
Whitepaper

Navigating the
OWASP Top 10
with Fastly

Insights, strategies, and real-world
examples for improved web
application security

2Navigating the OWASP Top 10 with Fastly

Table of Contents
01	 Broken	Access	Control	

02	 Cryptographic	Failures

03	 Injection

04	 Insecure	Design

05	 Security	Misconfiguration

06	 Vulnerable	and	Outdated	Components

07	 Identification	and	Authentification	Faillures

08	 Software	and	Data	Integrity	Failures

09	 Security	Logging	and	Monitoring	Failures

10	 Server-Side	Request	Forgery

Introduction
Any organization is a target: attackers know that web apps and APIs hold the
keys to the kingdom. Once they’ve breached an app or publicly accessible
API, they can act on their objectives. To better help developers and security
practitioners understand the threats and vulnerabilities, the OWASP Top 10 list
was developed to help foster a culture of secure software development.

The OWASP	Top	10 is a reference standard created by the non-profit OWASP
(Open Web Application Security Project) Foundation that provides a ranking of
and remediation guidance for the top 10 most critical web application security
risks. It’s based on a consensus among security experts from around the
world and is intended to drive focus and clarity to the complex world of web
application security.

OWASP has been updating this list every few years since 2003, based on
advancements and changes in the appsec industry. With the major updates in
the latest version in 2021, there are three new categories, four categories with
naming and scoping changes, and some consolidation in the Top 10.

According to the 2023	Verizon	DBIR, a staggering 60% of all breaches
occurred through web applications. It’s tempting to think that addressing
the OWASP top ten can be achieved with a single product or process when
in reality organizations with heterogeneous applications in multiple locations
have to think holistically about application security. Attackers will always
look for the weakest link. This often means addressing the OWASP Top 10
is a byproduct of consistent security policies across on-premise and
cloud environments and involves products, processes, and improved
developer education.

This paper will break down the Top 10, provide examples, and describe how
Fastly can help support your organization against these threat categories.

4Navigating the OWASP Top 10 with Fastly

Broken
Access Control

A01:2021

This category represents the most serious application security

risk: If an attacker can bypass access control with the right

privilege level, they can do some serious damage. According

to OWASP, 94% of applications were tested for some form

of broken access control and it has the most occurrences

in the contributed dataset. This category covers the largest

number (34) of different Common Weakness Enumerations,

or CWEs that can allow attackers to access data, resources,

user accounts, or operations that they shouldn’t be permitted

to access.

5Navigating the OWASP Top 10 with Fastly

An attacker (user id 1337) simply browses to
a target URL and tells the application they are
another user (user id 1001). The application
fails to enforce any access control and allows
the request to be seen as coming from this
other user.

Example

Organizations can protect themselves from
Broken Access Control threats by ensuring
custom-built applications have been built with
a secure development lifecycle in mind and
have undergone security penetration testing.
In addition to this, deploying a tool such as a
WAF can augment and enhance your security
posture.

 Access control is only effective in trusted
server-side code or server-less API, where
the attacker cannot modify the access
control check or metadata. Or in the example
listed above, the route-controller	should	be	
checking	authorization and thus enforcing
access controls of ownership rather than
accepting that the user can read, create,
update, or delete any record.

Prevention

•	 Next-Gen	WAF can be configured with allow/block
lists to enforce that they are only accessible by
authenticated users and/or administrators. This
capability works in conjunction with our Edge Cloud
Platform. Security decisions made by the Next-Gen
WAF can be pushed closer to the attacker using
access control lists (ACLs), stopping malicious
attackers long before they reach the application.

•	 Next-Gen	WAF by default looks for requests
attempting forceful browsing, directory traversal,
or access to private files or directories such as
“/web_app/WEB-INF/webapp.properties”. Simple
configurations can be set up to extend this

Fastly Protection
An attacker (user id 1337) simply browses to a target URL
and tells the application they are another user (user id
1001). The application fails to enforce any access control
and allows the request to be seen as coming from this
other user.

detection to other directories or file extensions.
This will enforce the OWASP recommendation:

•	 Disable	web	server	directory	listing	and	ensure	
file	metadata	(e.g.	.git)	and	backup	files	are	not	
present	within	web	roots.

•	 Next-Gen	WAF protects against brute force
attacks such as credential stuffing by detecting
such attacks and blocking the attackers’ login
attempts. All failed login attempts are logged and
administrators are immediately alerted when the
attacker is detected. This follows the OWASP
recommendation to:

•	 Log	access	control	failures,	alert	admins	when	
appropriate	(e.g.	repeated	failures).

•	 Next-Gen	WAF can rate limit API requests and alert
when thresholds have been crossed. This follows
the OWASP recommendation:

•	 Rate	limit	API	and	controller	access	to	minimize	
the	harm	from	automated	attack	tooling.

6Navigating the OWASP Top 10 with Fastly

Cryptographic
Failures

A02:2021

This category focuses on failures related to cryptography

(or lack thereof). A lack of, or poorly implemented,

cryptography often leads to exposure of sensitive data

(e.g. passwords, credit card numbers, health records,

personal information, and business secrets).

7Navigating the OWASP Top 10 with Fastly

This common example scenario often exists in many environments:

The password database uses unsalted or simple hashes to store everyone’s passwords. A file upload flaw
allows an attacker to retrieve the password database. All the unsalted hashes can be exposed with a rainbow
table of pre-calculated hashes. Hashes generated by simple or fast hash functions may be cracked by GPUs,
even if they were salted.

Example

Organizations can reduce the risk of cryptographic failures by using standardized cryptographic libraries
rather than hand-rolled functionality. This in addition to thorough code reviews and penetration testing
can provide an initial layer of defense against these threats, but more may be needed.

The OWASP recommendation to prevent this attack scenario is to store passwords using strong adaptive
and salted hashing functions with a work factor (delay factor), such as Argon2, scrypt, bcrypt or PBKDF2:

A practical example of good best practice would be using the bcrypt	function (hopefully from a library,
from your language of choice), based on the Blowfish cipher. This function incorporates a salt and is an
adaptive function, meaning over time the iteration count can be increased making it slower. Which means
it will remain resistant to brute force attacks over time.

Prevention

Fastly Protection
•	 Fastly	Edge	Cloud	Platform handles TLS termination and acceleration at a global scale with secure defaults
(such as TLS 1.3 and removal of weak ciphers) for customers. We can ensure that weak encryption ciphers and
protocols are not permitted for requests to sensitive areas of the application or for any application requests. This
will enforce the OWASP recommendation:

•	 Encrypt	all	data	in	transit	with	secure	protocols	such	as	TLS	with	perfect	forward	secrecy	(PFS)	ciphers,	
cipher	prioritization	by	the	server,	and	secure	parameters.	Enforce	encryption	using	directives	like	HTTP	Strict	
Transport	Security	(HSTS).

•	 Additionally,	our	programmable	edge	network	offers	developer	tools	for	cryptographic	hashing	and	digital	
signature	verification.	Centralizing	security	with	common	tools	reduces	the	risks	of	organizations	“rolling	their	
own	cryptography”	which	can	lead	to	increased	risks.

•	 Next-Gen	WAF can log requests and alert if required response security headers are ever missing.

8Navigating the OWASP Top 10 with Fastly

Injection
A03:2021

Some of the more common injection attacks are SQL, shell &

command line, Object Relational Mapping (ORM), LDAP, and

Object Graph Navigation Library (OGNL) injection (think struts

- template injections). OWASP also added cross-site scripting

(XSS) to this category in 2021. XSS was previously in its own

category - putting it under Injection doesn’t mean that XSS is

less severe now, it’s just that other vulnerabilities have become

more prevalent in recent years.

9Navigating the OWASP Top 10 with Fastly

String	query	=	“SELECT	*	FROM	
accounts	WHERE	custID=’”	+	request.
getParameter(“id”)	+	“’”;

Fastly Protection
•	 Next-Gen	WAF	by default detects injection attacks
without the need for additional rules or tuning.
Traditional WAF technologies rely on tens of
thousands of regular expression (regex) patterns
to detect various injection attacks such as SQLi.
The number of patterns needed to detect injection
attacks continues to grow over time as does the
computing power to inspect every HTTP request
against that ever-growing list of regex patterns.
The number of false positives typically associated
with regex pattern matching has necessitated
either dedicated, internal WAF tuning teams or
outsourced WAF management at a high cost, if WAF
blocking mode is to be maintained. This problem
is exacerbated in an environment when new
application versions are rapidly released.

•	 Next-Gen	WAF	utilizes SmartParse, its proprietary
detection technology, designed to make
instantaneous decisions in line to determine if
there are malicious or anomalous payloads present.
By evaluating the context of the request and how it
would actually execute, SmartParse makes highly
accurate decisions. SmartParse is continually
updated for efficacy based both on internal
research as well as a closed-loop in-product false
positive feedback feature. Compared to WAFs
that rely on regex matching that are rarely used in
blocking mode, 90% of Fastly customers enable
full blocking mode across all default attack types
without any tuning.

This category has the second most occurrences in
applications. Let’s dig in to define what exactly is
injection and how it can occur:

• User-supplied data is not validated, filtered,
or sanitized by the application.

• Dynamic queries or non-parameterized calls
without context-aware escaping are used
directly in the interpreter.

• Hostile data is directly used or concatenated.
The SQL or command contains the structure
and malicious data in dynamic queries,
commands, or stored procedures.

An application uses untrusted data
extracted from an inbound user query
in the construction of the following
vulnerable SQL call:

Example

Prevention

The best way to prevent injection attacks is to keep data separate from commands and queries by using
parameterized queries and similar constructs (ORM	tools). Some other defenses are using positive or
“allow-list” server-side input validation. This is not a complete defense as many applications require special
characters, such as text areas or APIs for mobile applications. Many frameworks use this approach by
default, which might explain the lower rank of this category compared to previous editions.

10Navigating the OWASP Top 10 with Fastly

Insecure
Design

A04:2021

This broad category represents different weaknesses, expressed

as “missing or ineffective control design.” Among the CWEs in the

category, you will find quite a few things grouped together including

insufficient restrictions, incorrect privilege assignment, cached

cookies containing sensitive information, and many other flaws

that are not directly testable vulnerabilities. Unfortunately, some

of these category groupings will be difficult to think of as a single

category for many developers and may potentially lead to some being

missed. It might be helpful for developers to look at each component

(authentication, authorization, checkoutwvv) of their application and

break it down into the simplest pieces. Once broken down it will

become easier to test each piece individually and will generally lead

to better outcomes both from a security and reliability standpoint.

The reason this leads to generally better outcomes is attackers will

typically look at a specific attack vector (think broken authorization

design) and see how many other targets it applies to.

11Navigating the OWASP Top 10 with Fastly

A cinema chain allows group booking discounts and has a maximum of fifteen attendees before requiring a
deposit. Once an attacker determines the attendee limit, they will try to exploit and test if they could book six
hundred seats and all cinemas at once in a few requests, causing a massive loss of income.

Example

Due to the nature of this category, it is harder to test. The best way to prevent exploitation will require a
change in the way that the code is written and tested, really utilizing that “shift-left” mentality. Below are
some examples of ways to prevent these types of vulnerabilities in your code:

• Use threat modeling for critical authentication, access control, business logic, and key flows.

• Write unit and integration tests to validate that all critical flows are resistant to the threat model.
Compile use cases and misuse cases for each tier of your application.

• Limit resource consumption/accessibility by user or service.

Fastly Protection

•	 Next-Gen	WAF allows for custom signals to be created to monitor activity around susceptible
routes or flows in an application. For example, if an application is built around a /checkout flow and
this is a sensitive application route, you can attach a custom signal to client requests for this part
of the application. The custom signal will allow you to monitor activity and create blocking or rate-
limiting rules based on the properties of the request in the face of abusive behavior.

Prevention

12Navigating the OWASP Top 10 with Fastly

Security
Misconfiguration

A05:2021

This category means the application is missing some security

hardening or has some configuration settings that have not

been applied correctly such as directory listing enabled, default

accounts enabled, or missing security headers. This category

also contains XML External Entity (XXE) injections which was a

separate category in the previous iteration.

13Navigating the OWASP Top 10 with Fastly

Fastly Protection

Directory listing is not disabled on the server. An attacker discovers they can simply list directories. The
attacker finds and downloads the compiled Java classes, which they decompile and reverse engineer to view
the code. The attacker then finds a severe access control flaw in the application.

Example

While prevention is difficult for this
category some simple procedural
items once implemented would likely
detect and assist in remediation
before the attack can exploit these
vulnerabilities. An example of that
would be a repeatable hardening
process such as a default hardened
(think golden	image) apache or
nginx configuration file, which will
make it fast and easy to deploy
another, appropriately locked down,
environment.

Development, QA, and production
environments should all be
configured identically, with
different credentials used in each
environment. This process should
be automated to minimize the
effort required to set up a new
secure environment. In addition,
an automated process is needed
to verify the effectiveness of the
configurations and settings in all
environments. The ideal for these
environments is a minimal platform
without any unnecessary features,
components, documentation,
or samples.

Prevention
•	 Next-Gen	WAF can alert administrators when server
responses do not contain required security headers. This
addresses the OWASP application vulnerability concern:

•	 The	server	does	not	send	security	headers	or	
directives	or	they	are	not	set	to	secure	values.

• For XXE, the Next-Gen	WAF inspects XML payloads
for injection attacks such as SQLi and command
injection. This will help address the following OWASP
recommendation:

•	 Implement	positive	(“whitelisting”)	server-side	
input	validation,	filtering,	or	sanitization	to	
prevent	hostile	data	within	XML	documents,	
headers,	or	nodes.

• If an application should not be accepting XML
in HTTP requests, Fastly can look for and alert
or block requests containing XML payloads.

•	 Next-Gen	WAF can also be configured to look for
sensitive data patterns in JSON payloads that can be
blocked or logged. Whether blocking or logging, Fastly
can immediately alert administrators when sensitive data
patterns are found in payloads. This will help address the
following OWASP recommendation:

•	 Whenever	possible,	use	less	complex	data	
formats	such	as	JSON,	and	avoid	serialization	
of	sensitive	data.

• Virtual patching can help address new data leakage
issues until the application is patched.

• The Fastly	Edge	Cloud	Platform can also be configured
to add security headers such as Content-Security-
Policy and Strict-Transport-Security. Automatically
setting response headers returned to clients from the
edge can provide another layer of protection against
improperly configured applications or origin servers.

14Navigating the OWASP Top 10 with Fastly

Vulnerable
and Outdated
Components

A06:2021

Vulnerable and outdated software components include libraries

and supporting services with known security flaws or out of

date security updates. Consistently updating these components

is a problem that Enterprises struggle with, especially with

large and legacy codebases.

15Navigating the OWASP Top 10 with Fastly

Example

Components typically run with the same privileges as the application itself, so flaws in any component can
result in serious impact. Such flaws can be accidental (e.g., coding error) or intentional (e.g., a backdoor in a
component). Some example exploitable component vulnerabilities discovered are:

• CVE-2017-5638, a Struts 2 remote code execution vulnerability that enables the execution of arbitrary
code on the server, has been blamed for significant breaches.

• While the Internet of Things (IoT) is frequently difficult or impossible to patch, the importance
of patching them can’t be ignored when they are left publicly exposed (NVRs) or provide critical
capabilities (biomedical devices).

While there are tools and products to assist in this, it is still very difficult to protect against this particular
vulnerability class. A good place to start is to ensure an ongoing plan for monitoring, triaging, and applying
updates or configuration changes for the lifetime of the application or portfolio. Some steps to do this
might include continuously inventorying the versions of both client-side and server-side components
(e.g., frameworks, libraries) and their dependencies using tools like versions, OWASP Dependency Check,
retire.js, etc.

Continuously monitoring sources like Common Vulnerability and Exposures (CVE) and National Vulnerability
Database (NVD) for vulnerabilities in the components can make you aware of critical bug patches. Using
software composition analysis (SCA) tools can help to automate the process and lessen the work required.
Subscribing to email alerts for security vulnerabilities related to components you use is a method that can
bring further context to your environment beyond just CVE monitoring.

Fastly Protection
•	 Next-Gen	WAF	provides virtual patching for
multiple CVEs (e.g. CVE-2023-34362 MOVEit
SQL Injection Vulnerability). Fastly also
allows customers to create virtual patches for
vulnerabilities that are unique to their application
while an internal patch/fix is developed and
released. This will help address the following
OWASP recommendations:

•	 Monitor	for	libraries	and	components	
that	are	unmaintained	or	do	not	
create	security	patches	for	older	
versions.	If	patching	is	not	possible,	
consider	deploying	a	virtual	patch	to	
monitor,	detect,	or	protect	against	the	
discovered	issue.

Prevention

16Navigating the OWASP Top 10 with Fastly

Identification &
Authentication
Failures

A07:2021

Identification and Authentication Failures include poor

password management, failure of rate-limiting for credential

stuffing attacks, insecure session management, and

authentication bypasses.

17Navigating the OWASP Top 10 with Fastly

Example

Fastly Protection

Credential stuffing is a good example of this category. Using lists of commonly used passwords, or those
from data breaches to access accounts with these known passwords is a common attack. An application
that does not implement automated threat or credential stuffing protection can be used as a password
oracle to determine if the credentials are valid. Even if your application’s password and session policies and
protection are well-designed and secure, the application can be vulnerable to credential stuffing attacks
using credentials stolen from less secure applications.

The prevention methods are fairly straightforward in theory but are harder to implement in reality. This
category requires the strategy of defense in depth but here’s a starting point:

• Where possible, implement multi-factor authentication to prevent automated credential stuffing, brute
force, and stolen credential reuse attacks.

• Implement weak password checks, such as testing new or changed passwords against the top 10,000
worst passwords list.

• Limit or increasingly delay failed login attempts, but be careful not to create a denial of service
scenario. Log all failures and alert administrators when credential stuffing, brute force, or other attacks
are detected.

•	 Next-Gen	WAF protects against brute force attacks such as credential stuffing by detecting such attacks
and blocking the attacker’s login attempts. All failed login attempts are logged and administrators are
immediately alerted when the attacker is detected. This follows the OWASP recommendation to:

•	 Limit	or	increasingly	delay	failed	login	attempts.	Log	all	failures	and	alert	administrators	
when	credential	stuffing,	brute	force,	or	other	attacks	are	detected.

Prevention

•	 The	Next-Gen	WAF can also be configured to enforce the OWASP recommendation to ensure “
session IDs should not be in the URL” or simply alert the administrator when a session ID is found
in a request URL.

18Navigating the OWASP Top 10 with Fastly

Software and
Data Integrity
Failures

A08:2021

Software and data integrity failures relate to code and

infrastructure that do not protect against integrity violations.

An example of this is where an application relies upon plugins,

libraries, or modules from untrusted sources, repositories,

and content delivery networks (think about the ua-parser-

js takeover). An insecure CI/CD pipeline can introduce the

potential for unauthorized access, malicious code, or system

compromise (e.g., Kaseya supply chain attack). Insecure

Deserialization from 2017 is now a part of this category.

19Navigating the OWASP Top 10 with Fastly

•	 Next-Gen	WAF inspects all requests including
payloads for attacks such as injection attacks. This
allows the blocking of serialized objects containing
attacks such as XSS, SQLi, directory traversal and
command execution.

•	 Next-Gen	WAF can also assist by looking
for excessive deserialization requests from a
source. Once a threshold has been crossed, the
administrator can be notified and a temporary block
of subsequent deserialization requests can be
enabled via rate-limiting. This will help address the
following OWASP recommendation:

•	 Monitoring	deserialization,	alerting	if	a	user	
deserializes	constantly

•	 Next-Gen	WAF can also be set up to detect if the
request payloads contain serialized payloads that
are Base64 encoded. Other serialization patterns
can also be specified for detection:

• “rO0” in Base64

• Content-type = ‘application/x-java-serialized-
object’

• If Base64 encoded serialized payloads and/or
specific content types should never be sent in
a request they can simply be blocked. Base64
encoded serialization requests can also be decoded
and inspected for blacklisted Java classes. This
provides look-ahead class validation and helps
address the following OWASP recommendation:

•	 Enforcing	strict	type	constraints	during	
deserialization	before	object	creation	as	the	
code	typically	expects	a	definable	set	of	
classes.

• Malformed Deserialization Requests - By default,
the Next-Gen	WAF parses XML and JSON payloads
and flags the request if the payload is malformed
without the need for rules.

• Virtual patching can help address new
deserialization flaws until the application is patched.

Example

Fastly Protection

• Use digital signatures or similar
mechanisms to verify the software or data
is from the expected source and has not
been altered.

• Ensure libraries and dependencies, such
as npm or Maven, are consuming trusted
repositories. If you have a higher risk
profile, consider hosting an internal known-
good repository that’s vetted.

• Ensure that your CI/CD pipeline has proper
segregation, configuration, and access
control to ensure the integrity of the code
flowing through the build and deploy
processes.

SolarWinds malicious update: Nation-
states have been known to attack update
mechanisms, with a recent notable attack
being the SolarWinds	Orion	attack.
Solarwinds had secure build and update
integrity processes. Still, these were able to
be subverted, and for several months, the
firm distributed a highly targeted malicious
update to more than 18,000 organizations,
of which around 100 or so were affected.
This is one of the most far-reaching and
significant breaches of this nature in history.

Prevention

20Navigating the OWASP Top 10 with Fastly

Security Logging
and Monitoring
Failures

A09:2021

This category is to help detect, escalate, and respond to active

breaches. Without logging and monitoring, breaches cannot

be detected and failures in this category can directly impact

visibility, incident alerting, and forensics.

21Navigating the OWASP Top 10 with Fastly

•	 Next-Gen	WAF monitors all incoming HTTP
requests and responses for attacks and
anomalies. This includes monitoring and
logging all login attempts, successes, and
failures. When an automated logging or
blocking decision is made, alert notifications
are automatically sent to administrators
through configured channels via email or
webhook integration. All Next-Gen WAF event
and request data can also be imported via
API into any system for long-term log archives
in JSON format. This will help address the
following OWASP recommendations:

•	 Ensure	all	login,	access	control	failures,	
and	server-side	input	validation	failures	
can	be	logged	with	sufficient	user	
context	to	identify	suspicious	or	malicious	
accounts,	and	held	for	sufficient	time		
to	allow	delayed	forensic	analysis.

•	 Ensure	that	logs	are	generated	in		
a	format	that	can	be	easily	consumed	by		
a	centralized	log	management	solutions.

•	 Ensure	high-value	transactions	have	an	
audit	trail	with	integrity	controls	to	prevent	
tampering	or	deletion,	such	as	append-
only	database	tables	or	similar.

•	 Establish	effective	monitoring	and		
alerting	such	that	suspicious	activities		
are	detected	and	responded	to	in		
a	timely	fashion.

•	 Next-Gen	WAF sends out real-time event
notifications to a list of default webhook
integrations in the dashboard such as Slack,
PagerDuty and Datadog in addition to any
notification receiver solution that can accept
a webhook.

• SIEM integration (e.g Elastic, ELK Stack,
Sumo Logic) is straightforward and allows for
storage of security events and details as long
as needed or required.

• Fastly’s Managed Security Service provides
24/7 proactive monitoring and remediation
from our Customer Security Operations Center
(CSOC).

Fastly Protection

Example

An external party informed a children’s health
plan provider that an attacker had accessed
and modified thousands of sensitive health
records of more than 3.5 million children. A
post-incident review found that the health
plan provider’s website developers had not
addressed significant vulnerabilities. As there
was no logging or monitoring of the system,
the data breach could have been in progress
since 2013, a period of more than ten years.

Prevention

Developers should implement the following
controls, depending on the risk of the
application:

• Ensure all login, access control, and
server-side input validation failures can
be logged with sufficient user context to
identify suspicious or malicious accounts
and held for enough time to allow delayed
forensic analysis.

• Ensure high-value transactions have an
audit trail with integrity controls to prevent
tampering or deletion, such as append-
only database tables or similar.

• Establish or adopt an incident response
and recovery plan, such as NIST	800-61r2	
or later.

22Navigating the OWASP Top 10 with Fastly

Server-Side
Request
Forgery

A10:2021

SSRF flaws occur when a web application is fetching a remote

resource without validating the user-supplied URL. It allows an

attacker to coerce the application to send a crafted request to

an unexpected destination, even when protected by a firewall,

VPN, or another type of network access control list (ACL). You

can think of SSRF as enabling a kind of evil reverse proxy for

attackers to use in their operations.

As modern web applications provide end-users with convenient

features (e.g., talking to multiple backend systems), fetching a

URL becomes a common scenario. As a result, the incidence of

SSRF is increasing. The severity of SSRF is also increasing due

to cloud services and the complexity of architectures.

23Navigating the OWASP Top 10 with Fastly

Example

Accessing metadata storage of cloud services – Most cloud providers have metadata storage such as
http://169.254.169.254/. An attacker can read this metadata to gain sensitive information.

Prevention

Because of the complexity of the attack surface for SSRF attacks, implementing defense in depth controls is
the best way to successfully defend against this particular attack.

From the network layer, you can segment remote resource access functionality in separate networks to
reduce the impact of SSRF.

From the application layer, a few of these options include: sanitize and validate all client-supplied input data,
disable HTTP redirection, enforce the URL schema, port, and destination with a positive allow list. Do	not	
mitigate	SSRF	via	the	use	of	a	deny	list	or	regular	expression.	Attackers	have	payload	lists,	tools,	and	
skills	to	bypass	deny	lists.

Fastly Protection

•	 Next-Gen	WAF: Through NLX and our security research team, we rapidly roll out mitigations
to protect against new, pervasive threats, including SSRF. For example, we include a templated rule
that addresses AWS-specific SSRF.

• With the Next-Gen	WAF you can add a custom rule to block all requests with invalid Host headers
(e.g. ones not in your allowed list of domains) to prevent Host Header SSRF.

Conclusion
By using a combination of default detections plus customizable functionalities
in the Next-Gen WAF and leveraging the capabilities of our Edge Cloud
Platform, Fastly customers can gain strong coverage of the OWASP Top 10.
Expand coverage even further through implementing OWASP and Fastly-
recommended best practices to shore up your application security skills and
capabilities to better protect customer and corporate data.

To learn more and see how Fastly can help you mount a strong defense against
OWASP threats, contact	us.

•	 OWASP.org

•	 Detection	and	Blocking	with	the	Next-Gen	WAF

•	 Ten	Capabilities	of	the	Next-Gen	WAF

Further reading

