INTERLOCK The dose rate, while the
dose is enabled, must be within a safe range.

.../disabled_current_limit_interlock RANGE_INTERLOCK The dose rate, while the
dose is disabled, must be below the safe limit.

.../safety_depositing_agreement_interlock DIGITAL_MATCH_INTERLOCK The safety input
and depositing status must agree.

.../safety_state_interlock DIGITAL_INTERLOCK The safety input must be in
the safe state.

.../distance_from_nominal_interlock RANGE_INTERLOCK While the dose is enabled,
the beam position must be within the distance limit.

.../hv_state_interlock STATE_INTERLOCK The high voltage must be in
the safe state to deliver dose.

Pausing Permit

If this permit becomes revoked while running, the controller will automatically pause. .../
pausing_permit

Interlock Path Description

.../safety_state_interlock DIGITAL_INTERLOCK The safety input must be in the
safe state.

.../distance_from_nominal_interlock RANGE_INTERLOCK While the dose is enabled, the
beam position must be within the distance limit.

.../hv_state_interlock STATE_INTERLOCK The high voltage must be in the
safe state to deliver dose.

5.3.3 Simple Charge Prescription Example
Let's say you want to program a single delivery of 100nC of charge. You would:

Set reset_button to true to reset the controller if it was not reset already.
Set charge_prescription to 100 (nC).
Set start_button to true to start the session.

Document ID: 2439249921 IGX – IGX - Programmer Manual

47 https://en.wikipedia.org/wiki/Tz_database
Version: v2 IGX Standard IO Interfaces: 61

4.

5.
6.

Wait for the delivery to complete, you can optionally monitor the state or charge_accumulation
as an accumulated charge.
Record the results of the session, if desired.
Set reset_button to true to reset the controller.

5.4 IGX Admin IO Interface

5.4.1 Overview
The admin component of IGX manages generic system configuration settings. These settings are
standard across all IGX devices. These IO will allow you to monitor and configure things like operating
mode, versions, clock settings, and more.

IO Path Description

/admin/mode

STRING Sets the operating mode of the device. See the user
manual for more information regarding the implications of this
mode.
Options: “develop”, “product”, “medical”.

/admin/device_type READONLY STRING The name of the type of device. For
example, “T1”, “FX4”, “IX256”, “MX1”, and many others.

/admin/serial
READONLY STRING The Pyramid serial number for the

device as a string. Typically, a number from 0-99999 but may
include alphabetical characters in special circumstances.

/admin/version
READONLY STRING The IGX version name.

“YY.MM.DDHHmm” format. This format is more human friendly
but subject to change.

/admin/version_int
READONLY NUMBER The IGX version as an integer, useful

for using in hashing or version control systems, not subject to
change.

/admin/clock/system_time_int
READONLY NUMBER The system time in nanoseconds

since January 1st, 1970, requires at least 64-bit representation
to work.

/admin/clock/system_time_string READONLY STRING The system time as a string. Displayed
in a localized format that honors the configured time zone.

/admin/clock/system_time_zone
STRING The system time zone configuration string. This

string must be in the POSIX style time zone format. See: tz
database47. If left blank, it will default to GMT.

/admin/reset_button BUTTON Resets the IGX software without resetting the entire
operating system. This is considered a “soft” reset.

/admin/reboot_button BUTTON Reboots the entire microprocessor including the
operating system and IGX. This is considered a “hard” reset.

https://en.wikipedia.org/wiki/Tz_database
https://en.wikipedia.org/wiki/Tz_database

	Introduction
	Document Control
	Version History
	Approvals
	Signatures

	IGX Network Protocols
	Overview of IGX Protocols
	HTTP
	WebSocket
	EPICS
	SFTP
	Qnet

	IGX HTTP Protocol Guide
	IGX HTTP Server Introduction
	HTTP Quick Start
	The HTTP Protocol Basics
	HTTP Python Examples
	Postman for HTTP Testing
	PLC HTTP Programming

	IGX WebSocket Protocol Guide
	WebSocket Overview
	IGX JSON Message Protocol
	Suitable WebSocket Libraries
	Python T1 Example
	Conclusion

	IGX EPICS Protocol Guide
	EPICS Overview
	IGX EPICS Interface
	Python Examples
	Conclusion

	IGX SFTP Protocol Guide
	Use SFTP for IGX IO Data

	IGX Qnet Protocol Guide
	Qnet Overview
	Integrating Qnet with IGX
	Python Qnet Example

	IGX File Format Specifications
	IGX JSON IO Files
	Introduction

	IGX XML Configuration Files
	Overview

	IGX Standard IO Interfaces
	IGX Button IO Interface
	Overview

	IGX High Voltage IO Interface
	Overview
	Use Case Examples

	IGX Dose Controller IO Interface
	Overview
	Controller Interlock and Permits
	Simple Charge Prescription Example

	IGX Admin IO Interface
	Overview

