Clinical Study Summaries

This document summarizes clinical studies conducted with the E-MAG Active. The included studies were identified by a literature search made on PubMed and within the journal *Medizinisch Orthopädische Technik*.
Table of content:

1 Overview table ... p 3
2 Summaries of categories ... p 4-12
 Biomechanics – Gait analysis ... p 5
 Functional tests .. p 8
 Satisfaction ... p 11
3 Summaries of individual studies ... p 13-16
 Schröder et al. 2018 .. p 14
4 Copyright .. p 17
1 Overview table

The summaries are organized in three levels depending on the detail of information. The overview table (Level 1) lists all the relevant publications dealing with a particular product (topic) as well as researched categories (e.g. gait analysis, clinical effects, satisfaction, etc). By clicking on underlined categories, a summary of all the literature dealing with that category will open (Level 2).

For those interested to learn more about individual studies, a summary of the study can be obtained by clicking on the relevant reference (Level 3).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Category</th>
<th>Functions and Activities</th>
<th>Participation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Biomechanics – Static measures</td>
<td>X-Ray</td>
<td>EMG</td>
</tr>
<tr>
<td></td>
<td>Biomechanics – Gait analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>2018</td>
<td>1</td>
</tr>
<tr>
<td>Schröder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number: 1</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Summaries of categories

On the following pages you find summaries of categories researched in several studies (e.g. gait analysis, clinical effects, satisfaction, etc.). At the end of each summary you will find a list of reference studies contributing to the content of the particular summary.
Biomechanics – Gait analysis

Major Findings

With E-MAG Active in unlocked mode (vs. locked mode):

- **significantly increased walking speed** (0.06m/s; p < 0.05)
- **anatomically normalized knee flexion angle** (57° at 70% gait cycle)
- **significantly reduced hip hiking**

Clinical Relevance

Patients with total or partial weakness of knee extensors are usually fitted with a Knee Ankle Foot Orthoses (KAFO) with a manually locked knee joint that provides safety while walking and can be released for sitting down. Those orthoses restore basic walking capabilities but have considerable disadvantages compared to normal walking (Bernhardt et al. 2006; Irby et al., 2005; Schmalz et al, 2005). Patients with locked KAFOs force compensatory movements to avoid stumbles when walking. They use hip hiking and vaulting (unnatural plantar flexion during mid-stance on the sound side) to provide sufficient toe clearance during swing (Zacharias et al., 2012).

Stance Control Orthoses (SCOs), like the E-MAG Active, were introduced to mitigate these limitations: they provide a locked knee stance, but enable free knee flexion during the swing phase. Therefore, a more natural gait pattern is offered preventing the sound side from higher or inappropriate loads due to compensatory movements. Overloading of the sound limb can result in secondary diseases such as osteoarthritis.

Biomechanical 3D gait measurements are conducted to determine joint angles, moments and load on the joints, so that differences in gait patterns between locked KAFO and E-Mag Active can be determined objectively.

Summary

When walking with E-MAG Active, we found an average knee flexion angle of 57°±15° during swing phase at about 70% of gait cycle, which is in line with the results of previous studies that found knee swing flexion angles between 29° and 65° across their subject samples (Hebert et al., 2005; Irby et al., 2007; Moreno et al., 2008; Schmalz et al., 2005; Yakimovich et al., 2006; Zissimopoulos et al., 2007). Physiologically, humans walk with a knee flexion angle of about 65° between 40-
75% of the gait cycle, representing an important contributor to sufficient toe clearance of the swinging leg (Götz-Neumann, 2006; Perry, 2003).

As the orthotic knee joint allows for bending and thus sufficient toe clearance during swing, compensatory movements are reduced with E-MAG Active. Especially, hip hiking was reduced in 6 out of 8 subjects based on the angle of pelvis tilt (obliquity) in the coronal plane. Additionally, vaulting was reduced in 2 out of 3 subjects based on the sagittal angle and moment of the ankle. (Schröder et al., 2018)

These results are in accordance with previous studies. Zissimopoulos, et al. (2007) and Irby, et al. (2007) showed significantly reduced pelvic obliquity on the orthotic side with the SCO compared to a locked orthosis. Schmalz, et al. (2005) reported that the pelvic movement when walking with an SCO was comparable to that of healthy subjects. Irby, et al. (2007) described a significant reduction in vaulting of the sound side with an SCO, and Hebert & Liggins (2005) reported even no unnatural sound side plantar flexion at all in the middle of the stance phase.

SOCs, like E-MAG Active, show clear benefits over locked KAFOs, like more physiologic gait pattern, faster walking speed, lower metabolic energy consumption and reduced compensatory movements (Bernhardt et al. 2006; Davis et al., 2010; Irby et al., 2005; McMillan et al., 2004; Sabelis et al., 2007; Schmalz et al., 2005.

References of summarized studies

Other References

↑ Back to overview table
Functional tests

Major Findings

With E-MAG Active in unlocked mode (vs. locked mode):

- **significantly increased walking distance in the 6-minute walk test**
 (+32.5 ± 29.5 m)

Clinical Relevance

The aim of E-MAG Active is to enable independent and safe ambulation. It provides the required safety by locking the knee joint for stance and automatically unlock during swing phase. This has influence on activity, mobility, participation and, therefore the overall well-being of the user.

Timed walk tests are validated measures of physical performance and overall mobility in patients with various medical conditions (Rossier & Wade, 2001), including incomplete spinal cord injury (Jackson et al., 2008), post-polio syndrome (Flansbjer & Lexell, 2010) and lower limb amputations. In subjects with lower limb amputations, the distance walked is well correlated with daily activity and indicative for substantial functional limitations in daily life (Gremeaux et al., 2012).

Summary

The results of the study by Schröder et al. (2018) show that subjects walked significantly slower in the locked mode compared to the unlocked mode of E-MAG Active. The average difference in walking speed between the orthotic modes was bigger in the 6MWT with 0.09 m/s than in the gait analysis with 0.06 m/s.

In the literature, five studies reported comparable parameters determined in 3D gait measurements. In those studies, subjects demonstrated a significantly faster or at least a tendency toward faster walking speed between 0.06 m/s and 0.1 m/s with the SCO compared to a locked KAFO (Bernhardt et al., 2006; Davis et al., 2010; Irby et al., 2007; McMillan et al., 2004; Schmalz et al., 2005).

With the E-MAG Active in the locked condition, subjects were significantly restricted in their functional walking capacity as demonstrated by a mean 32.5 m reduction in the distance walked in 6 minutes (Schröder et al., 2018). This difference and thus the effect of the SCO mode on the functional walking capacity is close to the reported minimal clinically important differences (MCID) for incomplete SCI (36 m).
(Forrest et al., 2014) and stroke rehabilitation (34.4 m) (Eng & Dawson, 2004) and is also comparable to the effect of a 3-months physical therapy program in polio survivors (40 m) (Bertelsen et al., 2009). Using the E-MAG Active, subjects reached almost exactly the normative value of 316.8 m reported for subjects after 12 months of rehabilitation after an incomplete spinal cord injury (Ditunno et al., 2007).

Thus, it can be concluded that walking with an orthosis with a locked knee joint results in a significantly reduced functional walking capacity as compared to walking with the E-MAG Active.

References of summarized studies

Other References

Satisfaction

Major Findings

With E-MAG Active in unlocked mode (vs. locked mode):

> high patient satisfaction, evaluated with the QUEST (Quebec user evaluation of satisfaction with assistive technology)

- Device subscale score: 4.4 ± 0.3
- Service subscale score: 4.8 ± 0.3
- Total QUEST score: 4.6 ± 0.3

Patient satisfaction with QUEST

![Patient satisfaction with QUEST chart]

Schröder et al., 2018.

Clinical Relevance

For enabling disabled people to live independently and safely within the community, assistive technologies are playing an important role. However, studies of the non-use of assistive technologies suggest that on average a third of all devices provided are not used (Scherer, 2002). The lack of consumer involvement in the selection process or consumer dissatisfaction with the device were shown as predictors of non-use (Wielandt & Strong, 2000). A number of problems have been identified as reasons for non-use: inadequate performance of the product; poor function of the product; difficulty in operating the product; and the high cost of the products and their maintenance (Goodacre & Turner, 2005). Obtaining user perspectives is therefore fundamental to address these issues.

Summary

The Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0) (Demers et al 1996) is a self-administered questionnaire used to evaluate user satisfaction with a wide range of assistive technologies. It assesses user satisfaction with both the specific assistive device and the service relating to device use.

The participants’ satisfaction with the E-Mag Active was surveyed using the QUEST (2.0). The ratings of the Device subscale score, Service subscale score and Total
QUEST score had a mean value > 4 points, which represents a very high overall satisfaction. (Schröder et al., 2018)

As far as the importance of the satisfaction items for the patients is concerned, safety was selected most often (7 times) with an average rating of 3.8, followed by adjustments and effectiveness (each selected 3 times) with mean ratings of 4.8 and 4.6, respectively. The items ease of use, comfort, repairs/servicing and professional service were selected twice each; whereas durability, service delivery and follow-up service were only selected once each.

References of summarized studies

Other References

3 Summaries of individual studies

On the following pages you find summaries of studies that researched E-MAG Active. You find detailed information about the study design, methods applied, results and major findings of the study. At the end of each summary you also can read the original study authors' conclusions.
Functional walking capacity of subjects with paralyzed knee extensors while walking with an SCO in locked vs unlocked mode

Physical Medicine and Rehabilitation Research 2018, 3 (2): 1-6
DOI: 10.15761/PMRR.1000168

With E-MAG Active in unlocked mode (vs locked mode):

- significantly increased walking speed (0.06m/s; p < 0.05)
- significantly increased walking distance in the 6-minute walk test (+32.5 ± 29.5 m)
- significantly reduced hip hiking
- high patient satisfaction, evaluated with the QUEST (Quebec user evaluation of satisfaction with assistive technology)
 - Device subscale score: 4.4 ± 0.3
 - Service subscale score: 4.8 ± 0.3
 - Total QUEST score: 4.6 ± 0.3

Mean knee flexion angle of 57° at about 70% of the gait cycle

During walking with E-Mag Active in unlocked mode (blue curve) there is a mean knee flexion angle of 57° at about 70% of the gait cycle, compared to full extension of the knee in the locked knee condition (brown curve).
Population

- **Subjects:** 8 (5 male, 3 female)
- **Mean age:** 46.9 ± 19.0 years
- **Mean body mass:** 80.0 ± 11.5 kg
- **Use of E-MAG Active:** since 3.3 ± 1.6 years
- **Etiologies:**
 - Incomplete spinal cord injury (4 patients)
 - Poliomyelitis (3 patients)
 - Myopathy (1 patient)

Study Design

Randomized 2x2 crossover design with intra-individual control:

- **Invitation to participate**
- **Eligibility, informed consent**
- **1 day in gait analysis laboratory**
- **QUEST satisfaction questionnaire with E-MAG Active**
- **Randomized order of testing**
- **E-MAG Active locked 6 MWT, gait analysis**
- **E-MAG Active unlocked 6 MWT, gait analysis**
- **Rest of 2 hours**
- **E-MAG Active unlocked 6 MWT, gait analysis**
- **E-MAG Active locked 6 MWT, gait analysis**

Intervention: to walk with E-MAG Active in locked and unlocked mode.

Results

<table>
<thead>
<tr>
<th>Category</th>
<th>Outcomes</th>
<th>Results for E-MAG Active in unlocked mode (vs. locked mode)</th>
<th>sig.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomechanics – Gait analysis</td>
<td>Walking speed</td>
<td>The walking speed was significantly faster with E-MAG Active in unlocked mode</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-MAG Active locked</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-MAG Active unlocked</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>Gait symmetry</td>
<td>Gait symmetry was marginally improved with E-MAG Active in unlocked mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-MAG Active locked</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-MAG Active unlocked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>difference in stride length [m]</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>difference in stance phase length between orthotic and contralateral side [%GC]</td>
<td></td>
<td>7.3</td>
</tr>
<tr>
<td>Category</td>
<td>Outcomes</td>
<td>Results for E-MAG Active in unlocked mode (vs. locked mode)</td>
<td>sig.*</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Knee flexion angle</td>
<td>During walking in the unlocked mode, there was a mean knee flexion angle of 57° ± 15° at about 70% of the gait cycle compared to full extension of the knee during walking in the locked condition. Every subject showed an increased knee flexion angle during swing in the unlocked mode within a range between 31° and 80°.</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>Compensatory movements</td>
<td>Compensatory movements were reduced with E-MAG Active in the unlocked mode. Hip hiking was reduced in 6 out of 8 subjects based on the angle of pelvis tilt (obliquity) in the coronal plane. Vaulting was reduced in 2 out of 3 subjects based on the sagittal angle and moment of the ankle</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>Functional tests</td>
<td>Functional walking Capacity “6-minute walk test”</td>
<td>In the locked mode, subjects walked a shorter distance in the 6MWT than in the unlocked condition. The difference in the distance walked of 32.5 ± 29.5 m was statistically significant (p = 0.04).</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-MAG Active locked 284.4 ± 53.0 E-MAG Active unlocked 316.9 ± 59.6</td>
<td></td>
</tr>
<tr>
<td>Satisfaction</td>
<td>QUEST score</td>
<td>“Quebec user evaluation of satisfaction with assistive technology, Version 2.0” (QUEST 5-point rating scale: 1 = “not satisfied at all”; 2 = “not very satisfied”; 3 = “more or less satisfied”; 4 = “quiet satisfied”; 5 = “very satisfied”) QUEST scores showed a high overall satisfaction with the E-MAG Active in unlocked mode</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>score</td>
<td>rating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>device subscale score 4.4 ± 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>service subscale score 4.8 ± 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total QUEST score 4.6 ± 0.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* no difference (0), positive trend (+), negative trend (−), significant (++/−−), not applicable (n.a.)

Author’s Conclusion

“Compared to the unlocked condition, the locked mode imposed a clinically meaningful restriction to the functional walking capacity on the subjects. Therefore, fitting of an SCO [stance control orthosis, E-MAG Active] may be considered beneficial in individuals dependent on a KAFO [knee-ankle-foot-orthosis] to improve their functional walking capacity.” (Schröder et al. 2017)
Copyright:

© 2014, Otto Bock HealthCare Products GmbH (“Otto Bock”). All Rights Reserved. This document contains copyrighted material. Wherever possible we give full recognition to the authors. We believe this constitutes a ‘fair use’ of any such copyrighted material according to Title 17 U.S.C. Section 107 of US Copyright Law. If you wish to use copyrighted material from this site for purposes of your own that go beyond ‘fair use’, you must obtain permission from the copyright owner. All trademarks, copyrights, or other intellectual property used or referenced herein are the property of their respective owners. The information presented here is in summary form only and intended to provide broad knowledge of products offered. You should consult your physician before purchasing any product(s). Otto Bock disclaims any liability related from medical decisions made based on this document.