C-Leg in limited community ambulators

Level Walking

Major Findings

With C-Leg and C-Leg Compact compared to NMPKs:

- **Improved self-selected and fast walking velocity by up to 20%**

 Cadence increased by up to 10%

 Stride length increased by up to 14%

- **Subjects trust to load prosthesis more**

 Knee flexion moments in terminal stance phase increased by 200% for free walking and by 350% for fast walking

 Peak power generation at the ankle in pre-swing phase increased by 109% for fast walking

- **Reduced anterior tilt of pelvis during stance phase**

Improvements in walking velocity with C-Leg in K2 subjects

Self-selected walking speed (SSWS) and fastest possible walking speed (FPWS) was measured over 75 meters and 6 meters (Kahle et al. 2008).

Clinical Relevance

The main aim of a prosthesis is the restoration of function. For lower extremities the most important function is ambulation. It has influence on the mobility, the participation and, therefore, general quality of life. Furthermore, a natural gait pattern is pursued since it prevents the sound side from higher or inappropriate loads due to compensatory movements.

Summary

The fastest possible walking speed measured over 75 meters increased with C-Leg compared to NMPKs in K2 subjects by 14%. Furthermore, self-selected walking speed measured over 75 m and fastest possible walking speed measured over 6 meters tended to be increased (Kahle et al. 2008). A later study found that walking speed increased by 20% in both self-selected and fast speed with C-Leg Compact compared to NMPKs. The improvements result from an increase in stride length and by an increase in cadence (Eberly et al. 2013).

Wetz et al. (2005) conducted a motion analysis when subjects used NMPKs and C-Leg. They found that the improvements differ between mobility grades. K2 subjects mainly benefit from a reduction of hip and knee extension moments, reduction of
asymmetry as well as improvement of step length (Wetz et al. (2005). Furthermore, knee flexion moments in terminal stance phase increased by 200% for free walking and by 350% for fast walking, and peak power generation in pre-swing phase at the ankle increased by 109% for fast walking with C-Leg Compact compared to NMPKs (Eberly et al. 2013) resulting from subjects' improved trust to load their prosthesis to a higher extent when releasing swing phase. Anterior tilt of pelvis is reduced in stance phase with C-Leg Compact due to an increase in thigh and hip extension angles during stance phase (Eberly et al. 2013).

References of summarized studies

