
Aurimas Adomavicius
President

Configuring a comprehensive
framework of metrics that
drive successful outcomes

GO BEYOND
VELOCITY WITH
ADVANCED
PRODUCT
METRICS

POWERED BY
METRICS.

Measure impact with metrics

Establish the framework

Product value metrics: Drive business outcomes

Quality metrics: Build sustainable software

01

02

03

04

Velocity metrics: Respond to market needs
05

06

Process metrics: Determine product and technical maturity

07

Build powerful products backed by metrics

Evaluating ROI and quantifying risk increase in
importance as organizations building custom
digital products shift toward a product-centric
mindset. Powered by data, metrics provide
critical insights into the efficacy of products.
The ultimate success metric of a product
is adoption.

A product transformation, while impactful
(e.g., an application transforms a company’s
operations), could take years—just long
enough for the business to question the
initiative. The journey requires time, quality
execution, significant investment, and a
well-defined path to correct course.
Organizational structures, funding models,
job descriptions, and expectations need to
remain nimble to enable long-term shifts at
the company.

Many technology leaders rely on classic
project management techniques to track the
success of individual initiatives and large-scale
programs. A project is considered successful
as long as it is delivered on budget, ships to
production by the established due date, and
includes the desired scope (aka functionality).
These methods of measurement and
accountability, however, severely underdeliver
in context of a transforming organization.

MEASURE
IMPACT

01

DEFECTIVE
METRICS

Good metrics are equally relevant to
small-scale individual products and $100
million portfolios. Both require focusing on
outcomes versus activity. Bad metrics introduce
counterproductive behaviors that:

Promote activity over progress.
Engineering managers track the productivity
of an individual based on the number of
lines of code written within a given time. This
metric incentivizes bad behavior, prioritizing
a complex over-engineered approach over
simple, elegant design.

Elevate features over outcomes.
When project managers track the completion
of original scope, the individual contributor
prioritizes functionality over findings from
the end user. This leads to products that are
overengineered based on biased assumptions,
instead of market data collected from
real customers.

Lack trending.
Classic project metrics focus on a snapshot in
time (e.g., 65 percent budget spent, 45 percent
of scope complete) over a holistic view. These
indicators provide a limited view of success (or
failure), lack historic context, don’t consider
whether performance gets better or worse, and
fail to inform the executive team of what
lies ahead.

Are too granular for process change.
Organizations shifting into a product-centric
mindset need to quantify and track the benefits
of switching away from classic methodologies.
Quantifying improvement of time to market
as well as business value justifies the
necessary investment.

Punish instead of teach.
Deviation of the scope, slipped timelines,
or increased project budget do not provide
information on the root cause of the team
challenges. These same metrics, however,
are mostly used to punish and blame parties
that fail to deliver over time, creating an
environment of silos and defensive behavior.

No matter the role, all team members rely
upon metrics to evaluate successful outcomes.
Product managers with agile teams need
a level of granularity in their metrics to
incentivize self-awareness and promote
effective behaviors. The development team
(e.g., designers and engineers) need to test
and evaluate the elements they’re building.
Product leaders driving the vision on a
particular program need effective data to
justify the investment to communicate success
throughout the product journey, evaluate the
effectiveness of the product team, and course
correct the product roadmap to hit desired
outcomes. Sponsors managing a portfolio of
transformative efforts require a dashboard-like
experience to aggregate product metrics into
actionable cues in order to warrant continued
spending, terminate a program, invest in new
opportunities, or adjust the execution strategy.

This white paper covers the challenges of
traditional project metrics and recommends
tactics for self-governing product teams to use
in order to build healthy products. I’ll go over
in-depth Devbridge’s proven best practices
for gauging product effectiveness, quality,
team velocity, process maturity, and portfolio
health. Being armed with a comprehensive
framework of metrics empowers teams and
enterprises to deliver results.

Selecting the right metrics, working toward the desired outcomes, drives adoption. A metrics
framework fosters bidirectional communication for setting goals, attacking blockers, and
communicating success. When designing the framework, consider the context and objectives of
three distinct audiences:

	 the working agile team (engineers and designers)

	 the product manager (the person handling a single work stream)

	 the portfolio owner (the CIO or CPO)

Classic project management techniques teach the project management triangle. Its rigid structure
implies that scope, cost, and time are interdependent. In this model, increasing scope for a project
increases either cost or time, or both. Strategically, this approach fails to consider the effectiveness
of the product (Is the right thing being built?), the quality of the product, and the time to market.
Blindly following the budget, time, scope paradigm, and so on compromises the results.

1

2

3

A metrics framework facilitates bidirectional communication.
Avoid pointing fingers. Focus on enabling teams to succeed.

 THE FRAMEWORK
02

Sc
op

e Cost

Time Customer value

Organizational
effectiveness

Q
ua

lit
y

Velocity

Product

Features

As an alternative, try a square construct to monitor the product’s quality, customer value, velocity,
and organizational effectiveness.

Customer value establishes what’s important for users to inform and guide the
product build. Customers can be external or internal. Use the build-measure-learn loop to keep
the team aligned to outcomes.

Quality measures escaped defects, performance KPIs, and the level of debt accrued.
Intentionally sacrifice go-to-market speed (e.g., intentional debt) or industrialize for a mass rollout
and mission-critical applications, which in turn lowers overall velocity.

Velocity determines the product go-to-market and feature release speed. This facet
helps the team and product leaders project and plan throughput in a given time period.

Organizational effectiveness tracks the health of delivery and people processes (e.g.,
retention, communication, and engagement). As a result, the enterprise achieves more
through better processes, higher engagement from the team, less churn, and the like.

CATEGORY

Use the factors outlining the product square as boundaries. A product team needs to decide which
of the four variables to invest in, which to sacrifice, and which to appropriate depending on the
maturity of the product.

METRIC USE PRIORITY

C
U

ST
O

M
ER

 V
A

LU
E

Business
outcome

Sets specific, measurable, achievable
goals (e.g., loan approval reduces
from two business weeks to one).

High

NPS
Considers customer advocacy
to understand what’s valuable
for promoters.

Low

Customer
health score

Tracks renewal, churn, depth
of usage, growth of an
account, etc.

Medium

Product debt
Logs, prioritizes, and
estimates the backlog
product debt.

Medium

Revenue
channels

Evaluates the ability of the
product to transact revenue
through a channel.

Medium

Q
U

A
LI

TY

Escaped
defects

Helps the team understand the
quality of the development output
and testing strategy.

High

Test coverage
automation
maturity

Determines the approach to test
coverage, tools, methods, and
acceptable coverage ratios.

Medium

Technical
debt

Monitors the various types of
technical debt accumulated
over time.

Medium

Application
performance

Calculates page load times,
concurrency limitations, job run
times, etc.

Medium

Downtime
and volatility

Indicates the overall stability of the
platform and volatility to help the
team reflect on improvements made
through infrastructure updates and
the testing strategy.

High

CATEGORY METRIC USE PRIORITY

Sprint
velocity

Demonstrates the quantity of
software a team ships within
a sprint.

Medium

Velocity
trending

Shows process improvement or
degradation of team velocity
(e.g., automation, DevOps,
technical debt).

High

Feature to
production time
(backlog aging)

Assesses how quickly a feature
can be productized and released
to market.

Low

Estimate
accuracy

Rates how confident and realistic
the team is when estimating
backlog stories. High estimate
volatility requires root cause
analysis to help the team improve.

Low

Maturity
score

Notes product best practices as
well as technical maturity of the
delivery framework.

Medium

DevSecOps
metrics

Monitors uptime, security,
infrastructure stability, environment
build times, and others.

Medium

Team health
Evaluates the team’s
burnout, sentiment, and
ability to succeed.

Medium

V
EL

O
C

IT
Y

O
P

ER
A

TI
O

N
A

L
EF

FE
C

TI
V

EN
ES

S

FOUR
TYPES OF
METRICS
GET
RESULTS.

Establish guiding principles for the application
in the product vision document (also known
as the product charter) and then reference
them throughout the software’s lifecycle.
For example, a car loan application product
enables customers to self-service with features
like remote contract signing and comparison of
interest rates. The process saves the customer
and business ops team time. Leverage an
iterative build-measure-learn approach to
evaluate success after each release and
reincorporate learnings from recent releases
back into the product.

PRODUCT
VALUE
METRICS:

Avoid relying on a deep reporting hierarchy
that wastes time and money. Instead, use
value metrics for the team to self-inform and
understand priorities. Measure the impact of a
particular feature on a customer, while staying
nimble enough to pivot when not achieving
optimal results. Localizing decision-making
empowers the team to:

	 take full ownership of the product’s 	
	 successes or failures;

	 make decisions faster to reach of 		
	 desired outcome; and

	 eliminate overhead (e.g., churn
	 between the business sponsors and 	
	 technology delivery teams).

Identify the metrics necessary to launch the
product and align the team after the product
hits the market. Upon achieving the initial
outcomes, evaluate the following:

	 how to quantify marginal 			
	 improvement;

	 how to monitor customer health;

	 what financial metrics to include for 	
	 ongoing investment;

	 how much product debt exists; and

	 what denotes value for accelerating 	
	 delivery and reducing debt.

The build-measure-learn
loop is the governing
technique to assure that
product teams focus on
what drives successful
outcomes.

03

DEFINING REALISTIC OUTCOMES

Establish specific, measurable, and achievable outcomes.

	 Capture 50 percent of total market share. This likely won’t happen because the expectation
	 is too high and broad.

	 Automate approvals for 30 percent of all incoming loan applications. A proven best practice 		
	 is to start by setting and measuring small goals as a point to validate the product.

Set three to five outcomes to start. The team needs to easily recall the target outcomes and
recalibrate based on the metrics established in the product charter. When the time comes
to release the product, adjust and evolve the desired outcomes.

ENABLING CUSTOMER SUCCESS

Balance the interests of business with customer expectations. Include metrics to evaluate how and
if the desired business outcomes affect (positively or negatively) the customer experience. Select
metrics in line with the type of product that measure customer detractors and promoters.

	

	 A lackluster experience and poorly performing internal company product inevitably causes 		
	 frustration, damaging engagement and productivity.

	 Ease of onboarding increases adoption (e.g., autofilling forms, natural language forms).

Increased number of
licenses or engagement=Customer

success

Detractors Passives Promoters

0 1 2 3 4 5 6 7 9 108

Not all at likely to recommend Likely to recommend

Product debt is the accumulation of product
decisions that have a negative impact on the
customer and business. Building successful
custom software always leads to:

	 a large backlog of desired features by 	
	 business and customers;

	 competing priorities, limited time, 		
	 limited funding; and

	 and a struggle between 			
	 the core product roadmap and 		
	 customizations for each client.

Keep a prioritized backlog of product debt
from the release of the first version. Flag
product debt stories initially compromised
for one reason or another (e.g., speed, cost)
for improvement. Once the product hits
the market, review the immediate product
roadmap, the technical debt backlog, and the
product debt backlog captured during the
planning session. Identified, estimated work
is easier to manage, plan, and
complete successfully.

Use metrics that evaluate the customer experience.

METRIC MEASUREMENT

Net
promoter
score (NPS)

Notes the likelihood of customers recommending the product, predicting
customer loyalty, and lifetime customer value.

Customer
satisfaction
score (CSAT)

Evaluates customer sentiment, which helps the business focus on
implementing highly desirable features or pinpointing pressing issues
to remedy.

Churn
Tracks the percentage of customers quitting the product in a given
period of time, measuring retention or the lack thereof.

Expansion
revenue

Calculates the percentage of new revenue coming from existing customers,
measuring customer growth within the product.

MANAGING PRODUCT DEBT

	 A bank leaves a mainframe system alone, paying licensing fees to run an old version that 		
	 lacks modern security functionality or leaves system in a fragile state (i.e., customer data in a 		
	 vulnerable state).

	 A bank maintains system software with the latest patches (e.g., security, functionality) 			
	 keeping the software current (i.e., customer information is kept safe, system is easier 			
	 to maintain).

Backlog Technical debtProduct debt

QUALITY
METRICS:

Quality metrics track the shifting technical
health of an application. The team needs to
monitor escaped defects, automated test
coverage, test run times, accumulation of
technical debt, performance, and downtime.
All products and custom applications require
constant attention.

	 New features are released.

	 Technologies mature or deprecate.

	 Team members come and go.

	 The market shifts over time.

Software needs to adapt to changes within
the business, market, and customer base.
Scrapping the codebase and starting from
scratch burns capital and time. To keep
product evergreen, craft clear metrics.
Modular design enables teams to maintain,
refactor, and improve products incrementally.

On the surface, business value metrics and
quality metrics appear unrelated. However,
failing to maintain a proper testing strategy or
tolerating a volatile production environment
in the long-term impedes business outcomes
and customer success. It is thus important
to establish a system of metrics instead of
looking at each in isolation when
prioritizing investment.

ESCAPE DEFECT
REPORTS
Each user story goes through several
development and testing stages before
meeting the Definition of Done and
being released into production. While
techniques vary between Scrum, extreme
programming, and test-driven development,
our recommended best practice is for each
engineer to own both implementation and
rudimentary testing of a story. In other
words, the feature needs to work before a
story is handed over to testing engineers.
Testing engineers provide an additional
layer of strategy with multiple tools and
methodologies at their disposal (e.g.,
end-to-end tests, unit tests, integration tests,
interface tests, and manual tests).

Systemic observation
and correction of quality
metrics prevent software
from becoming a legacy
application. Treat all
products as evergreen.

04

To flag potential issues needing repair, track two types of defects:

	 those caught by testing engineers within the sprint.

	 those reported in the production environment that escape initial detection.

Testing engineers document both types of defects with a project management tool like Jira or Azure
Devops—allowing the team to report aggregate numbers over time. Detect and resolve defects in
context of continuous improvement.

MEASURE VALUE

Monitor escaped defects across various
teams and look for outliers for teams with an
extremely low or high number of defects.

Evaluating the testing strategy and domain
complexity in both scenarios empowers the
team to make educated adjustments to the
overall testing strategy.

Understanding the root cause helps
the team revise the testing strategy and
prevent future defects.

Looking at the ratio of engineers to testers
ensures the team operates efficiently.

A team operating with an equal number of
engineers and testers may present issues with
the testing strategy or the team’s competence.

These numbers communicate the ROI of a
sound strategy that requires investment.

Review the root cause of each escaped
defect in terms of the overarching narrative
unearthed in the defect reports.

Investigate internal defects within the team
stemming from a lack of domain knowledge,
onboarding, or skill set—causing significant
loss of efficiency.

The recommended ratio of engineers to testers
is around 3:1 or 2:1.

Keep a record of defect metrics before and
after a test automation strategy.

0

4

7

11

14

November December January February March April May June

34
Resolved

23
Reported

N
um

be
r o

f i
ss

ue
s

AUTOMATION
MATURITY &
TEST COVERAGE
REPORTS

A testing strategy encompasses functional
and nonfunctional validation of the product
(e.g., manual and automated performance,
accessibility, user interface tests). Test
coverage monitors the percentage of
functionality covered by unit tests or
end-to-end tests. Successful testing
strategies lower the lifetime QA costs.
The number of defects goes drastically down.
Technical debt decreases. Delivery maintains
a higher velocity.

A counterproductive industry expectation is
for every product to have a large percentage
of testing automation (e.g., 80 percent
of functionality covered by tests). These
standards become inefficient when the
feature set being evaluated is low value or
non-mission-critical. The spend becomes a
financial burden, difficult for the business
to justify.

The following are best practices to review
when establishing metrics for automation
maturity and test coverage:

Agree on automation depth. While
automation is preferred, it is often an
underinvested area of a testing strategy,
especially when time to market is the focus.
When it is critical to minimize the number
of defects, however, full automation takes
precedence over budgetary or
schedule restrictions.

Embed elements in the toolkit. Include
static and dynamic code analysis, test case
management with TestRail™ or other tools, and
integration to security monitoring tools.

Establish healthy documentation
standards. Choose living documentation over
static artifacts for historical testing evidence.
Opt for a self-explanatory behavior-driven
development (BDD) test to drive the acceptance
of stories.

Collaborate with business analysis
teams. Ensure test engineers work together
with product managers and business
stakeholders to expand the story acceptance
criteria, as well as define developer checklists to
verify when writing code for a story.

Integrate testing into the build pipeline.
Include automated tests that run each time a
code check occurs into the source repository
and reject deployment when detecting defects.

Automate all tracked metrics in Jira or a project
management tool. Consider tracking the defect
resolution time from discovery through release
and defect resolution cost. Compare these
metrics over time to determine if the testing
strategy continuously improves the team’s
output and efficiency.

TECHNICAL DEBT REPORT

Technical debt is a software engineering term that describes the accumulation of undesirable
decisions in the codebase. When writing code, the team settles for a quick fix over a better approach
that takes longer to execute. While the compromise appears sensible, undesirable decisions in
the codebase add up and require rework (aka technical debt). These decisions, intentional or
unintentional, result in code that’s hard to maintain, inhibits the product longevity,
and lowers team velocity.

Teams always work within constraints of time, quality, and cost. Consequently, they incur debt to
ship product to market faster. Accumulating some debt, especially when prioritizing market launch
speed, is acceptable. However, too much debt has the power to cripple a team and product with
performance issues or poorly designed architecture that deteriorates maintainability of software.
To account for this reality, track the debt so that it’s easily addressed in a future sprints of hardening.

Co
st

 o
f c

ha
ng

e

Time and progress

Actual cost of change

Optimal cost of change

Ability to respond to
market and user needs

Technical
debt

Point of no return
(maximum churn, zero
new features)

0

20

40

60

80

1 2 3 4

Effort to remove Impact on velocity

1 2

LACK OF EXPERIENCE
UNPROFESSIONAL & ACCIDENTAL

Stems from decisions that require
rework after completing code review.

THE FIX: Use this type of debt as
a vehicle for inexperienced team
members to improve and learn.

3 4

GOOD DEBT
INTENTIONAL & PROFESSIONAL

Occurs when the team selects an
easier, faster solution intentionally, fully
aware of the long-term impediments.

THE FIX: Have a senior team
member evaluate the pros and cons
to determine whether the benefits of
delivering outweigh the compromises.

BAD DEBT
UNPROFESSIONAL & INTENTIONAL

Arises when writing bad code is
created intentionally due to laziness,
ignorance, or other unethical reasons.

THE FIX: Tackle technical debt and
hold the team accountable for
following best practices.

MISTAKE DEBT
ACCIDENTAL & PROFESSIONAL

Happens when a mature team with
technical skills makes a bad decision with
too little context or time constraints.

THE FIX: Allocate time to pinpoint
and resolve mistake incurred by design
decisions or changing requirements.

Bad debt:
intentionally making a
compromise without

weighing impact

Lack of experience:
debt incurred without

fully understanding domain

Mistakes happen:
New problem, skill gap,

forced by constraints

Good debt:
intentionally designed

with awareness of impact

UNPROFESSIONAL PROFESSIONAL

INTENTIONAL

ACCIDENTAL

Similar to product debt, the main objective
for a technical debt metric is to capture all
known issues, estimate remediation, and
continuously prioritize a certain amount of
time for resolution. Create a technical debt
burndown chart to track the remaining work
against time. Beware if the backlog growth
outpaces resolution velocity.

APPLICATION
PERFORMANCE
REPORT
A performance strategy correctly sets initial
targets while also providing the testing
framework to monitor and ensure ongoing
compliance. Poor performance like a long
load time detracts from a positive customer
experience. Worse yet, performance issues
frustrate users to the point where they leave
and never come back.

To track efficacy, run tests and reports on
the server-side and client-side to see how
the application functions. Once in flight,
analyze the performance requirements of new
features proactively (e.g., data design). Then
respond to the results from testing activities.

FOR USER-CENTRIC
METRICS

Google’s RAIL performance model is a solid
starting point:

	 Response: User input response 		
	 occurs in 100 milliseconds or faster

	 Animation: Display transitions and	
	 animations smoothly—60 frames
	 per second

	 Idle: Loading as little data as 		
	 possible first and then using idle time 	
	 to load the rest

	 Load: Content appears in 5 			
	 seconds or faster

Try PerformanceObserver for client-side
performance testing to track the first
contentful paint (FCP), first meaningful paint
(FMP), time to interactive (TTI), and more. For
custom metrics such as single component
initialization, render, or patch times, consider
using a User Timing API. To monitor client-
side performance, implement client app
integration with a monitoring service (e.g.,
Kibana, Splunk, New Relic) and push
client-side performance metrics to the
monitoring service for continuous tracking.

FOR SERVER-SIDE METRICS

Track resource/endpoint response time
characteristics such as median, average,
error rate, and percentiles. Ensure that high
percentages (95 percent or 99 percent) fall
below five seconds under a high, but
typical load.

JMeter is the gold standard when performance testing. Use monitoring services such as Kibana,
Splunk, New Relic, or InfluxDB. The same instance of server-side monitoring services track
client-side metrics as well.

FORECASTING PERFORMANCE NEEDS

Establish base target numbers to forecast future processes for a targeted implementation including
the following:

	 The load hitting a feature. Use existing data to determine patterns and necessary 		
	 volume. For current products, refer to the latest monitoring to forecast the typical traffic on 	
	 a specific feature. For new products, make educated guesses about concurrent users and 	
	 feature usage frequency. Then make corrections once the MVP reaches the market.

	 The data variations/distribution. Recognizing that many performance issues are
	 data-driven, examine the application in light of datasets that may be used at high volume or 	
	 concurrency. Include data research as part of exploratory testing. In the majority of cases, 	
	 data exists and is accessible before implementation because most performance issues 	
	 are data-driven. Simply query the required distributions from the respective databases
	 or APIs.

BECAUSE OF HIGH COST, PERFORMANCE TESTING ENVIRONMENTS
DO NOT HAVE EQUALLY BALANCED BACK-END RESOURCES THAT

MIMIC PRODUCTION ENVIRONMENTS. TAKE THIS LIMITATION INTO
ACCOUNT WHEN ESTABLISHING METRICS AND TESTING STRATEGY.

Predictability and speed to market are desirable for businesses. Velocity measures story points and
represents the amount of work for a team to accomplish in a given sprint—noting the key milestones
of the build. With an estimated backlog measured in story points, divide the total points by sprint
velocity and project the number of sprints necessary to release desired scope to market.

The quality and maturity of the organizational processes (e.g., mature DevOps featuring automated
builds, tests, and code standards) influence velocity and prevent developers from shipping
defective software.

VELOCITY METRICS:

Velocity helps the team project key milestones of the build.
Using the estimated backlog size in story points divided by the
average sprint velocity determines the number of sprints
to release.

05

+

Q
U

A
LI

TY

REDUCED
ROUND-TRIPS

BETWEEN
QA AND

ENGINEERING

FEWER
SLIPPED

STORIES THAT
CARRY TO THE
NEXT SPRINT

OVERALL
IMPROVED

AND STABLE
VELOCITY

M
A

TU
R

IT
Y

REDUCE
OVERHEAD

LESS
HUMAN
ERROR

OVERALL
IMPROVED
THROUGH
INPUT OF
THE TEAM

=

+ =

Velocity is not an absolute metric and should not be used as a means of comparison across
multiple product teams. Story point estimates are based on arbitrary numbers from the
Fibonacci sequence to indicate the anticipated complexity of a given feature. Estimation
standards vary by team. For example, one team chooses to estimate a complex feature in nine
points, whereas another uses fifteen.

No two teams are identical. Use velocity in historical context for a single team. The sprint velocity
depends on the number of team members. There are a variety of tactics to manage teams at scale,
including a velocity trending report, a cost per story trending report, a backlog aging report, and an
estimate velocity report.

VELOCITY TRENDING REPORT
Each team should monitor its velocity over time. Sprint 0 normally starts slow. Building momentum
takes time. After a few first sprints, a long-term stable velocity should emerge. Realistically, the
report will have outliers. For example, a complex highly integrated feature throws off the data.

0

10

20

30

40

Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Sprint 6 Sprint 7 Sprint 8 Sprint 9 Sprint 10

Average velocity
demonstrated

St
or

y
po

in
ts

To monitor velocity over time, consider
adopting the following tactics:

	 Analysis: Analyze the root cause 		
	 for spikes and dips of velocity. While 	
	 normal, it’s important to understand 	
	 and anticipate shifts.

	 Trends: Game velocity by assigning 	
	 larger story point estimates to smaller 	
	 features. Try to review estimates in 		
	 parallel to the velocity trends.

	 Change: When evaluating product 	
	 maturity, there tends to be a slight 		
	 drop in velocity once a product 		
	 reaches a certain point of maturity. 		
	 This often happens around the 		
 	 year or year and a half mark for a		
	 greenfield initiative. Normal and
	 expected saturation of functionality, 	
	 interdependencies, size, and
	 number of teams all have an impact. 	
	 There is a price to pay at scale.

Reporting velocity adds value by
demonstrating ROI when an organization
is going through a transformation effort. It’s
important to note activities that boost team
productivity or increase adoption. Take time to
document implementation of best practices
(e.g., automated testing, CI/CD, code
standards) that manifest higher velocity.

COST PER STORY
POINT TRENDING
REPORT

Track the cost per story point to evaluate
the efficiency of work being completed. To
measure, divide the total cost (i.e., burn) of
running a team for a sprint by the number
of story points delivered in the sprint. This
report monitors velocity trends offset by
adding or removing team members (e.g.,
difficulty identifying velocity gaming or loss
of productivity because a team adds two
engineers after eight sprints).

Accounting for both the cost of running the
team and the scope shipped increases the
average cost of a story point through time.
The cost per story point typically experiences
a slight uptick as the product matures or
reaches a saturated state. Take time to
analyze the root cause of these shifts. Left
unchecked, the changes have the potential
to cause damage or lead to inefficiencies that
accrue over time (e.g., a testing strategy that
no longer services the product adequately,
outdated code standards, or slow
build pipeline).

Team burn per sprint

$50,000.00
Velocity

35 POINTS
Cost per point

$1428.57

BACKLOG AGING REPORT

Backlog aging becomes useful when releasing a new version of a product to market, and new
features start queueing up in the backlog. The report tracks how long a feature sits in the backlog
before being shipped into production. Use this report to capture a snapshot in time.

	 Was the business more or less responsive to market needs?

	 Is the backlog growing too fast for the delivery teams to manage?

	 Is the delivery team able to keep pace with demands and ship in a timely manner?

ESTIMATE VOLATILITY REPORT
Especially for custom product builds, developing sound estimates relies on forming educated
guesses based on a variety of unique factors (e.g., prior experience, projected team size, project
goals). Be sure to reflect on estimate accuracy as a healthy best practice. The data helps craft
better projections going forward, especially for teams unable to reach Definition of Done within a
designated sprint.

Form development

Automated testing

API integration

Technical designs

Exploratory manual testing

Code reviews

Design reviews

0 15 30 45 60

Actual Estimated

Track estimate volatility at the feature level. Individual stories tend to be too granular to showcase
trends. Compare the original estimate to the actual effort required to ship the feature, MVP, or
product. Here are a couple of insights from one of our teams:

	 Teams owning a feature from start to finish outperform teams with partial 				
	 ownership of features both in velocity and estimate accuracy.

	 Highly volatile teams require additional domain education to grasp context. Once 			
	 implemented, volatility decreases significantly.

Design Product Management

CI/CD Quality Security Performance Debt

Integration: Are builds automated?
Deployment: Can code be deployed to an environment in an automated fashion?
Infrastructure as code: Can environments can be created via script (e.g., Terraform)?

Automation: Are unit and integration tests used?
E2E: Are end-to-end tests being performed?
Coverage: Is the desired code coverage of the tests achieved?
Rules: Are preferred syntactical rules being followed?

Static analysis: Tools, process, notifications
Dynamic analysis: Tools, process
OWASP: Are standards observed?

Automated performance: Are regular performance checks in place?
Accessibility: Are accessibility best practices in use?
Monitoring: Are any monitoring tools (e.g., NewRelic) built in to monitor application?

Technical debt: Is it being tracked, added to the
backlog, and resolved?

Research: Did we perform user research?
Testing: Is user testing performed in sprint?
Analytics: Are we tracking app analytics?

Allocation: Is the team staffed in time with appropriate resources?
Workshop: Were right people in the room? Knowledge retained?
Kickoff: DoD, DoR defined?
Rituals: Stable cadence, rituals observed?

89%

PROCESS METRICS:

The last set of metrics measures the maturity of practices in a product organization. Fortune
enterprises don’t transform into product-centric organizations overnight. Even new greenfield
product ventures make compromises to ship to market faster. As an organization converts the
portfolio, leverage product and engineering best practices, which include tracking quantitative data
on a per-product basis and documenting progress over time. Understanding where an application
and corresponding teams sit on the maturity scale helps product leaders identify elements needing
attention and products carrying the highest risk.

The maturity score measures percentages across two domains:		 Product management
									 	 and design

									 Engineering

THE SPECIFIC WEIGHTING ASSIGNED TO A CONDITION IS OUTSIDE
THE SCOPE OF THIS PAPER. THESE ATTRIBUTES TEND TO BE UNIQUE

TO A GIVEN ORGANIZATION AND ITS PRODUCTS.

Large enterprise programs and small greenfield builds benefit
from a maturity score. Technical and product debt accumulates
even when taking precautions.

1

2

06

Design Product Management

CI/CD Quality Security Performance Debt

Integration: Are builds automated?
Deployment: Can code be deployed to an environment in an automated fashion?
Infrastructure as code: Can environments can be created via script (e.g., Terraform)?

Automation: Are unit and integration tests used?
E2E: Are end-to-end tests being performed?
Coverage: Is the desired code coverage of the tests achieved?
Rules: Are preferred syntactical rules being followed?

Static analysis: Tools, process, notifications
Dynamic analysis: Tools, process
OWASP: Are standards observed?

Automated performance: Are regular performance checks in place?
Accessibility: Are accessibility best practices in use?
Monitoring: Are any monitoring tools (e.g., NewRelic) built in to monitor application?

Technical debt: Is it being tracked, added to the
backlog, and resolved?

Research: Did we perform user research?
Testing: Is user testing performed in sprint?
Analytics: Are we tracking app analytics?

Allocation: Is the team staffed in time with appropriate resources?
Workshop: Were right people in the room? Knowledge retained?
Kickoff: DoD, DoR defined?
Rituals: Stable cadence, rituals observed?

89%

PRODUCT MANAGEMENT &
DESIGN MATURITY CONDITIONS

Product managers and designers are two key roles in product teams. Subsequently, evaluate the
efficacy of various product management and design activities. Measure adoption and execution
best practices (e.g., product canvas, user research, workshop participation, stakeholder commitment
to rituals, and healthy team allocation). Track team allocation, activities during the workshop, kickoff
of the project, and delivery rituals.

CATEGORY CONDITION WHY IT MATTERS

Allocate a full-time product
manager (or several)

The team manages scope and feature
decisions without external dependencies.

Allocate a full-time
designer (or several)

Make sure design activities are part of the
sprint; design needs to be consulted in the
requirement definition and the final UI QA.

Allocate enough
engineering and
testing members

Understaffed teams are bound to fail;
ensure ample engineering resources to
accomplish predefined goals.

Administer at least one
product workshop within
the last six months

Workshops guarantee alignment and
clear outcomes for the next six months of
releases. Going longer than six months will
lead to churn.

Ensure the
cross-functional team
members attend
the workshop

Knowledge transfer is highly effective for
cross-functional team members. Product
managers, engineers, and designers all
need to share information with another
when developing products.

Share the Definition of
Ready and Definition of
Done with team

The DoR and DoD are critical for effective
cooperation inside a cross-functional team.
Lock in expectations between a product
owner, the engineers, and designers.

Make sure the
backlog is fully
estimated

Story point estimates help the team
establish initial milestones and assign risk
to stories with high complexity.

Get access to
end user design
research

Software should never be built in a
vacuum. User research, user testing, and
demos need to have a real audience.

A
LL

O
C

A
TI

O
N

 O
F

R
ES

O
U

R
C

ES
W

O
R

K
S

H
O

P
EF

FE
C

TI
V

EN
ES

S
K

IC
K

O
FF

EF
FE

C
TI

V
N

ES
S

ENGINEERING MATURITY CONDITIONS

Like product managers and designers, engineers play a key role in building products. There are
standard engineering competencies and best practices that each software project should observe
to some degree to inform behaviors—good or bad—for the future of the product and organization.
Measure the adoption of technical best practices like CI/CD, code quality, security, performance,
monitoring, and technical debt). Track DevOps, testing, technical maturity, coding standards,
security, accessibility, and monitoring.

Follow sprint rituals
(e.g., stand ups
and retros)

Observing rituals ensures ongoing team
communication and supports continuous
improvement through collaboration.

Groom two sprints of the
backlog in advance

Grooming a couple of sprints ahead
reduces noise for the team, provides the
ability to quickly swap in groomed stories
when another piece of work is blocked or
finished early. Avoid idling of engineering
team members at all cost.

Provide normal sprint
reports (e.g., spend
and burndown)

Use sprint reports, many of which are
covered in this paper, actively as a tool.

Require stakeholders
involved in
decision-making to
attend sprint demos

Demos give stakeholders an opportunity to
accept work as well as make the software
real. The build-measure-learn loop doesn’t
work without them.

Document change requests
in Jira (or the internal
tool of your choice) to
communicate the impact of
adjustments to the business

While change requests are not part of the
agile process, tracking pivots in the product
strategy helps product leaders explain
decisions made to sponsors, some of which
work outside of the product organization.

D
EL

IV
ER

Y
EF

FE
C

TI
V

EN
ES

S

Monitoring
Active monitoring for
established performance
targets, application logs, and
errors allows the team to
resolve proactively.

Security
Design products to be secure
instead of retrofitting them.
Retrofitting is taxing and prone
to issues. Ensure OWASP best
practices are observed by
team.

Code quality
Code quality standards, static
code analysis, source control
strategy, and code reviews
guarantee a maintainable
code base.

</>

DevOp
Using infrastructure as
code enables rapid
delivery and efficiency
through self-provisioning.

Scalability
Scalable-by-design
applications scale easily and
quickly without developer
involvement. Performance
targets are tested and
monitored.

Testing strategy
Proper testing strategy
guarantees adequate
coverage with sustainable
investment, lower lifetime
support, and QA costs.

Data strategy
Determine if needs are
transactional or analytical.
The use cases for machine
learning and migrating away
from ETLs.

Performance
Establish requirements for
application load speed,
response to users, as well as
automation of ongoing
testing.

CATEGORY CONDITION WHY IT MATTERS

Feature continuous
integration (CI)

CI allows automated integration of multiple
workstreams into a single main branch,
multiple times a day. It reduces overhead
and risk, increases confidence, and
improves communication.

Automate deployments
Building and deploying code in the dev,
staging, UAT, and production environments
happens with a push of a button,
eliminating room for user error.

Use containerization
Containers prime the application for scale
with each having lateral scalability without
unnecessary overhead.

Include continuous
deployment (CD)

While challenging to attain, CD pushes
code from development into production
multiple times a day (assuming all tests run
successfully) and represents the target state
for mature product companies.

Run unit/integration tests
and coverage metrics

An advanced testing strategy automates
the mundane and drastically reduces
the long-term costs of quality assurance.
Furthermore, less technical debt is accrued
and software is easier to maintain.

Administer
performance testing

Performance goals and tests help teams
avoid production challenges by anticipating
future needs.

Add
end-to-end testing

End-to-end tests guarantee that the
software and integrations work correctly.

Track
technical debt

Tracking technical debt mitigates the
risk of blindsiding a product team with
productivity dropping over time as the
debt mounts.

Evaluate and review
the architecture

As an application matures, the underlying
architecture needs to be evaluated and
areas for refactoring need to be identified
to avoid reaching a legacy state.

D
EV

O
P

S
TE

ST
IN

G
TE

C
H

 M
A

TU
R

IT
Y

Provide code style
check automation

When the code style is checked
automatically and conforms to the rules
defined by a project team, maintainability
improves in the long run.

Use static
code analysis

Tools automatically scan code for
vulnerabilities and security best practices,
helping automate and avoid security issues.

Offer feature branches

Use pull requests and feature branching as
part of the engineering strategy. The code
from the master branch should always be
ready to be released to production.

Make sure an artifact
repository is used

Add an artifactory repository (e.g., Sonatype
Nexus) to store intermediate and final
results of the software engineering process
(e.g., npm packages, OSS project forks,
docker images, release packages), which
simplifies management and propagation of
reusable components.

Complete a
vulnerability and
security assessment

Establish and observe security standards
(e.g., OWASP 10) for the application.

Provide a secret
management option

Provide a central secret management
platform such as HashiCorp Vault to avoid
secrets being stored openly in code.

Follow
compliance standards

Establish and observe a level of application
accessibility.

Monitor logging
and reporting

Monitoring solutions provide insights
and alerts for irregular patterns in
production environment.

C
O

D
IN

G
 S

TA
N

D
A

R
D

S
S

EC
U

R
IT

Y
A

C
C

ES
S

IB
IL

IT
Y

M
O

N
IT

O
R

IN
G

CATEGORY CONDITION WHY IT MATTERS

Enterprises need to ditch traditional project metrics and embrace modern metrics in order to build
healthy products and deliver results. Evaluate product value effectiveness, quality, team velocity,
and process maturity to determine portfolio health. These four categories of metrics form a system
of indicators and guardrails that enable product teams to self-govern, product owners to deliver
results, and product leaders to drive systemic organizational change to the desired state.

When assembling the final set of metrics, consider the objectives set out for the team, the product,
and the organization. The maturity of the product and the organization inform which metrics are
beneficial at which time. Use metrics as tools to identify challenges in delivery, evolve delivery
process, and plan future releases. Under no circumstances should these metrics be used to punish
poorly performing teams as that will incentivize other teams to game the system and post fake data.
Approach challenges with the mindset of using them to remove blockers, educate, and enable
professionals to succeed instead of looking for blame to be assigned to an underperforming party.

BUILD POWERFUL PRODUCTS
07

AUTHOR

Aurimas Adomavicius
President and co-founder of Devbridge

Founded in 2008, Devbridge revitalizes the
largest of enterprises with custom software.
When not in the trenches working with clients,
Aurimas is an active speaker and writer on
product design and engineering best practices.

Checkout Devbridge’s PowerUp which tracks
delivery metrics for an individual team as
well as a portfolio of projects. The application
aggregates data from Jira and time-tracking
software to accurately and transparently
represent the current project state, team
activity, burnup, burndown, velocity, and a
variety of other helpful metrics.

1 Defined business goal

A clearly defined business goal
with success metrics

4 Shared understanding

A shared understanding of the business
process, end users, and their pain points

2 MVP requirements

The minimum amount of
requirements necessary to kickoff
the design process

5 Scope & priorities
An agreement on scope and priorities
to meet the business goals

3 Hidden requirements

Bringing people from different functions
together to uncover what impacts goals,
scope, and priorities

6 Product release strategy

A phased approach to releasing your
product to market

SIX KEY OUTCOMES

FASTER THAN
YOU’RE USED TO.

getstarted@devbridge.com
312.242.1642

Put custom software development on the fast track. First, get key stakeholders together. Then,
let our product development team orchestrate the ultimate workshop. Without fail, we get the
stakeholders aligned in a couple of days—which is more than most companies can do in months.

One rule: Don’t bring documentation.

A LEAN REQUIREMENTS
WORKSHOP

Our experienced teams deliver software
4x faster than the industry average.

We are a full stack research, design, and software delivery company.
Our teams facilitate a creative, iterative process, powered by some of
the most passionate individuals in the industry. We build extraordinary
custom applications that solve complex problems and deliver
measurable results.

500
Full-time

employees

 5
Offices

 12
Years in
business

We create elegant, intuitive
mobile applications to
enhance the customer
experience.

Mobile applications
for B2B and B2C

We build custom
applications that solve real
business problems to drive
measurable value.

Product research
and design

From dashboards to master
data strategy, we can help
you leverage your data to
grow your business.

Data strategy and
microservices

We go beyond team
aug and dedicate full
cross-functional teams to
scale feature delivery.

Scaling product
delivery

Replatform aging systems
and legacy architecture
to meet the needs of your
business now.

Legacy software
modernization

Streamline your business
processes to reduce time,
costs, and improve
productivity.

Workflow
optimization

Chicago

London
Toronto
Kaunas
Vilnius

Our scalable cross-functional product teams and tailored services
transform businesses in agriculture, aviation, financial services, fraud
& forensics, healthcare, hospitality, logistics, and manufacturing.

